• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1991.tde-20220712-114147
Document
Auteur
Nom complet
André de Oliveira Gomes
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1991
Directeur
Titre en portugais
Imersoes isometricas entre espacos hiperbolicos
Mots-clés en portugais
Geometria Diferencial
Resumé en portugais
Neste trabalho fornecemos uma exposicao detalhada do que e conhecido a respeito de imersoes isometricas, em codimensao um e sem pontos umbilicos, entre espacos hiperbolicos. Em particular, mostramos que toda folheacao do espaco hiperbolico 'H POT.N' por hipersuperficies totalmente geodesicas e a folheacao nulidade de uma imersao isometrica f:'H POT.N'SETA'H POT.N+1' sem pontos umbilicos. Mostramos ainda o seguinte analogo do teorema do cilindro de hartman-nirenberg: toda imersao isometrica sem pontos umbilicos f:'H POT.N'SETA'H POT.N+1', entre espacos hiperbolicos, toma a forma de um (n - 1)-cilindro sobre uma curva paralelizante, unicamente determinada, em 'H BARRA POT.N+1'. Apresentamos tambem alguns exemplos de tais imersoes
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-07-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.