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Preface

This thesis chronicles three studies in the representation theory of infinite-dimensional
Lie algebras. The first work concerns the imaginary highest-weight theory of affine sl(2).
Futorny [14] describes the structure of all but one of the universal objects of the theory,
the imaginary Verma modules. If reducible, an imaginary Verma module V() possesses
an infinite descending series of submodules such that the quotient of any submodule by
its successor is isomorphic to a certain module M(\) that depends only upon the highest
weight A. The infinitely recurrent factor M(A) is reducible precisely when A = 0. The
structure of M(0) is apparently complicated, and not at all understood. The principal
result of the first work is a classification of the irreducible quotients of the submodules
of M(0). This classification complements the result of Futorny to provide a structural
description of the imaginary Verma modules. One may define, for any function on the

integers with values in the field, an irreducible module of level zero for affine sl(2):
p:Z—C defines N(¢p) irreducible module for affine sl(2).

The irreducible quotients of the submodules of M(0) are precisely the modules N(¢)
where ¢ is a linear combination of exponential functions with coefficients that are inte-
gral, even, and negative. The classification follows from the construction of a family of

singular vectors, and from a description of M(0) in terms of the symmetric functions.

The class of so-called exponential-polynomial modules, which is the class of those mod-
ules N(¢p) defined by an exponential-polynomial function ¢, therefore contains all the
irreducible quotients of the submodules of M(0). An exponential-polynomial function
@ is a function that may be written as a sum in which each summand is a product of
an exponential and a polynomial function. Equivalently, a function ¢ is exponential-

polynomial precisely when the sequence of its values

solves some linear homogeneous recurrence relation with constant coefficients. The val-

ues of the function ¢ provide the structure constants of the module N(y), and so the

i



ii PREFACE

exponential-polynomial modules may be thought of as modules with structure constants
of a limited complexity. The isomorphism classes of the exponential-polynomial mod-
ules parameterise the isomorphism classes of the modules N(yp) whose representatives
have only finite-dimensional weight spaces [3] [12]. The open problem of describing the
multiplicities of the weight spaces of an exponential-polynomial module may be resolved

through a study of the highest-weight representations of truncations of the loop algebra.

Any proper quotient of a loop algebra is isomorphic to a truncation of the form
§ = g ® C[t]/t"T'Clt],

where N is some non-negative integer. In the second work a highest-weight theory for
the truncation g is developed when the underlying Lie algebra g possesses a triangular
decomposition. The principal result is a reducibility criterion for the Verma modules
of § when g is a symmetrisable Kac-Moody Lie algebra, the Heisenberg algebra, or the
Virasoro algebra. This is achieved through a study of the Shapovalov form.

The third work employs the highest-weight theory of truncations of the loop algebra to
describe the multiplicities of the weight spaces of an exponential-polynomial module in
the case where g = sl(2). An exponential-polynomial module N () may be realized as an
irreducible constituent of a loop module built from an irreducible highest-weight module
L(y) for a truncation of the loop algebra. This realization, which is due to Chari and
Pressley [9], expresses the multiplicities of N (i) in terms of the multiplicities of L(ip) via
a certain action of a finite cyclic group. In the particular case of g = sl(2), an expression
for the formal character! of a module L(¢) may be deduced from the aforementioned
reducibility criterion for Verma modules of §. The third work develops a theory of semi-
invariants for finite cyclic groups and employs this expression to solve the multiplicity

problem for exponential-polynomial modules.

I am indebted to my supervisors, Alexander Molev at the University of Sydney, and
Vyacheslav Futorny at the Universidade de Sao Paulo, for their academic guidance. I
would like to extend further thanks to Vyacheslav for facilitating my transition to Brazil,
and for his friendship and support during a challenging period. I am very grateful to
Yuly Billig, under whose direction the second work was completed, for his counsel and

encouragement.

I That is, the generating function defined by the multiplicities of the weight spaces.
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CHAPTER 1

Recapitulation

Section 1 presents the preliminary results on exponential-polynomial modules and on
truncated current Lie algebras that are necessary to describe the results of the thesis in
Sections 2 — 4. The material of Section 1 is principally derived from Billig and Zhao [3],
Chari [6], and Chari and Pressley [9].

1. Exponential-Polynomial Modules and Truncated Current Lie Algebras

The loop-module realisation motivates a study of an exponential-polynomial module via
an irreducible highest-weight representation of a truncated current Lie algebra. In this
section, the exponential-polynomial modules and their corresponding truncated current
Lie algebras are constructqé, and the realisation is described. Let k denote a field of
characteristic zero. Denote by g = spany { e, h, f } the three-dimensional Lie algebra sl(2)

with the commutation relations
[e,f] =h, [h,e] = 2e, [h,f] = —2f,

and triangular decomposition
(1.1) g=9+®h®g-, e€gy, heh, feg..
For any Lie algebra a over k, denote by

6=a®klt,t ]
the Z-graded loop algebra associated to a, with the Lie bracket

[z@t,yRt] = [z,y] @t T,y€a, 1,]€Z.
An d-module M is Z-graded if M = @, M, and
a®t™ - M, C Mpyin, m,n € Z.

The decomposition (1.1) defines a decomposition of g

=g 0h@d-

1



2 1. RECAPITULATION

as a direct sum of Z-graded subalgebras. We consider g-modules M that are h-diagonal-
isable, i.e.
M= MX where hlyx =x(h), heb.
X€h*

A Z-graded g-module M may be decomposed
M= € MY, Mf=MXNM,,
(x.n)es(M)

as a direct sum of homogeneous components M, where
s(M)={(x,n) €h" xZ| My #0}.

The functional o € §h* given by «(h) = 2 is the positive root of g. The category O,
introduced by Chari [6], consists of those Z-graded g-modules M such that

S(M) € Uyen (N~ Zyot) x Z

for some finite subset A = Ay C §*. The morphisms of the category are the homo-
morphisms of Z-graded g-modules. For any Lie algebra a, a map 0 : M — N is a
homomorphism of Z-graded a-modules M and N if 6 is a a-module homomorphism and
if there exists k € Z such that 9(Mn9/c Nk, for all n € Z.

1.1. Exponential-polynomial modules. Denote by F the vector space of func-

tions ¢ : Z — k. For any ¢ € F, the rule
(1.2) P :ht™ — p(m)t™, m € Z,

defines a homomorphism @ : U(h) — k[t,t 1] of Z-graded associative algebras, where the
grading of L{(f)) is defined by that of §. Write H(p) for im@ considered as a Z-graded

h-module via @. Let
F ={peF|img=k[t",t7"] for some r>0}.

For ¢ € F', write degp = r for the degree of ¢, where im@ = k[t",t™"]. The set F’
consists of those functions whose support is not wholly contained in N or —N. The
module H(yp) is irreducible and of dimension greater than one precisely when ¢ € F'.
For ¢ € F, consider H(y) as a (h @ §,)-module via § - H(p) = 0. Whenever H(yp) is
irreducible, the induced g-module

:
(1.3) Indf . H(y)
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has a unique irreducible Z-graded quotient, which we denote by N(y). It is shown in
[6] that, over an algebraically closed field, any irreducible object of the category O is of
the form N(y). For any A € k*, define the exponential function

EXP(A) : Z — k, EXP(A)(m) =\, meZ.

A function ¢ € F is exponential polynomial if it can be written as a finite sum of products

of polynomial and exponential functions, i.e.

(1.4) > paBxp()),

Aekx

for some polynomial functions ¢y € F and distinct scalars A € k*. Write
& = {p € F | p is exponential polynomial } .

Then £\ {0} C F' C F. The exponential-polynomial functions are those whose succes-

sive values solve a homogeneous linear recurrence relation with constant coefficients.

A module N(y) is ezponential polynomial if ¢ € €. It is shown in [3] that the ho-
mogeneous components of an exponential-polynomial module are finite dimensional.
Conversely, for ¢ € F’, the module N(p) has finite-dimensional homogeneous com-
ponents only if ¢ € & (cf. [12]). In partfcular, if k is algebraically closed, then the
exponential-polynomial modules { N(¢) | ¢ € £} are precisely those irreducible objects

of the category O for which all homogeneous components are finite dimensional.

1.2. Loop modules and truncated current Lie algebras. For ¢ € F, let kv,
be the one-dimensional h-module defined by

h®@t™ - v, = p(m)v,, m e Z.
Let g4 - v, = 0, and denote by
— Tnd®
(1.5) V(p) = IndfﬁB@+ kv,
the induced g-module. This module has a unique irreducible quotient L(yp). The modules
V(p) and L(p) are not Z-graded. Suppose that ¢ € &£ is an exponential-polynomial
function, and write c, € k[t] for the characteristic polynomial' of the minimal-order

linear homogeneous recurrence relation that is solved by the values of ¢. It can be
shown that the ideal

gRcoklt,t7 C g

IFor example, if = EXP(A), then c, = (t — A).
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acts trivially on the g-module L(¢). Hence L(¢) is a module for the “truncation”
(1.6) 9() = 8/8 ® coklt, 7] = g @ klt, t 7] /cpklt,t 7]
of the loop algebra §. A Lie algebra (1.6) is called a truncated current Lie algebra.

Let M be a g-module. The vector space M= M @, k[t,t7!] is a Z-graded g-module

(called a loop module) via
rRa-u®®b=(x®a-u) ab, reg, uweM, abekltt™l.

The Z-grading is defined by degree in the indeterminate t € k[t,t~!]. The loop-module
realisation, due to Chari and Pressley [9], relates the exponential-polynomial modules
to the irreducible highest-weight representations of a truncated current Lie algebra.
Chari and Pressley show that if ¢ € £ is non-zero and r = degp, then the Z-graded
g-module L/(;) has precisely r irreducible constituents, all of which are isomorphic to
the exponential-polynomial module N(p). Moreover, the weight spaces of N(yp) are
described in terms of the semi-invariants of an action of the cyclic group Z, on L(¢). Thus
the exponential-polynomial modules, and in particular their weight-space multiplicities,

may be studied via highest-weight representations of truncated current Lie algebras.

