• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2001.tde-20210729-124634
Documento
Autor
Nombre completo
Jaime Sodré Sousa Filho
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2001
Director
Título en portugués
Convexidade e finitude do número de geodésicas em variedades pseudo-Riemannianas: aplicações à teoria de relatividade geral
Palabras clave en portugués
Geometria Diferencial
Resumen en portugués
De acordo com a relatividade geral, raios de luz sofrem uma deflexão ao passar por um corpo maciço denso. Dependendo das circunstâncias, pode ocorrer de um observador ver duas ou mais imagens de uma fonte de luz distante de sua esfera celeste. Este é o assim chamado efeito de lente gravitacional com multiplicidade de imagens. Motivado por tal interesse físico, nesta tese estudamos alguns modelos matemáticos relativamente simples de espaços-tempos ralativísticos, embora relevantes, variedades lorentzianas conformemente estacionárias, e fornecemos alguns resultados qualitativos sobre o número de imagens observadas em uma situação de lente gravitacional. Um problema natural para os astrofísicos é o da contagem do número de imagens que podem ser observadas em uma situação de lente gravitacional. Em terminologia matemática, uma situação de lente gravitacional pode ser modelada do seguinte modo. Consideramos uma variedade lorentziana (M, g) como modelo matemático para um espaço-tempo, fixamos uma curva temporal y como linha de mundo de uma fonte de luz, e um ponto p onde ocorre uma observação. Agora, o número de imagens vistas por um observador é igual ao número de segmentos geodésicos do tipo nulo que apontem para o futuro e que liguem y a p. Quando quer que haja dois ou mais de tais segmentos geodésicos, estamos numa situação de lente gravitacional com multiplicidade. Deste ponto de vista, pode-se perguntar se existem algumas propriedades topológicas e métricas de um espaço-tempo que garantam a finitude do número de imagens observadas no caso não-conjugado. Nesta tese é provado que se uma variedade riemanniana admitir uma função estritamente convexa, então o número de segmentos geodésicos que liguem dois pontos não-conjugados é finito. Nesta tese, introduzimos o conceito de função estritamente convexa do tipo nulo, damos alguns exemplos de variedades estacionárias e estáticas que admitem este tipo de função, ) e provamos que a existência de função estritamente convexa do tipo nulo implica a finitude do número de segmentos geodésicos do tipo nulo que apontem para o futuro e que liguem p e y
Título en inglés
not available
Resumen en inglés
not available
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.