• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1993.tde-20220712-113155
Document
Author
Full name
Cristina Cerri
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1993
Supervisor
Title in Portuguese
Certas deformacoes nao-comutativas do toro e sua k-teoria
Keywords in Portuguese
Álgebras De Banach
Anéis E Álgebras Associativos
Abstract in Portuguese
Para cada 'ALFA' > 'OU IGUAL' 0 define-se 'B ALFA' como sendo a c*-algebra gerada por dois unitarios 'U IND.ALFA' e um auto-adjunto 'H IND.ALFA' tais que 'MODULO IND.ALFA MODULO' < 'OU IGUAL' 'ALFA' e 'U IND.ALFA' 'V IND.ALFA' 'U* IND.ALFA' 'V* IND.ALFA' = 'E POT.IH 'alfa'. NESTE TRABALHO PROVAMOS QUE A FAMILIA ('b ind.Alfa') 'ind.Alfa' 'pertence' [0 'infinito'] ESTENDE A FAMILIA DOS SOFT TORUS COM AS MESMAS PROPRIEDADES BASICAS, ISTO E, QUE PARA CADA 'alfa ind.0' O CAMPO DE C*-ALGEBRA (B 'ind.Alfa') 'alfa' 'pertence' [0, 'alfa' ZERO] E CONTINUO E CADA B 'ind.Alfa' E PRODUTO CRUZADO DE UMA C*-ALGEBRA HOMOTOPICAMENTE EQUIVALENTE AC ('s pot.1') POR Z. MOSTRAMOS ENTAO QUE OS K-GRUPOS DE 'b alfa' SAO ISOMORFOS A Z 'soma direta' Z. APLICANDO RESULTADOS DA TERIA DAS ALGEBRAS DE ROTACAO DEMONSTRAMOS QUE TODO ELEMENTO POSITIVO (N,M) DE 'k ind.0' ('b ind.Alfa') SATISFAZ /M/'alfa' < 'ou igual' 2 'pi' n. Como consequencia segue que estas c*-algebras nao sao todas homotopicamente equivalentes entre si, apesar de terem os mesmos k-grupos
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
CerriCristina.pdf (7.77 Mbytes)
Publishing Date
2022-07-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.