• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.45.2004.tde-20210729-140451
Documento
Autor
Nome completo
Robson Rodrigues da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2004
Orientador
 
Título em português
Operadores em subespaços de espaços de Banach hereditariamente indecomponíveis
Palavras-chave em português
Análise Funcional
Resumo em português
O objetivo desse trabalho é apresentar em detalhes a demonstração de um resultado fundamental sobre 'Operadores em subespaços de espaços de Banach hereditariamente indecomponíveis'. Em 1993, W.T. Gowers e B. Maurey mostraram que sendo X um espaço de Banach complexo hereditariamente indecomponível, todo operador de X em X é da forma 'lâmbda I IND. x' + S, onde Í IND. X' é a identidade, S um operador estritamente singular e 'lâmbda' um número complexo. Apresentaremos uma generalização deste resultado, mostrando que para todo subespaço fechado Y de X, todo operador de Y em X é da forma 'lâmbda I IND. X' + S. Esse último resultado foi provado por V. Ferenczi e publicado em Bull. London Math. Soc. 29 (1996) 338-344.
 
Título em inglês
not available
Resumo em inglês
not available
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-07-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.