• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2002.tde-20210729-130104
Document
Auteur
Nom complet
Raul Antonio Ferraz
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2001
Directeur
Titre en portugais
Subgrupos livres e unidades centrais no grupo de unidades de alguns anéis de grupos
Mots-clés en portugais
Álgebra
Teoria Dos Anéis
Resumé en portugais
Sejam G um grupo, Z o abel dos inteiros, e seja Z[G] o anel de grupo de G com coeficientes em Z. Em [HP] Hartley e Pickel mostraram que a menos que G seja abeliado ou 2-Hamiltoniano, o grupo de unidades de Z[G], U(Z[G]) contém um grupo livre. Denotaremos por U1(Z[G]) de aumento 1. Em [G1], [G2], [G3] e [G4] J. Z. Gonçalves estudou a existência de grupos livres no grupo de unidades de anéis de grupo. Em [MS] Marciniak e Sehgal construíram grupos livres de U(Z[G]) a partir de unidades bibíclicas e do anti-automorfismo. Até o momento, este é o único método explícito de se produzirem unidades que gerem um grupo livre. A partir de uma direção diferente Dokuchaev e Gonçalves [DG1] mostraram que U(Z[G]), com G de torção, não satisfaz uma identidade de semigrupo, a menos que G seja abeliano ou 2-Hamiltoniano. Nesta demonstração são construídas duas unidades u e v, com v bicíclica, e u unidade de Bass, que não satisfazem um tipo específico de identidade de semigrupo, chamado equação-R (R-equation). Este resultado nos leva às seguintes questões: (1) u e v geram um semigrupo livre em U(Z[G])? (2) u e v geram um grupo livre em U (Z[G])? No primeiro cap¦tuo mostraremos que o grupogerado pelas unidades u e v como construídas em [DG1], que chamaremos de Go é na verdade metabeliano. Além disso, provaremos o teorema o grupo Go={u, v} é isomorfo a A X C onde A é um grupo abeliano livre e C denota o grupo cíclico infinito. Com isto concluímos que u e v não geram um grupo livre de U(Z[G]). Mostraremos ainda que o semigrupo gerado por u e v não é o semigrupo livre. Contudo, no segundo capítulo modificaremos um pouco a unidade bibíclica v, em relação à unidade cíclica de Bass u e com isso teremos que no caso em que G é o grupo diedral de 2n elementos, que denotaremos por Dn, existirão no subgrupo {u, v} grupos livres não abelianos, ainda no segundo capítulo construiremos grupos livres de posto maior em Dn gerados a partir da ) unidade bicíclica e do gerador de ordem n de Dn que denotaremos por x. Muito se tem estudado em relação ao grupo de unidades de Z[Dn], onde Dn é o grupo diedral de ordem 2n. Em [HP2], Hughes e Pearson caracterizam U1(Z[D3]) como um subgrupo de matrizes de GL2(Z). Em [Polc], Polcino caracteriza U1(Z[D4]) também como subgrupo de GL2(Z). Na mesma direção temos os trabalhos de Passman e Smith [PasSmi] e Fernades [Fer]. Porém, há pouca coisa feita no intuito de caracterizar U1(Z[Dn]) em termos geradores e relações. Neste sentido temos em [PS], um descrição quando n=3. Afim de aprofundar nossos conhecimentos sobre as unidades de Z[Dn] caracterizamos no terceiro capítulo as unidades centrais de U1(Z[Dn]), e aproveitando as mesmas técnicas caracterizamos as unidades centrais de U1(Z[DCn]), onde DCn é o grupo dicíclico de ordem 4n. É um resultado bastante conhecido em Teoria de Grupos que se todo subgrupo H de um grupo G é normal então ou G é abeliano ou é hamiltoniano, isto é, G é da forma Ks x A x E, onde Ks é o grupo dos quatérnios de ordem 8, A é um grupo abeliano onde todo elemento tem ordem ímpar, e E é um 2-grupo abeliano elementar. Se A for trivial diremos G é 2-hamiltoniano. Devido a [HP] temos que U(Z[G]) não contém grupos livres se e somente se G é abeliano oi 2-hamiltoniano. Se G for hamiltoniano mas não 2-hamiltoniano, teremos que U(Z[G]) contém grupos livres. Contudo não poderemos usar as técnicas de [MS] para construir tais grupos, visto que se G não tem subgrupo não normais U(Z[G]) não terá unidades bicíclicas. No quarto capítulo construiremos grupos livres em U(Z[G]) quando G é um grupo hamiltoniano, não 2-hamiltoniano, usando apenas unidades cíclicas de Bass
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
FerrazRaulAntonio.pdf (6.17 Mbytes)
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.