• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2003.tde-20210729-134550
Document
Author
Full name
Rodrigo Ristow Montes
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2003
Supervisor
Title in Portuguese
Ângulo de contato para superfícies imersas em 'S POT. 2n+1'
Keywords in Portuguese
Geometria Diferencial
Abstract in Portuguese
O objetivo desse trabalho é introduzir um novo invariante geométrico para estudar superfícies imersas em esferas de dimensão ímpar. A partir deste invariante, o ângulo de Contato, determinamos equações para Curvatura Gaussiana e Laplaciano de superfícies mínimas imersas em 'S POT. 2n+1'. Quando a superfície está imersa em 'S POT. 2n+1' definimos o ângulo de holomorfia análogo ao ângulo Kähler. Neste caso, classificamos completamente as superfícies com ambos ângulos constantes fornecendo uma família de toros mínimos imersos em 'S POT. 5'. Pro fim, algumas caracterizações do Toro de Clifford em 'S POT. 3' são apresentadas, sendo esta a única superfície mínima em 'S POT. 3' com ângulo de Contato constante.
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.