• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2005.tde-20210729-205923
Document
Auteur
Nom complet
Eliza Hidemi Sadaike Miyazaki
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2005
Directeur
Titre en portugais
Medida de Gabriel-Roiter e o teorema de Roiter
Mots-clés en portugais
Álgebra
Resumé en portugais
A Conjectura de Brauer-Thrall I foi resolvida por Roiter e estabelece que, se uma álgebra 'lâmbda' é de tipo de representação limitado, então 'lâmbda' é de tipo de representação finito. Esta conjectura atualmente é conhecida como Teorema de Roiter. Seja 'lâmbda' uma álgebra de Artin de tipo de representação limitado. O objetivo do trabalho é refazer a demonstração proposta por Gabriel para o Teorema de Roiter, utilizando conceitos e terminologias mais modernos como: cobertura de categorias, categorias contravariantemente finitas e medida de Gabriel-Roiter. Tal medida leva em consideraçÕ!ao a estrutura da possível filtração por submódulos indecomponíveis de um dado módulo. Um resultado importante é o fato de que o módulo indecomponível que possui a maior medida de Gabriel-Roiter ser o injetivo indecomponível de maior comprimento.
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.