The Chinese Remainder Theorem implies that if ¢ is written in the form (1.4), then

glp) = @,\ekx g(pAEXP(N))

is an isomorphism of Lie algebras. Remarkably, if k is algebraically closed, then it follows
also that

L() = Qaeix LILAEXP(A))

is an isomorphism of g-modules (cf. Chapter 5). Therefore, in order to study highest-
weight representations of truncated current Lie algebras, it is sufficient to consider only
truncated current Lie algebras of the form g(y¢), where ¢ = aEXP(A) and a € F is a

polynomial function. In any such case,
8(v) = g @ klt]/t" TK[t].

where N = dega.
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2. Imaginary Highest-Weight Representation Theory

Affine Lie algebras admit non-classical highest-weight theories through alternative parti-
tions of the root system. Although significant inroads have been made, much of the clas-
sical machinery is inapplicable in this broader context, and some fundamental questions
remain unanswered. In particular, the structure of the reducible objects in non-classical
theories has not yet been fully understood. This question is addressed in this thesis for
affine sl(2), which has a unique non-classical highest-weight theory, termed imaginary.
The reducible Verma modules in the imaginary theory possess an infinite descending
series, with all factors isomorphic to a certain canonically associated module, the struc-
ture of which depends upon the highest weight. If the highest weight is non-zero, then
this factor module is irreducible, and conversely. Chapter 2 examines the degeneracy of
the factor module of highest-weight zero. The intricate structure of this module is un-
derstood via a realisation in terms of the symmetric functions. The realisation permits
the description of a family of singular vectors, and the classjfication of the irreducible

subquotients as a certain subclass of the exponential-polynomial modules.

Let k denote a field of characteristic zero, and let g denote an affine Kac-Moody Lie
algebra over k. Write h C § for the Cartan subalgebra and A C h* for the root system.
Denote by g% the root space associated to any root ¢ € A. So

§=(Dyead®) @b, adhle=¢(h), hebh, ¢cA.
A g-module V is called weight if the action of 6 upon V is diagonalisable. That is,

V=,c-Va»  hlvy,=Ah), heh, reph*

2.1. Partitions and highest-weight theories. The notion of a highest-weight
module for g depends upon the partition of the root system. A subset P C A is called
a partition of the root system if both

i. P is closed under root space addition, i.e. if ¢, € P and ¢ + ¢ € A, then
¢+ eP;
i. PN-P=0and PU—-P =A.

If Ay(m) denotes the set of positive roots with respect to some basis m C A of the

root system, then P = A (w) is an example of a partition. A partition P defines a
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decomposition of the Lie algebra g as a direct sum of subalgebras
F=7_obhoN,, whee M =dgepd’, N =0pcri .

A weight g-module V is of highest-weight A € h* with respect to the partition P if there
exists v € V) such that

Ug)-v="V, and Ny -v=0.

Thus the choice of partition P defines a theory of highest-weight modules. A highest-
weight theory defined by the set of all positive roots P = Ay (7) with respect to some
basis 7 of the root system is called classical. Two partitions are equivalent if they are
conjugate under the action of W x { +1}, where W denotes the Weyl group associated
to the root system A. Equivalent partitions define similar highest-weight theories. All
partitions of the root system of a finite-dimensional semisimple complex Lie algebra are
classical, and hence equivalent. In contrast, it has been shown by Jakobsen and Kac [19],
and by Futorny [13], that there are finitely many, but néver one, inequivalent partitions
of the root system of an affine Lie algebra. Thus any affine Lie algebra has multiple
distinct highest-weight theories.

2.2. Imaginary highest-weight theory for affine sl(2). Up to equivalence, there
is precisely one non-classical partition, the imaginary partition, of the root system of
affine sl(2). The associated imaginary highest-weight theory has been pioneered by Fu-
torny in [14], [15]. These works provide an almost complete understanding of the uni-

versal objects of the theory, the imaginary Verma modules. Let g denote the affinisation

of g:
g=9kcakd,
with Lie bracket relations:
[z@tf,y@t] = [z,y]@t" "+ ks i(z|y)e,  [c,8]=0,
[d,:z:@tk] = kz@tF, T,y€eg, kleZ,

where (- |-) denotes the Killing form of g. The Cartan subalgebra h C g is given by
h=span{h®t%c,d}.
Let «, 8 € h* be such that

ah®t?) = 2 a(c) =
s(hot’) = 0, b)) =
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Then A = {xa+id|i€Z}U{id|i€Z, i #0}. The imaginary partition P C A is
given by

P={a+ib|ieZ}Uu{id|ieZ, i>0}.
Thus the associated subalgebras 91, ,91_ of g are given by

Ny =5+ @ D)0 @], N_=§_ 0 [B,het]

Let A € b*, and consider the one-dimensional vector space kv as an (6 @ M4 )-module
via
Ny -vy=0, h-vy=AMh)vy, heb.
Let V() denote the induced g-module:
— 8
ViA)= IndBEBer kvy.
The g-module V()) is the universal highest-weight g-module of highest—w%ght A, and
so is called an tmaginary Verma module. h
Theorem. [14] Let A € b*. Then:

i. If A(c) # 0, then V(A) is irreducible.
ii. Suppose that A(c) = 0. Then V() has an infinite descending series of submod-
ules
V) =VloVviovis...
such that any factor V*/V**1 4 > 0, is isomorphic to the quotient of g-modules

M(\) =V /(h®t? vy |j<0),

up to a shift in the & weight-decomposition. Moreover, if A(h ® t%) # 0, then
M()) is irreducible.

The value A(d) of the action of d on the generating vector is immaterial to the structure
of the imaginary Verma module V(\). Hence the theorem above provides an almost
complete description of the structure of the imaginary Verma modules for g, lacking
only a statement about the imaginary Verma module of highest-weight zero. Part (ii) of
the Theorem motivates a study of V(0) through its canonically associated and infinitely
occurrent quotient M(0). Chapter 2 is an extensive study of the degeneracy of M(0).

The central element ¢ acts trivially on the module M(0). Hence M(0) may be studied
as a Z-graded module for the loop algebra §. The g-module M(0) may be defined by

— ng?
(2.1) M(0) = Ind?__ kuo,
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where kug is the trivial one-dimensional (§ @ §4)-module. The module M(0) is Z-graded

by construction, and
s(M(0)) C (-Z4x) x Z.
Thus M(0) € O. In fact, if A € b* is such that A(c) = 0, and ¢ € F is given by
o(m) = A(h ®t%)d0, m € Z,

then the induced module defined by (1.3) and the canonical quotient M(\) are isomor-
phic as Z-graded g-modules.

Throughout the remainder of this section, all modules are Z-graded.

\

2.3. Symmetric functions and singular vectors. It is apparent from the con-
struction (2.1) that ’

M(0) = P M™  where M™ =M(0)", n>0,
nel4

is a decomposition of M(0) as a direct sum of Z-graded h-modules. The h-modules M (™)
have remarkable realisations in terms of the symmetric functions, and play a large part

in the structural description of the g-module M(0). For any positive integer n, let

—1 —-11S
Ay =K[B21,27 00825 | ym(n)

denote the k-algebra of symmetric Laurent polynomials in the n indeterminates z1, . . . , zy,.
The module M(™ may be considered as a graded A,-module in such a way that the ac-
tion of 6 upon M®™ factors through an epimorphism of algebras U (6) — A,,. Therefore,
it is sufficient to consider the module M(™ as a graded A,-module. In fact, it may be
shown that as a graded A,-module, M(" is isomorphic to the graded regular module
for A,,. Thus, in particular, the G-module structure of M(™) may be understood via the
graded algebra A,. The classification of the irreducible quotients of the algebra A,,,
and the construction of singular vectors of M(0), together permit the classification of

the irreducible subquotients of the g-module M(0).

An element v € M(0) is singular if g -v = 0. Non-trivial singular vectors generate

proper submodules. For any positive integer n, let

Q= J] @-2z)® €A

1<i<yj<n
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In the theory of symmetric functions, the function €2, appears both as the square of the
Vandermonde determinant, and as the discriminant function for degree-n polynomials.
Let sgn(o) = £1 denote the sign of a permutation o.

Theorem. Let n be a positive integer. Then

i. All elements of the ﬁ-submodule Q- M™ are singular.

ii. The space Q, - M(") is spanned by singular vectors of the form

w(x) = Z sgn(o) H f @ Xty

o€Sym(n) 1<i<n
where x € Z" and ug denotes the generator of M(0).

Conjecture. Let n be a positive integer, and suppose that v € M®™ is singular. Then
veEQ, Mm,

2.4. Structure of the canonical quotient M(0). A g-module Q is a subquotient

of a g-module M if there exists a chain of g-modules
M > N D P,

such that N/P = Q. The preceding results may be employed to classify the irreducible
subquotients of the g-module M(0). Let

EC) ={pe&|pre—2Z, forall Aek*},

in the notation of (1.4).

Theorem. For any ¢ € £(-), the g-module N(i) is an irreducible subquotient of M(0).
Moreover, if k is algebraically closed, then any irreducible subquotient of M(0) is of the
form N(¢p) for some ¢ € £(7).

