• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2001.tde-20220712-115739
Document
Author
Full name
David Pires Dias
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2001
Supervisor
Title in Portuguese
O produto cruzado de C*-álgebras por grupos medievais
Keywords in Portuguese
Análise Funcional
C* Álgebras
Abstract in Portuguese
Dado um C*-sistema dinâmico {A,G,'alfa'} construimos uma C*-algebra 'G x A IND.alfa', chamada de produto cruzado, e também uma C*-algebra 'G x A IND.alfa r', chamada de produto cruzado reduzido. Obtemos também uma relação bijetiva entre as representações covariantes do C*-sistema dinâmico e as representações não-degeneradas de 'G x A IND.alfa'. Ao particularizarmos este C*-sistema dinâmico para o caso em que o grupo G é mediável, a representação regular será um isomorfismo isométrico entre as C*-algebras 'G x A IND.alfa' e 'G x A IND.alfa r'. Verifica-se também que ao tomarmos o C*-sistema dinâmico {C,G,'alfa'} temos a veracidade da recíproca, isto é, a representação regular é fiel se, e somente se, o grupo G é medieval
Title in English
not available
Abstract in English
Given a C*dynamical system {A,G,'alfa'} we construct the C*-algebra 'G x A IND.alfa', which is called reduced crossed product. We achieve a bijection between the covariant representations of the C*-dynamical system and the nondegenerate representations of 'G x A IND.alfa'. Restricting this C*-dynamical system to the case in which the group G is amenable, the regular representation will be an isometric isomorphism between the C*-algebras 'G x A IND.alfa' and 'G x A IND.alfa r'. It can also be noted that if we take the C*-dynamical system {C,G,'alfa'} we achieve the truth of the reciprocal, that is, the regular representation is faithful if, and only if, the group G is amenable
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
DiasDavidPires.pdf (10.43 Mbytes)
Publishing Date
2022-07-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.