• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2003.tde-20210729-133625
Document
Author
Full name
Osnel Broche Cristo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2003
Supervisor
Title in Portuguese
A comutatividade dos elementos simétricos e anti-simétricos em Anéis de Grupo
Keywords in Portuguese
Álgebra
Anéis De Grupos
Abstract in Portuguese
Sejam R um anel comutativo com unidade e G um grupo. O anel de grupo RG tem uma involução natural, *, que aplica cada elemento do grupo em seu inverso ('g IND.*' = 'G ind. -1', g pertencente a G). Esta tese é dedicada ao estudo dos elementos simétricos e anti-simétricos de RG, com respeito a involução *, cujos conjuntos denotemos por RG 'POT +' e RG 'POT -', respectivamente. Estudamos a comutatividade de RG 'POT +', isto é, sob que condições o conjunto RG 'POT +' é um subanel de RG. O estudo foi dividido em dois casos dependendo da característica de R ser diferente de 2 ou não, como acontece sempre que se trabalha com anéis com involução. Em ambos os casos caracterizamos completamente os grupos G quaisquer, tais que RG 'POT +' é comutativo. Depois estudamos a comutatividade de RG 'POT -', memso que este conjunto não forme um subanel associativo mas sim um anel não associativo, quando considerado RG com o produto de Lie [x,y] = xy - yx. Também aqui dividimos o estudo em dois casos dependendo da característica de R e damos uma caracterização completa dos grupos G tais que RG 'POT -' é comutativo. Finalmente, no capítulo III, caracterizamos os grupos G, de torção, tais que o conjunto das unidades simétricas de RG é um subgrupo
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
CristoOsnelBroche.pdf (4.29 Mbytes)
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.