3. Highest-Weight Theory for Truncated Current Lie Algebras
Let g be a Lie algebra over a field k of characteristic zero, and a fix positive integer N.
The Lie algebra
(3.1) § = o @ k[t]/t"k(t]
over k, with the Lie bracket

(3.2) [zt y®t]=[z,y]@t", z,yecg, i,j>0,
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is a truncated current Lie algebra. In Chapter 4, a highest-weight theory for g is de-
veloped when the underlying Lie algebra g possesses a triangular decomposition. The
principal result is the reducibility criterion for the Verma modules of g for a wide class
of Lie algebras g, including the symmetrisable Kac-Moody Lie algebras, the Heisenberg
algebra, and the Virasoro algebra. This is achieved through a study of the Shapovalov
form. In the particular case of g = sl(2), an expression for the formal character of the

irreducible module L(p) may be deduced from the reducibility criterion.

3.1. Truncated current Lie algebras. There have been various studies of trun-
cated current Lie algebras and their representation theory in the particular case where
g is a semisimple finite-dimensional Lie algebra. There are applications in the theory of
soliton equations [5] [23] [26], and in this context the Lie algebra g is called a polyno-
mial Lie algebra. The paper [4] describes a construction of § via the Wigner contraction.
Takiff considered this case with N = 1 in [31], and that work was extended in (28], [16],
[17] without the restriction on N. As such, when g is a semisimple finite-dimensional
Lie algebra, the Lie algebra g is often called a generalised Takiff algebra. The category

of modules for a truncated current Lie algebra is examined in [22].

3.2. Highest-weight modules. We assume that the Lie algebra g is equipped

with a triangular decomposition

(33) B - 9— @ b @ g-}—» g:l: = ®a€A+ gia; A—}— C b*'

The fundamental definitions and results concerning Lie algebras with triangular decom-
positions and their highest-weight representation theory are the subject of Chapter 3
(here, by = ). The exposition follows that of Moody and Pianzola [24], modified in ac-
cordance with our definitions. The triangular decomposition (3.3) of g naturally defines

a triangular decomposition of g,

g2§—®6®g+7 gi:®a€A+gia7

where the subalgebra h and the subspaces §* are defined in the manner of (3.1), and
h C B is the diagonal subalgebra. Hence a g-module M is weight if the action of h on
M is diagonalisable. A weight g-module is of highest weight if there exists a non-zero
vector v € M, and a functional A € §* such that

gr-v=0, UG  v=M,; h-v=A(h)v, forall heh.

The unique functional A € h* is the highest weight of the highest-weight module M.
Notice that the support of a weight module is a subset of h*, while a highest-weight is
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an element of h*. A highest-weight A € h* may be thought of as a tuple of functionals

on f,
(34) A= (Ag,A1,...,AN), where (A;,h)=(Ah®t"), heh, i>0.

All g-modules of highest weight A € h* are homomorphic images of a certain universal
g-module of highest weight A, denoted by U(A). These universal modules B(A) are the
Verma modules of the highest-weight theory.

3.3. Reducibility of Verma modules. A single hypothesis suffices for the deriva-
tion of a criterion for the reducibility of a Verma module U(A) for g in terms of the func-
tional A € h*. We assume that the triangular decomposition of g is non-degenerately

paired, i.e. that for each o € A, a non-degenerate bilinear form
(] )a:g®xg =k,

and a non-zero element h(a) € h are given, such that
[2,y] = (z]y)ah(e),

for all x € g* and y € g~“. The symmetrisable Kac-Moody Lie algebras, the Virasoro
algebra, and the Heisenberg algebra all possess triangular decompositions that are non-

degenerately paired. The reducibility criterion is the following.

Theorem. The Verma module U(A) for § is reducible if and only if
(A, h(a) @ tY) =0,

for some positive root o € Ay of g.

Notice that the reducibility of U (A) depends only upon Ay € h*, the last component of
the tuple (3.4).

3.4. Applications of the Theorem. The criterion described by the Theorem has
many disguises, depending upon the underlying Lie algebra g.
Example 3.5. Let g = sl(3) be the Lie algebra of type Ay. The diagonal subalgebra
b is two-dimensional, and the root system A C h* carries the geometry defined by the
Killing form. A Verma module U(A) for g is reducible if and only if Ay is orthogonal to a
root. This is precisely when Ay belongs to one of the three hyperplanes in h* illustrated

in Figure 1(a). The arrows describe the root system.
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(a) g of type Az (b) g of type Ggl)

Figure 1: Reducibility criterion for the Verma modules of g, where g is of type Ay or
@

Example 3.6. Let g denote the fourteen-dimensional simple Lie algebra of type Go,
and let

g=gQk[s,s™] ® ke ® kd,
denote the affinisation of g with central extension ¢ and degree derivation d. Then g is

the Kac-Moody Lie algebra of type Ggl). The diagonal subalgebra

(3.7) h=hdkecdkd,

is obtained from the diagonal subalgebra b of g. The Lie algebra g has a triangular
decomposition defined by a choice of simple roots. For any I' € h*, denote by T the
restriction of I' to b defined by (3.7). A Verma module 2(A) for § is reducible precisely
when Ay belongs to the infinite union of hyperplanes described in Figure 1(b), where
the dashed line segment has length |(An, c)|.

4. Characters of Exponential-Polynomial Modules

Let g denote the Lie algebra sl(2) over an algebraically closed field k of characteristic
zero, and adopt the notations of Section 1. An expression for the formal character of an
exponential-polynomial module L(¢) is derived in Chapter 5. As described in Subsection

1.2, the loop-module realisation reduces this task to the study of the semi-invariants of a
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finite cyclic group acting on the irreducible highest-weight module L(p) for the truncated
current Lie algebra g(y) defined by (1.6). A certain generalisation of Molien’s Theorem
in the case of a cyclic group describes the multiplicities of these semi-invariants. The
character of the exponential-polynomial module N(y) is then expressed in terms of the

character of L(ip), obtained in Chapter 4.

For any ¢ € &, write
charN(p) = Y Y dimN(p)p XF2" € Z,[[X, 2,27}
k>0 nez
for the formal character of N(y), where
N(@n = N0 k>0, nez

For any positive integer r, define the function ‘

b= Y exe(Q) €&,

=

where the sum is over all roots of unity ¢ such that (" = 1. The function g, takes the

constant value r on its support rZ. If ¢ € £ is non-zero and deg = r, then it can be
shown that r > 0 and

(4.1) ©=pr- Z a; EXP();)

for some finite collection of polynomial functions a; € F and scalars A\; € k*, such that
if (X\i/A\;)" =1, then ¢ = j. The formal character of the exponential-polynomial module
N(yp) is described by the following theorem.

Theorem. Let ¢ € £ be non-zero, and write r = deg ¢. In the notation of (4.1),

(4.2) char N(y) = % 33 caln) (P¢(Xd)) “7zn,
n€Z d|r
where the inner sum is over the positive divisors d of r, the quantities cy(n) are Ra-
manujan sums, and
[osez, (1 - XoH)
a-x)7
where M = )" .(dega; + 1) and the product is over those indices i for which a; € Z .

Py(X) =

The Ramanujan sum cq(n) is given by

¢(d)u(d) y__ d

- O Te@ T e
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where ¢ denotes Euler’s totient function and p denotes the Mobius function. The

expression (4.2) is the Ramanujan-Fourier transform of char N(yp).

It is apparent that c4(-) is a function of period d, and thus it may be deduced from
formula (4.2) that, for any k£ > 0, the multiplicity function

n — dim N (@), n, n € Z,

has period r = deg . Therefore the character of N(¢) is completely described by the
array of weight-space multiplicities [dim N(¢)k | where £ > 0 and 0 < n < r. Examples
of these arrays, such as those illustrated by Figures 2(a) — 2(d), may be computed in a
straightforward manner using the formula (4.2). Columns are indexed left to right by n,

where 0 < n < r, while rows are indexed from top to bottom by k& > 0.

Greenstein [18] (see also [8, Section 4.1]) has derived an explicit formula for the for-
mal character of an integrable irreducible object of the category O. These objects are
precisely the exponential-polynomial modules N(y) where ¢ is a linear combination of
exponential functions with non-negative integral coefficients. Indeed, our result may
alternatively be deduced by considering separately the case where IN(yp) is integrable,
employing the result of Greenstein, and the case where N(y) is not integrable, using
Molien’s Theorem. Our approach, via a general study of finite cyclic-group actions, has
the advantage of permitting a unified proof. Both approaches employ the explicit ex-
pression of the formal character of an irreducible highest-weight module for a truncated

current Lie algebra described in Chapter 4.
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O = = WA W= -
O O = N W N = O
S O H W W w = O
S O~ N BN = O
SO O W W Ww = O

10
20 22 20
42 42 42
78 76
132 132 132
212 217 212
333 333 335

(c) »=—ps

0 1 0 0
1 2 2 2
2 10 8 10
3 30 30 30 30
2 86 80 84 &0
1 198 198 198 198
0 434 424 434 424
0 858 858 858 &858
(b) p = —pa(BXP(X) + EXP(1))
0 0 1 0
1 1 2 2
4 3 5 3
9 9 6 6
22 20 9 7
42 42 10 10
78 75 13 11
132 132 14 14
217 212 17 15

333 333 18 18

(d) ¢ = pa2(exP(A) — EXP(1))

Figure 2: Array of weight-space multiplicites of N(ip)






CHAPTER 2

Imaginary Highest-Weight Representation Theory

Adopt the notation of Section 2 of Chapter 1. In particular, k denotes any field of char-
acteristic zero, g denotes the Lie algebra sl(2), and g denotes the Z-graded loop algebra
associated to g. In this chapter, all modules are Z-graded, unless stated otherwise. For
any = € g and k € Z, write z(k) = z ® t*.

1. The Canonical Quotie.nt‘M(O)

The following preliminary result provides a description of the action of g upon M(0).
Here, and throughout, the use of a hat above a term in a sum or product indicates the
omission of that term. The subalgebra g_ is abelian, and so U(§_) may be identified
with the infinite-rank polynomial ring

k[f(5)|s € Z].

