• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2005.tde-20210729-143906
Document
Auteur
Nom complet
André Arbex Hallack
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2005
Directeur
Titre en portugais
Hiperciclicidade em espaços de funções inteiras
Mots-clés en portugais
Análise Funcional
Resumé en portugais
A proposta deste trabalho é estudar, sob vários aspectos, o fenômeno da Hiperciclicidade para operadores em espaços de funções inteiras. Iniciamos obtendo uma prova simples de que o conjunto das funções hipercíclicas comuns a todas as translações por um complexo não-nulo em H(C) é 'lineável'. Fornecemos também uma prova completa da hiperciclicidade de uma classe de exemplos de operadores que não são de convolução. Investigamos o tamanho do conjunto de vetores, num sentido topológico, para certos operadores, através da introdução de um conceito de certa forma similar ao conceito de porosidade para espaços métricos. Finalmente, adaptando o Teorema de Runge para que tenhamos um resultado que funcione sobre certos domínios em qualquer espaço de Banach, estendemos resultados relativos à hiperciclicidade de translações em H(C) para subespaços de 'H IND. b'(E), (em certos casos todo o 'H IND. b'(E), podendo E pertencer a uma vasta classe de espaços de Banach.
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
HallackAndreArbex.pdf (7.57 Mbytes)
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.