• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.45.1998.tde-20210813-161705
Documento
Autor
Nome completo
Walquiria de Freitas Torezani
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1998
Orientador
Título em português
Álgebras com composição e álgebras com pseudo-composição
Palavras-chave em português
Álgebra
Anéis e Álgebras Não Associativos
Resumo em português
Este trabalho resultou do estudo do artigo Pseudo-composition algebras de K.Meyberg e J.M.Osborn. No Capítulo 1, classificamos as álgebras com composição. Mostramos que estas álgebras tem dimensão 1,2,4 e 8 e são isomorfas, respectivamente, a um corpo, à álgebra de complexos generalizada, à álgebra dos quatérnios generalizada e à álgebra de Cayley-Dickson. No capítulo 2, caracterizamos as álgebras com pseudo-composição sobre um corpo algebricamente fechado. Mostramos que estas álgebras ou são do tipo quadrático, ou módulo o radiacal de sua forma bilinear são do tipo quadrático, ou podem ser construídas a partir de uma álgebra alternativa quadrática com composição
Título em inglês
not available
Resumo em inglês
This work is based on the paper Pseudo-composition algebras by K.Meyberg e J.M. Osborn. In the first chapter we classify the composition algebras. The main result establishes that these algebras have dimension 1, 2, 4 and 8, and are isomorphic, respectively, to a field, an algebras of generalized complex numbers, a generalized quaternion algebra and a Cayley-Dickson algebra. In the second chapter we characterize the pseudo-compositions algebras over an algebraically closed field. We proved that these algebras are either of quadratic type, or else module the radical of their bilinear forms are of quadratic type, or else the algebras may be constructed from an alternative quadratic composition algebra
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-08-13
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.