Proposition 1.1. The following hold:

i. The g-module M(0) is generated by an element ug such that the action of #(g_)

on ug is free, whilst the actions of U(g) and U(h) are trivial.
ii. The g-module M(0) has a basis

(1.2) U I fwlm<re< < yezr}
n>20 1<isn

iii. The action of g on M(0) is given by
f(k)- [ fn)uo = k) J] £(w)uo,

1<isn 1<isn

hk)- [ fw)uwo = =2 D fn)-- £() - fyn)E(vi + k) uo,
1<i<n 1<ign

e(k) [] fw)uo = =2 D f(y) (%) £(y) - £(v)E(vi + 75 + k) o,
1<6<n 1<i<i<n

foral yeZ", n >0 and k € Z.

17
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Proof. Part (i) is clear, and part (ii) follows from part (i). To prove part (iii), we firstly
derive some commutation relations in U(g) before considering them in light of parts (i)
and (ii). If £ is any Lie algebra and = € £, then the adjoint map

adz :U(L) - U(L), adz:yw— [z,y]=zy—yz, yeU(L),
is a derivation of the associative product of U(L). That is,

(1.3) [z, T] wil= Y w1 vz, %ilyisr -

1<isn 1<ign

This formula yields immediately the commutation equation

), I tew)l=-2 Y f(m)- - f(ym)E( + K)

1<ign 1<isn

for all v € Z™, n > 0 and k € Z. Using formula (1.3) and substituting the above

commutation equation for h(k),

B, IT 0] = =2 > fy) - 00) - Hg) -+ E) by + 5 + B)
1<i<n 1<i<j<n
+ > f(m)- (¥ )h(i + k)
1<isn

for all v € Z", n > 0 and k € Z. These formulae, in consideration of parts (i) and (ii),
immediately imply the formulae of part (iii), and completely describe the action of g on
M(0). O

Corollary 1.4. The g-module M(0) has a decomposition

0)= P m™,

neZ

as a direct sum of modules for 6, where

M® =span{ [] f(xi)uo|x€2"},
1<i<n
and M = M(0) ™™ for any n > 0.
Remark 1.5. It follows from Corollary 1.4 above, and Proposition 3.6 of [20], that the

only integrable subquotient of M(0) is the trivial one-dimensional g-module.
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2. Symmetric Function Realisation

This section presents a realisation of the ﬁ-module M) as the graded regular mod-
ule of the symmetric Laurent polynomials in n variables. The realisation allows the
classification of the irreducible quotients of the h-module M(™ outlined in Section 4.

Fix a positive integer n. The k-algebra A,, is Z-graded by total degree. The elementary
symmetric functions ¢; € A,, 1 < ¢ < n, are defined by the polynomial equation

(21) H(1+zit)=1+iai(zl,..,,zn)ti,

i=1 i=1
Notice that €, = z; - - - z,, is invertible in A,. For any k € Z, let

pk)=zf+---+28F €A,

denote the sum of k-powers of the indeterminates, and for any v € Z™, write

m) =~ 3 [ 2% cAn

" o€Sym(n) 1<i<n

The symmetric polynomial m(y) may alternatively be defined by

mi) == Y I[ %

" oeSym(n) 1<i<n

The set {m(~) | v € Z" } spans the k-algebra A,, of symmetric Laurent polynomials.
Lemma 2.2. Let n > 0 and v, x € Z™. Then

m(y) m(x)=— > m(y+x),
’ 7E€Sym(n)

where x, € Z" is given by (x-)i = X,(), for all 1 <7 < n and 7 € Sym(n).
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Proof. Let v,x € Z™. Then

me)me) = ()0 X X ] A0t

0€Sym(n) T€Sym(n) 1<i<n
1,2 Yo (i) +X(ro0) (i)
= 2 2 Il=
o€Sym(n) 7€Sym(n) 1<i<n
(substituting 7 o o for 7)
12 (Y+x7)o ()
Gm 2 X Il=
o€Sym(n) T€Sym(n) 1<i<n
(since X7oo = (X’T)G’)

al Z m('y +X‘r) U

1
n!
TESym(n)
Proposition 2.3. For any positive integer n:

i. The k-algebra A, is generated by the set {¢; | 1<i<n}U{e, '}
ii. The k-algebra A, is generated by the set of power sums {p(k) | k € Z }.

Proof. Let
Al =k[z,... 2|3V A; =Kz}, ... ’Z;I]Sym(n)’
Then
(2.4) A, = g;k A
k>0
and, in particular,
(2.5) A,=A; Al

Part (i) follows from the Fundamental Theorem of Symmetric Functions and equation

(2.4), while part (ii) follows from the Newton-Girard formulae and equation (2.5). [

Proposition 2.6. For any n > 0, M®™ is a Z-graded A,-module via linear extension
of

1 n
(2.7) m(y) - [ foa)w= = > I 6 +7%@)we,  vxezn
1<ign " o€Sym(n) 1<i<n
with the Z-grading defined by
deg [ fOc)uo= > xin xe€Z™

1<ign 1<ign
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Proof. For any €,v,x € Z",

m(e) - (m(y) - ] foa)w) = (%)2 > > TI 6 + oty + ¥y uo

1<ign " 0€Sym(n) r€Sym(n) 1<i<n
1 1
= 7 >, -] > T i+ e+ 9o uo
7€Sym(n) o€Sym(n) 1<i<n

(substituting 7 o o for 7)

= (5 X me+) IT
: reSymin) 1<i<n
= (m(e)m(y)) - H £(xi) vo,

1<i<n

by Lemma 2.2. As the polynomials m(y) span A,, linear extension of (2.7) endows
M™ with the structure of a Z-graded A,-module. - d

Theorem 2.8. Let n > 0. The action of M(ﬁ) on M(™ factors through an epimorphism
U U(h) —~ An
of graded algebras defined by
U : h(k) — —2p(k), keZ.

That is, if p and v denote the representations of U (6) and A, on M, respectively,

then the following diagram commutes:

Uh) —— A,

Proof. The map V is an algebra epimorphism by Proposition 2.3 part (ii). Let k € Z,
and let 1y = (k,0,...,0) € Z". Then

p(k) = nm(u).

It follows that, for any x € Z",

——

p(k)- [T f0a)uo= D f(x1) - f(xi) - - fxn)fxi + K)o

1<ign 1<isn

and so h(k)|pp = Y (h(k))|p by Proposition 1.1 part (iii). O
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Therefore, for n > 0, it is sufficient to consider M(™ as a Z-graded A,-module. Write
A® for the regular Z-graded A,-module, i.e. for A, considered as a Z-graded A,-
module under multiplication.

Theorem 2.9. For any n > 0, the map
6 : MM — Are
defined by linear extension of

o: [ fo)uw—m(x), xez,
1<i<n

is an isomorphism of Z-graded A ,-modules.

Proof. The map O is a bijection, by Proposition 1.1 part (ii). Let v, x € Z". Then

G(m(v)- H f(Xi)UO) @(% Z H f(Xi+’Ya(i))uo>

1<isn o€Sym(n) 1<i<n

1
= m Z m(X + ’YU)

- o€Sym(n)

= m(y) -m(x) (by Lemma 2.2)

= m() -6 T fxuo).

1<i<n

Hence © is an isomorphism of Z-graded A ,-modules. O

Corollary 2.10. Let n > 0 and let v € M(™) be non-zero and homogeneous. Then
U(H)v and M™ are isomorphic as h-modules.

Proof. For n = 0, the statement is trivial. For n > 0, it is sufficient to employ Theorem
2.9, and observe that the ring A, is an integral domain. O

3. Singular Vectors

The existence of non-zero singular vectors is related to the degeneracy of the module
M(0):
Proposition 3.1. Let n > 0. Then

i. The set of all singular vectors in M(™ forms an h-submodule.
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ii. If v € M is non-zero and singular, and V' = U(§)v, then V has decomposition
V=@,V ™, VmcMm,

into non-trivial eigenspaces for h(0).

Proof. The set of all singular vectors in M) clearly forms a vector space. Now suppose
that v € M is singular. Then

e(k)(h()v) = —2e(k + )v + h(l)e(k)v = 0,

for any k,l € Z. Thus if v is singular, then so is h(l)v, for any | € Z, and so the set
of singular vectors in M(™ forms an h-module, proving part (i). For part (ii), suppose

again that v € M(™ is a non-zero singular vector, and let V = U(§)v. Then
V=U@E) v =UE) SUB) - v C By MO,
since U(§) = U(5-) @ U(H) ® UG+). o 0
Theorem 3.2. For any n > 0 and x € Z",
wi) =, sen(0) J[ fxi+o@u  eM®
o€Sym(n) 1<ign

is a singular vector.

Proof. Singularity may be demonstrated directly by applying the formula for the action
of e(k), k € Z, of Proposition 1.1 part (iii). O

Lemma 3.3. For any n > 0, the symmetric function 2, is equal to
Z sgn(a 5 T) H Z:’(i)+T(i)—2
o,7€Sym(n) 1<isn

up to a change in sign.
Proof. Let ®n =3 c5ym(n) 580(0) [T1<icn zf(i). It is not difficult to show that

¢n|zi=Z] :O7 1<’l<] Sn,

and that ®,|,,—o = 0 for all 1 < ¢ < n. Hence ®,, is equal up to sign to
H Z; - H (Zi—Zj),
1<i<n 1<i<j<n
by degree considerations. Therefore (2,, and

II =% e

1<ign
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are equal up to sign, from which the result follows. O

Lemma 3.4. Suppose that g € A, and that g|,,—,, = 0. Then (z; - z;)? divides g in
4 :

k[z£!, ... 2.

Proof. Let 0“17 denote the ring automorphism of k[zlil, ...,zr1] that interchanges the

variables z; and z; and leaves all other variables invariant. It is easy to convince oneself

that

(01 W)|sims; = Blsms;, b€k, ... 25"
Now glz,=z; = 0, and so g = (z;—2;)h, for some h € k[zlﬂ, ...,2X1]. Moreover, Ufh = —h,

since o g = g. Therefore
Hlaima; = (=011 =2, = ~((071)lei=2;) = ~(hlui=s,),
and so hls,=;; = 0. Hence (z; — z;) divides h also. ‘ O
Theorem 3.5. For any n > 0,
Q- M®™ = span { w(x) | x € Z"},

and hence all elements of the non-zero h-submodule Q, - M(® are singular.

Proof. Fix n > 0, and let
Wy =span{w(x) | x € Z" }.

The symmetric function realisation of Theorem 2.9 may be used to demonstrate the
inclusion W,, C Q,, - M®™) . Let X € Z™. Then

O(w(x)) = E Z Z sgn(o) H Zz@uﬁﬂ(T(i))

n!

T€Sym(n) c€Sym(n) 1<i<n
L Xr (i) +o0)
= Z sgn(T) Z sgn(o) H 2,
T€Sym(n) o€Sym(n) 1<isn

(substituting o o 77! for o)

1
= - Z segn(7) Fr,
T€Sym(n)
where, for any 7 € Sym(n),
F—,— — Z Sgn(o_) H Zz(f(i)‘i’o'(i).

o€Sym(n) 1<ikn

It is not difficult to verify that

F’I'IZ-;‘—*ZJ' :0) 1<2<J<n> TESym(n)
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Therefore, for all 1 < i < j < n, ©(w(x)) is divisible by (z; — z;)? in k[z{, ...,z

Lemma 3.4. Thus

O(w(x)) = Quh for some hekz!, ... 25

25

], by

since the factors (z; — z;)? are pairwise co-prime. In fact, h € A,, since both ©(w(x))
and Q,, are symmetric. Therefore, ©(w(x)) € Q- A, and hence W,, C Q,, - M. Now

let Ap = ([Ticicn %) - n- The factor [];;c, 7 is invertible in A, and so
Q, - M™ =A, - M™,
by Theorem 2.9. In particular, by Corollary 1.4,

Qn - M™ =span {A,- J] fxi)wo|x€z"}.
1<ign
By Lemma 3.3, the polynomial A, is equal up to sign to
Z sgn(o o T) H zf(iHT(i).
o,7€Sym(n) 1<isn
Therefore, for any y € Z",

An . H f(Xz)uO

1<isn

- LY Y smen [T fut 0on@ +(roniu

" veSym(n) o,7€Sym(n) 1<i<n
1 . 2
= Z Z sgn(o o T) H f(xi +0(i) +7(2))uo
v€Sym(n) o,7€Sym(n) 1<i<n

substituting o o v~! for ¢ and 7o v ™! for 7
g

= Y sgn(e) > sen(r) [ fOxi+ o) + (i)

o€Sym(n) T€Sym(n) 1<isn
= > sen(o)w(x(0)),
o€Sym(n)

where x(o) € Z™ is given by

N
N
3

x(o)i=xi+o(@), 1

for all ¢ € Sym(n). Hence Q, - M™ c W,,.

O

Conjecture 3.6. Let n > 0, and suppose that v € M is singular. Then v € ,,-M™.
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4. Irreducible Quotients of M™)

For any Z-graded k-algebra B, write B (k) k € Z, for the graded components of B.
Proposition 4.1. Let n be a positive integer, and let B be a graded simple quotient of
the graded algebra A,,. Then B = F[t™,t~™] for some positive divisor m of n and finite
algebraic field extension F of k.

Proof. As €, =z -z, is invertible in A,,, it must be that B("™ # 0. Let m be the
minimal positive integer such that B(™ #£ 0, and let w € B(™) be non-zero. Then u is

invertible, since B is simple, and so multiplication by u* is a vector-space automorphism
of B such that

BR . plkeil 1eZ
In particular, ,
(4.2) Bkm) — k. BO) kez.
Suppose that B® # 0, for some | € Z, and let q,r be the unique integers such that
[ =gm+r, 0<r<m.
Then 7
0#u".BW =pB",
and so 7 = 0 by the minimality of m. Hence
B =@z B,
and in particular m must be a divisor of n. Moreover, by (4.2),
B = BO g k[tF, t*]

via uF s t*™ k € Z. As A,, is finitely generated, by Proposition 2.3 part (i), so is the
k-algebra A%O). Hence B is a finite algebraic field extension of k (see, for example, [1],
Proposition 7.9). O

Proposition 4.3. Let n be a positive integer, and suppose that ( : A,, — k is a non-zero
algebra homomorphism. Then there exist scalars «q, ..., a,, all non-zero and algebraic

over k, such that

(k) =) of, keZ

i=1
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Proof. Suppose that ¢ : A,, — k is a non-zero homomorphism, and let
n
g(t) =1+ 3 ¢t ekl
i=1

As e, = 71 - -z, is invertible in A, it must be that {(e,) # 0. Let a1,...a, be some

iteration of the scalars defined by

n

g(t) = [T + ast).

i=1
Then by equation (2.1),

(4.4) C(E,’) = ei(al,.,.,an), 1

The «; are necessarily non-zero since

/N
/N
3

a1 Qp = E’n(aly"‘)an) = C(En) # 0.

By Proposition 2.3 part (i), there is a unique algebra homomorphism with the property

(4.4), namely the restriction of the evaluation map
Zi — O, 1<i1<n.

In particular, ((p(k)) = >.1, of, for all k € Z. O

Recall that £(7) C £ is given by
EC) ={pe&|pre—2Z, forall Aek*}.

For any n > 0, let

EM ={pe&| Y pr=-2n},
AekX

so that £(-) = |_|n>0£(_").

Theorem 4.5. For any n > 0 and ¢ € £, the h-module H(yp) is an irreducible
quotient of the ﬁ-module M ™). Moreover, if k is algebraically closed, then any irreducible
quotient of the h-module M(™ is of the form H(yp) for some ¢ € £,

Proof. The statement is trivial for n = 0, so suppose that n is a positive integer. Let

@ E 8(_"), and let aq,...a, € k* be non-zero scalars such that
n
pk)=-2> of, kez.
i=1

Define

n= nal,...,an : k[Zl,Zfl, e ,Zn,Z;1] = k[t’tul]
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by extension of z; — a;t, 1 <7 < n. Then
: -1
Mla, : Ap — imn|a, Cklt,t7]

is a homomorphism of graded algebras, and so imn|a, may be considered as an A,-
module, and as a quotient of the regular A,-module A7®. Therefore imn|a, is a quotient

of the A,-module M) by Theorem 2.9. Now immn|a, is an 6—m0dule via the map

¥ :U(h) — A, of Theorem 2.8. For any k € Z,
(nla, o ¥)(h(k)) = —2n|a,(p(k))
= 2 ahek
i=1
= ¢(h(k)),

where ¢ : U(h) — klt,t7] is defined by (1.2), page 2. Hence imn|a, = H(yp) as b-
modules, and so H(yp) is a quotient of the h-module M™. It is not too difficult to verify
that H(yp) is an irreducible h-module for any ¢ € £(-).

Now suppose that k is algebraically closed, and that T is an irreducible quotient of the
h-module M(™. By Theorems 2.8 and 2.9, T is an A,-module, and a quotient of A,
Hence there exists a simple quotient B of the graded algebra A,

n:A, » B,

such that B =T as A,-modules, when B is considered as an A,-module via the algebra
epimorphism 7. Moreover, by Proposition 4.1, B = k[t",t~™] for some positive divisor

m of n. Let ( : A,, — k be given by

n(z) = ((z)t2,

for all homogeneous z € A,. Then ( is a non-zero algebra homomorphism, and so by

Proposition 4.3 there exist non-zero scalars oy, ..., o, € kX such that
n(p(k)) = ¢(p(k))tF = Z ofth, ke
i=1
Therefore I' = H(yp), where
p:Z -k, cp(k):—Qi:af, keZ,
i=1

by Theorem 2.8. O
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5. Irreducible Subquotients of M(0)

An h-module T is weight if h(0) acts by a scalar h(0)|p on I'. For any weight h-module
T, write ¥ (T') for the induced g-module

7 o -
V/(F)_Indﬂeﬁu I, where g -I'=0.

Proposition 5.1. Let I' be a weight h-module. Then the g-module ¥ (I') has a unique
maximal submodule that has trivial intersection with I'.

Proof. Let A = h(0)|r. Then
Y (0) = @,5 ¥ (D)7,
and ¥([)* =T. If N € #(I') is a §-submodule that has trivial intersection with I', then
NC@,., 7 [)r = i

Hence the same is true of the sum of all such g-submodules. This sum is itself a g-

submodule, and its maximality and uniqueness follow from construction. O

For any h-module T', denote by #(T) the quotient of ¥ (I') by its unique maximal
submodule that has trivial intersection with I'. Hence £ (I") is an irreducible g-module
if I is an irreducible h-module. In particular, if ¢ € F’, then the h-module H(yp) is
irreducible, and so .Z(H(y)) = N(yp).

Theorem 5.2. For any ¢ € £(7), the g-module N(y) is an irreducible subquotient of
M(0). Moreover, if k is algebraically closed, then any irreducible subquotient of M(0)
is of the form N(y) for some ¢ € £(),

Proof. Let n be a positive integer, and let ¢ € £(-™. Theorem 3.5 guarantees the
existence of a non-zero singular vector v € M. The h-module U (ﬁ)v contains only
singular vectors, and is isomorphic to M® | by Corollary 2.10 and Proposition 3.1. Let
P =U(g)v. By the Poincaré-Birkhoff-Witt Theorem,

U@ v = UG-)SUDH) UG v
= UE-)®U() - v.
Therefore P = U(§_)P~"* where P~"* = {(h)v = M(™. Hence, by Theorem 4.5, there
is an epimorphism of f]—modules

P — H(yp),
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which extends to an epimorphism of g-modules
P — N(p).

Thus N(ip) is an irreducible subquotient of M(0).

Now suppose that k is algebraically closed, and that N is an irreducible subquotient of
M(0). The support of N is a subset of the support —Z o« of M(0). Let n denote the
minimal non-negative integer such that N~"% # 0. Then g4 - N™"* = 0. Thus there is
an epimorphism of g-modules N — £ (N~"%), and since N is irreducible, this map is
an isomorphism. Therefore, the weight space N~"% is an irreducible 6—module. Indeed,
a proper h-submodule of N % generates a proper g-submodule of £ (N %) = N. Now
let P’ C P be g-submodules of M(0) such that N = P/P’. Then N~l& = p~lx/p/=i
for all [ > 0, and in particular N ™" is a subquotient of the 6—module M ™). Therefore,
by Corollary 2.10 and Theorem 4.5 there exists ¢ & 5(_”) such that N7 = H(yp) as

G—modules. Thus there is an isomorphism of @-moduleé
N=2(N™") = 2(H(e)) = N(p),

which completes the proof of the Theorem. O

The following Corollary is immediate from [3] and the inclusion £(-) C &.
Corollary 5.3. Suppose that k is algebraically closed. Then the homogeneous compo-

nents of any irreducible subquotient of M(0) have finite dimension.



CHAPTER 3

Lie Algebras with Triangular Decomposition

This chapter develops the technology necessary for the study of the highest-weight theory
of truncated current Lie algebras undertaken in Chapter 4. The notion of a Lie alge-
bra with triangular decomposition is introduced, and several examples are considered.
Fundamental results in the highest-weight representation theory are then described,
concluding with a proof of Shapovalov’s Lemma. The content of this chapter is entirely
derivative of the book of Moody and Pianzola [24]. Let k denote a field of characteristic

Z€ero.

1. Lie Algebras with Triangular Decomposition

Let g be a Lie algebra over the field k. A triangular decomposition of g is specified by a
pair of non-zero abelian subalgebras hy C b, a pair of distinguished non-zero subalgebras

g+, g—, and an anti-involution (i.e. an anti-automorphism of order 2)
w:g—g,

such that:

iL.g=g-®hdgy;
ii. the subalgebra g, is a non-zero weight module for hy under the adjoint action,
with weights A all non-zero;
ili. w|p =idy and w(g4) = g—;
iv. the semigroup with identity Q. , generated by A, under addition, is freely
generated by a finite subset { o; } jes C Q. consisting of linearly independent
elements of bg.

This definition is a modification of the definition of Moody and Pianzola [24]. There,
the set J is not required to be finite, root spaces may be infinite-dimensional, and by = b.
We distinguish between hg and § in order to include Example 1.6.

31




32 3. LIE ALGEBRAS WITH TRIANGULAR DECOMPOSITION

Write Q = ZjeJ Zayj. Call the weights A of the ho-module g the positive roots, and the
weight space g* corresponding to o € A the a-root space, so that gy = ®aea, g The
anti-involution ensures an analogous decomposition of g_ = ®q4eca_g%, where A = —A
(the negative roots) and g~ = w(g?®) for all ® € A;. Write A = A, UA_ for the roots
of g. Consider Q4 to be partially ordered in the usual manner, i.e. for 7,7 € Q,

1<, Y = (' -7¢€94.

We assume that all root spaces are finite-dimensional, and that A, is a countable set.
For clarity, a Lie algebra with triangular decomposition may be referred to as a five-tuple
(gv h0> b» g+,(x)).

Example 1.1. Let g be a finite-dimensional semisimple Lie algebra over C, with Cartan

subalgebra § and root system A. Then

g= b 2] (@aGA ga)
Let m be a basis for A, and let @, be the additive serrﬁgroup generated by w. Write
AL =ANQ,, and let g, g_ be given by
8+ =@Baen, 9% 8- =Dca_ 9%

where A_ = —A,. Then g, is a weight-module for hy = b with weights A, and

g=9-OhDg.

All root spaces are one-dimensional. For any o € A, choose non-zero ¢lements

x(a) €g%,  ylo)eg ™

An anti-involution w on g is defined by extension of
wly =idp,  w(x(a)) =y(a), w(y(e))=x(a), aem

Thus (g,9+,h,h,w) is a Lie algebra with triangular decomposition. The semisimple
finite-dimensional Lie algebras over C are parameterised by Euclidean root systems, or
equivalently by the Cartan matrices. The Serre relations permit the construction of any
such Lie algebra from its Cartan matrix, and this construction works over an arbitrary
field k of characteristic zero. The preceding assertions hold also for the Lie algebras over
k constructed in this manner. Here and throughout, semisimple finite-dimensional Lie
algebra means a Lie algebra over k defined by a Cartan matrix and the Serre relations.
Example 1.2. It shall be convenient to consider the following particular case of Example
1.1 in greater detail. Let g denote sl(3), the finite-dimensional semisimple Lie algebra
over k with root system As. Denote by o, oy the simple roots, by

x(o), x(x2), y(ea), y(xz), h(ar), h(axz)




1. LIE ALGEBRAS WITH TRIANGULAR DECOMPOSITION 33
the Chevalley generators, and by h = kh(x;) @ kh(ag) the Cartan subalgebra, so that
x1(h(e)) = xg(h(a2)) =2, xi(h(az)) = xg(h(x1)) = —1.
Then the root system is defined by A = AL UA_, where A = { &1, &g, ®; + ®2 } and
A_=—-A,. Write
x(o1 + &g) = [x(a),x(x2)],  y(en + ax2) = [y(ex2),y(e1)],
h(ax; + ag) = h(x) + h(es).

Then for each o € A, the elements x(a),y(a),h(e) span a subalgebra of g isomorphic
to sl(2). The anti-involution w fixes ) point-wise, and interchanges x(a) with y(«) for
every o € A,. Write

g =kx(a), g% =ky(a), a€ly,
and g+ = EBaeAJrgi"‘. Then g is a weight-module for by = h with weights A, and

8=9-®hDg4.

The semigroup Q. is generated by m = { &1, x2 }. Note that the h(a) defined here are
only proportional to the elements h(«) defined later on.

Example 1.3. Let g be the Kac-Moody Lie algebra over k associated to an n x n
generalised Cartan matrix (we paraphrase [20]). Let h denote the Cartan subalgebra,
and A the root system. Then

g= b S2) (@aeA ga),

and all root spaces are finite-dimensional. The collection II of simple roots is a linearly-
independent subset of the finite-dimensional space h*. Let Q4 denote the additive
semigroup generated by II, let A, = AN Q4, and write

g+ = Daca, 9% 9-=Doea_ 8%
where A_ = —A . Then g, is a weight-module for hy = h with weights A, and

g=9-ShDgy.

If e, fi, 1 < i < n, denote the Chevalley generators of g, then g, and g_ are the
subalgebras generated by the e; and by the f;, respectively. An anti-involution w of g is
defined by extension of

Ldlh = ldl’)) w(e’i) = fi) w(fl) = €4, 1 < 1 < n,

(this w differs from the w of [20]). Thus (g,g+,h,h,w) is a Lie algebra with triangular

decomposition.
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Example 1.4. Let g denote the k-vector space with basis the symbols
{Lp,|meZ}u{c},
endowed with the Lie bracket given by
[c,8] =0, [Lm,Ln]=(m—n)Lmin+ 0m,_nP(m)e, m,ne€Z,
where ¢ : Z — k is any function satisfying ¢(—m) = —¢(m) for m € Z, and
Y(m+n) = 2n"1—+"7¢(n) -+ %_%ﬁﬂm), m,n €7Z, m%#n.

If 4» = 0, then the symbols L, span a copy of the Witt algebra. The Virasoro alge-

bra is the only non-split one-dimensional central extension of the Witt algebra, up to
3

m-—m
13 . Let

isomorphism [21], and is typically defined with ¥(m) =

9+ =@D,s0kLlim, bo=DH =V'lkLo @ ke,
and let & € h* be given by :
5(Lp) = -1, &(c) =0.
Then g=g_ ®bHd gy, and g4 is a weight module for hy = b, with weights
Ay={md|m>0}.
The semigroup Q. is generated by 8. An anti-involution w is given by
w(c)=¢, w(lm)=L_, mEeZ,

and in this notation g is a Lie algebra with triangular decomposition.

Example 1.5. Let a denote the k-vector space with basis the symbols
{am |meZ}U{h, d},

endowed with the Lie bracket given by

[am,an] = MOm _nh, [R,a]=0, [d,an]=ma,, mmneZ.
The Lie algebra a is called the extended Heisenberg or oscillator algebra. Let

ar = P,,sokatm, bh=ka @khSkd,
and let 0 € h* be given by
d(ag) = 08(h) =0, &(d)=1.

Thena=a_ @& h @ ay, and a; is a weight module for hy = b, with weights

Ar={mdé|m>0}.
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The semigroup Q is generated by 6. An anti-involution w is given by
(U(h) = h) (U(d) = da w(a‘m) = a-m, me Z)

and in this notation a is a Lie algebra with triangular decomposition.

Example 1.6. Let g be a k-Lie algebra with triangular decomposition, denoted as
above, and let R be a commutative, associative k-algebra with 1 (e.g. R = k[t]/tN*1k[t],
N > 0). Write g = g ® R, and similarly for the subalgebras of g. Then g is a k-Lie
algebra with Lie bracket

and contains g as a subalgebra via x — = ® 1. Moreover, g = g_ & ) g+, and hy C b
are non-zero abelian subalgebras of g. The subalgebra g is a weight module for o with
weights coincident with the weights A, of the hp-module g, and (g4)* = (g3). So g
and § share the same roots A and root lattices Q, Q. The anti-involution w of g is

given by R-linear extension
w:zr—w(x)®r, z€g, reR,

and fixes h point-wise. Thus (8, b0, b, g+,w) is a k-Lie algebra with triangular decompo-

sition.

2. Highest-Weight Representation Theory

Throughout this section, let (g, ho, b, g+,w) denote a Lie algebra with triangular decom-
position. The universal highest-weight modules of g, called Verma modules, exist and
possess the usual properties. An extensive treatment of Verma modules and the Shapo-
valov form can be found in [24]; we present only the definitions and the most important

properties.

2.1. Highest-weight modules. A g-module M is weight if the action of hy on M

is diagonalisable, i.e.
(2.1) M= @XGbS MXx, hlpmx = x(h) for all h e by, x € bj.

The decomposition (2.1) is called the weight-space decomposition of M; the components

MX are called weight spaces. The support of a weight module M is the set

{x ebo| MX#0}Ch.
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For any x € hg, an element v € MX is a primitive vector of M if the submodule
U(g)-v C M is proper. Clearly M is reducible if and only if M has a non-zero primitive

vector. A non-zero vector v € M is a highest-weight vector if

i. gy -v=0;
ii. there exists A € h* such that h-v = A(h)v, for all h € b.

The unique functional A € §* is called the highest weight of the highest-weight vector
v. A weight g-module M is called highest weight (of highest weight A) if there exists a
highest-weight vector v € M (of highest weight A) that generates it.

Proposition 2.2. Suppose that M is a highest-weight g-module, generated by a highest-
weight vector v € M of highest weight A € h*. Then

i. the support of M is contained in Alp, — Q4; e
ii. MAlvo = kv, and all weight spaces of M are finite-dimensional,
iii. M is indecomposable, and has a unique maximal submodule;
iv. if u € M is a highest-weight vector of highest-weight A’ € h*, and u generates
M, then A’ = A and u is proportional to v.

Let A € b*, and consider the one-dimensional vector space kva as an (h & g4 )-module
via

g+-vA=0; h-va=A(h)va, heb.
The induced module

B(A) = U(9) Qupag,) kva

is called the Verma module of highest-weight A.
Proposition 2.3. For any A € h*,

i. Up to scalar multiplication, there is a unique epimorphism from U(A) to any
highest-weight module of highest-weight A, i.e. U(A) is the universal highest-
weight module of highest-weight A;

ii. Y(A) is a free rank one U(g_)-module.

2.2. The Shapovalov Form. The Shapovalov form is a contragredient symmetric
bilinear form on U(g) with values in U () = S(h). The evaluation of the Shapovalov form

at A € h* is a k-valued bilinear form, and is degenerate if and only if the Verma module
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U(A) is reducible. By the Leibniz rule, U(g) is a weight g-module, with weight-space

decomposition
U(g) = D.,coU(a)"

The anti-involution w of g extends uniquely to an anti-involution of /(g) (denoted iden-

tically), and is such that
w:U(g)" — U™, 7€Q.

It follows from the Poincaré-Birkhoft-Witt (PBW) Theorem that U(g) may be decom-
posed

U(g) =U(H) © {g-U(g) +U(g)g+}

as a direct sum of vector spaces. Further, both summands are two-sided U (h)-modules
preserved by w. Let q : U(g) — U(h) denote the projection onto the first summand

parallel to the second; the restriction q|u(g)o is an algebra homomorphism. Define
F:U(g) xU(g) »U(H) via F(z,y) =q(w(z)y), z,y€U(g).
The bilinear form F is called the Shapovalov form; we consider its restriction
F:U(g-) xU(g-) — U(b).

Distinct ho-weight spaces of U(g_) are orthogonal with respect to F, and so the study
of F on U(g_) reduces to the study of the restrictions

Fy:U(g-) xU(g-)X - U®), x€.

Any A € h* extends uniquely to a map U(h) — k; write F,(A) for the composition
of F, with this extension, and write RadF, (A) for its radical. The importance of the
Shapovalov form stems from the following fact.

Proposition 2.4. Let x € O, A € h*. Then RadF,(A) C B (A)AMvo =X is the Alg, — x
weight space of the maximal submodule of the Verma module U(A).

In particular, a Verma module U(A) is irreducible if and only if the forms F,(A) are
non-degenerate for every x € Q. Thus an understanding of the forms F,, x € O, isan
understanding of the irreducibility criterion of the Verma modules of the highest-weight
theory.
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2.3. Partitions and the Poincaré-Birkhoff-Witt Monomials. Let C be a set

parameterizing a root-basis (i.e. an hp-weight basis) of g, via

C> v o x(7) €9+

Define A : C — A, by declaring x(v) € gﬁh), for all v € C. A partition is a finite
multiset with elements from C; write P for the set of all partitions. Set notation is used
for multisets throughout. The length |A| of a partition A € P is the number of elements
of A, counting all repetition. Fix some ordering of the basis {x(y) | vy € C} of g4; for
any A € P, let

(2.5) x(A) =x(A1) - -x(X) € Ulgy)

where & = || and (A\i)igigk is an enumeration of the entries of A such that (2.5) is
a PBW monomial with respect to the basis ordering. For any partition \ € P, write
y(A) = w(x(A)). By the PBW Theorem, the spaces U(g+), U(g—) have bases

{xM1reP},  {yNIreP},

respectively. For any partition A € P and positive root oo € A, write

AN =D A();  X={veX|A()=a}.
YEA

2.4. Shapovalov’s Lemma. The proof of the following useful lemma is elementary.
Lemma 2.6. Suppose that A € P, that |A\| = r, that (\;)1<i<r is an enumeration of A
and that 7 € Sym(r). Then

x(A1) - x(r) = (1) - X(Arry) + R

where R is a linear combination of terms x(¢1) - - - x(¢s) where ¢; € C for 1 <7 < s and

S T.

The following Lemma is due to Shapovalov [30]. Our proof follows that of an analogous
statement in [24].

Lemma 2.7. Let (g, ho,b,9+,w) be a Lie algebra with triangular decomposition. Sup-
pose that A\, € P, that |A\| = r and |u| = s, and that (X\;)1gi<r and (pi)i1<igs are

arbitrary enumerations of A and pu, respectively. Let

zZ = X()‘r) c x(’\l)Y(Nl) T Y(,U's)'

Then
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i. degyq(Z) < 1,55
ii. if r = s, but |A%| # |u®| for some a € Ay, then degyq(Z) <7 =s;
ili. if » = s and |A¥| = |u®¥| =: mq for all & € Ay, then the degree r = s term of

q(2) is
I X I x0e).yu)l.

a€A 4 7€Sym(ma) 1< <ma

where for each o € Ay, (A)1gj<mas (K5)1<j<m, are any fixed enumerations of

A® and p® respectively.

Proof. The proof is by induction on |A| + |g|. It is straightforward to show that all
three parts hold whenever |A| = 0 or |u| = 0. Suppose then that all three parts hold for
all X',/ € P such that |N|+ |¢/| < |A| + |u|. Let ¢ € Sym(r), 7 € Sym(s), and write

Z' = x(Ag(r)  x(As1))y (Br (1)) ¥ (B (s)) -

By Lemma 2.6, Z = Z' + R, where R is a linear combination of terms

X(¢p) - x(P1)y(¥1) - -y (o)

with 7’ < r or s/ < s. Therefore, by inductive hypothesis, the Lemma holds for arbitrary
enumerations of A and p, if it holds for any particular pair of enumerations. Consider
A, to carry some linearisation of its usual partial order, and choose any enumerations
of A\, p such that

AA) <--- <AA) and A(p) < - < Aps)

Moreover, as

q(x(Ar) - x(A)y(pa) - y(ps)) = a(wx(Ar)---x(A)y(pa) - - y(us)))
= q(x(ps) - x(p1)y(A1) - y(Ar))s

it may supposed without loss of generality that A(u) < A(A1). Now

(Ar) - x(A1)y (k1) - - - y(ms))
[x(Ar) - x(A1), y(pa) ly(pe) - y(1s))

q(4;),

q2) =
= q

2 2
>

Il
M-

i

-

where, by the Leibniz rule,

Ai = x(0) -+ x(hay1)[XO8), y (1) IeQit) - - x(O)y(2) - ¥(1as),
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for 1 <7< r. Let 0 < k < r be maximal such that A(\;) = A(uq) for all 1 <4 < k; the
<

terms A; with 1 < ¢ < k and k < 7 < r are to be considered separately. If 1 <1 < k,

then [x(A;),y(u1)] € h. Therefore, by the Leibniz rule,
Ai = Zi[x(Ni),y(p1) ] + Ri,

where Z; = x(Ar) - x(Air1)x(Niz1) - - x(A1)y(p2) - - - y(us) and R; is a linear combina-
tion of terms

X(¢r—1) o X(¢1)Y(,¢)1) o Y(’(/)S—l)’ ¢1) o 7¢T’—1:wla s 71/)5—1 (S c
If instead k < 7 < r, then A; is a linear combination of terms
x(Ar) -+ x(Nip)x(7)x(Aim1) - - x(A)y(s2) - - y(#s)s
where A(y) = A(N;) — A(p1) € Ay, since A(ug) < A(A1) < A(N).

Note that degyq(Z) < max {degpq(4;) }. Consider now each of the three parts of the

claim.

Part (i). For 1 < <k,
(2.8) q(Ai) = a(Zi)[x(M), y(w)] + a(Ri),
since q|u(g)o is an algebra homomorphism. By part (i) of the inductive hypothesis,
degyq(Z;), degyq(Ri) <7 -1, s—1,
and so degyq(A;) < r,s. For k < i < r, again by part (i) of the inductive hypothesis,
degpq(A;) <7, s — 1. Hence degyq(Z) < 7, s, and so part (i) holds.
Part (ii). Suppose that r = s, and let & € A be such that |A\¥| # |u®|. For 1 <i <k,
consider q(A4;) by equation (2.8). By part (i) of the inductive hypothesis,
degpq(R;) <r—1<r,

and so it remains only to consider q(Z;). Write X' (respectively, p’) for the parti-
tion consisting of the components of A\ (respectively, p) except for A; (respectively, p1).
Then |N| = || and |N?] # |p'*|. Therefore, by part (ii) of the inductive hypothesis,
degyq(Z;) < 7 — 1; hence degyq(A;) < r. For k < i < r, part (i) of the inductive
hypothesis implies that degbq(Ai) < s —1 < r. Therefore degbq(Z) < r, as required.

Part (iii). Suppose that 7 = s and that |\*| = |u®| for all @ € A;. Observe that for
k <i < r, part (i) of the inductive hypothesis implies that

degpq(Ai) <s—1<m;
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and that for 1 < i < k, by the same,
degpq(R;) <r—1<r.

Therefore, the terms q(A;) for £ < ¢ < r and the terms q(R;) for 1 < ¢ < k can not
contribute to the degree-r component of q(Z); thus the degree-r component of q(Z) is
the degree-r component of

k
> a(Z)[x(A), y(p) -
=1

As Z; satisfies the conditions of part (iii) of the inductive hypothesis, for 1 < i < k, the

formula follows. J






CHAPTER 4

Highest-Weight Theory for Truncated Current Lie
Algebras

In this chapter, the highest-weight theory for truncated current Lie algebras is extensively
studied, culminating in a reducibility criterion for the Verma modules. References to
material from Chapter 3 are distinguished by the specification of a page number in
parentheses. The notations of that chapter are used throughout. In particular, k is any

field of characteristic zero.

1. Truncated Current Lie Algebras

Let (g, ho,b,9+,w) be a Lie algebra with triangular decomposition, and let C denote a

set parameterizing a root-basis for g,. Fix a positive integer N, and let
§ = g @Kk[t]/t"k[t]

denote the associated truncated current Lie algebra with the triangular decomposi-
tion of Example 1.6 (page 35). The integer N is the nilpotency index of §. Let
C=Cx {0,...,N}. Then ¢ parameterises a basis for g4 consisting of hp-weight vectors

of homogeneous degree in t, via

C> Y e X(7) 6@4’)
where x(v) = x(7) ® t¢ if v = (7, d) € C. Define
AiC = Ay, deg,:C — {0,...,N}

via x(7) € g2 @ tde&() for all v € €. Order the basis {x(7) | v € C} of §, by fixing
an arbitrary linearisation of the partial order by increasing homogeneous degree in t, i.e.
so that

degy(7) <deg(v) = x(v)<x(v), %7 €C.
As per Subsection 2.3 (page 38), the PBW basis monomials of U(§,) with respect to
this ordered basis are parameterised by a collection P of partitions. Partitions here are

43
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(finite) multisets with elements from C. For any x € Q, let
Py={AeP|AN) =x}.
For any 0 < d < N and A € P, define
M= {vy€A|degyy=d};

)\ is homogeneous of degree-d in t if A = A%. The ordering of the basis of §, is such that
for all A € P,

x(A) = x(A)x(AY) - x(WN),  y(A) =y(AN) - y(Ahy(\).
For any A € h* and 0 < d < N, let A4 € h* be given by

(Ag,h) = (A,h®t%), heb.

1.1. The Shapovalov form. As in Section 2 (page 35), there is a decomposition

U@) =Ub) @ {5-U@E) +U@E)d+},

as a direct sum of two-sided U(§)°-modules. Denote by q : U(§) — U(H) the projection
onto the first summand, parallel to the second. Let

F:U(g) x U(5) — U(D)
denote the Shapovalov form, and write F, for the restriction of F to the subspace

u(é—)_xv X € Q"F‘

The algebra U(g) = @mZOZ/{ (8),, is graded by total degree in the indeterminate t,

) k ‘
U(§),, = span{ (z1 @thY) .. (zf @ t%) | Zdi =m, k>0}.

=1

For any subspace V' C U(g), let
Vi =U(8),, NV, m >0,

and call V' graded in t if V = €P,,50 Vim. The subalgebras U(g+), U(g-), and U(h) are
graded in t.
Lemma 1.1. For any m > 0, q((8),,) C U(H),,-

Proof. The spaces §-U(g) and U(g)g+ are graded in t; hence so is the sum

{o-U(g) +U(9)g+}-
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Therefore,

U(8), = UD),, ® {8-UB) + U@+ } s
for any m > 0. O
Example 1.2. Let g = sl(3), and recall the notation of Example 1.2 (page 32). Let
N=1,sothat j=g® (g®1t). Write C = A, and C =C x {0,1}. Then §, has a basis
parameterised by C:

€5 (a,d) o x(a)®t? €gy.

Let x = a1 + x2. Then P, consists of the six partitions

{(0‘170))(0‘%0)}7 {(0(1—}—0(2,0)}, {(0(1,0),(0(2,].)},
{ (e1,1), (x2,0) }, {(oq +x2,1) }, { (o1, 1), (exa,1) }-

Order the set {x(7) | ¥ € C} by the enumeration

(1.3)

x(0) @0, x(o+ o) @1t%,  x(oxg) ®t°, x(oq) ® ', x(o1 + x2) @Y, x(o) @t

Then the PBW basis monomials of 2 (§_) "X corresponding to the partitions (1.3) are,

respectively,
(1.4) y(og) ®t0 - y(oy) ® O, y(oa + o) ® t°, y(oz) @ t! - y(er) ® t°,
y(o) ® t! - y(og) ® O, y(oa + og) ® t, y(oz) @ th - y(oq) ® th.

For notational convenience, write hy, ; = h(a;) ® t7, for i = 1,2 and j = 0,1. The
restriction F, of the Shapovalov form, expressed as a matrix with respect to the ordered

basis (1.4), appears below.

hoc1+oc2,0 i hle,O hcxl,O hcxl,Ohocg,l =+ hoq,l h(xl,l(ha.g,O = 2) hoq,l hocl,lh(xz,l

hea, 0 ho, +a2,0 hey 1 —hu, 1 ho +oz,1 0
hey,0ha;,1 +hay 2 hai1 0 broes. 1 ioes, i 0 0
hey 1(hag,0 +2) —hg, 1 hey1has 1 0 0 0
hcxl,l hcx1+¢x2,l 0 0 0 0

ho, 1ha, 1 0 0 0 0 0

This is an elementary calculation using the commutation relations. Observe that this
matrix is triangular, and that in particular the determinant (the Shapovalov determinant

at x) must be the product of the diagonal entries, viz.,
(1.5) (h(oa) ® t1)*(h(xz) ® t1)* (h(o + x2) ® )%,

up to sign. This provides a criterion for the existence of primitive vectors in the weight
space Alp, — x of a Verma module U(A), A € h*. We shall prove that the Shapovalov
determinant always lies in S(h ® tV), and that for g a semisimple finite-dimensional Lie
algebra, the factors of the Shapovalov determinant are the analogues of those of (1.5).
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Example 1.6. Let g be the Virasoro/Witt algebra, and adopt the notation of Example
1.4 (page 1.4). Let N =1, and x = 25. Write C = A, and € = C x {0,1}. Then P,
consists of the five partitions
(L7)  {(5,0),(5,0)}, {(26,0)}, {(5,0),(5,1)}, {(26,1)}, {(5,1),(8,1)}.
Order the basis

{x(7)|7€C}={Lp, @t |m>0, d=0,1}

for g4 firstly by increasing degree d, and secondly by increasing index m. Then the
PBW basis monomials of U(g_) X corresponding to (1.7) are, respectively,

(1.8) Loaot)?, Lot Loet'-Let’, Loet!, (Loiet!)?

Write Qi = (2mLg + ¢(m)c) ® t!, for m,i > 0. The matrix of F,, expressed with
respect to the ordered basis (1.8), appears below: " -

2M0(Qo+1) 30 2011(R10+1) 31 2(Q11)?

310 Qa0 3011 Q21 0
2Q11(Q0+1) 3Q, 0f, 0 0
3011 Qa1 0 0 0
2(01,1)? 0 0 0 0

Hence the Shapovalov determinant at x is given by detF, = 4Q?,IQ%71.

Example 1.9. Let g be the Virasoro/Witt algebra, and adopt the notation of Example
1.4 (page 1.4). Let N =2, and x = 25. Write C = A and C = C x {0,1,2}. Then P,
consists of the nine partitions

{(8,0),(8,0) }, {(26,0)}, {(8,0),(5,1) },
(1.10) {(8,0),(5,2) }, {(26,1)}, {(6,1),(5,1) },
{(5,1),(5,2) }, {(26,2) }, {(8,2),(5,2) }.

Order the basis {x(7) | v € C } as per Example 1.6. Then the PBW basis monomials of
U(g_)X corresponding to (1.10) are, respectively,

(L_1 ® t%)?, Lo®to, Lot -L; ®t°
(1.11) L1 ®t2-L_;®t°, L_o®tl, (L, ® t1)?,
L;®t?-L;®t!, L_o®t2, (L_; ®t2)2.

The matrix of F, with respect to the ordered basis (1.11) appears on page 48. Notice
that the matrix has seven non-zero entries on the diagonal. Hence there is no reordering

of the basis (1.11) that will render the matrix triangular.
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1.2. A modification of the Shapovalov Form. As observed in Example 1.9,
it is not always the case that the matrix for F,, x € Q,, can be made triangular by
an ordering of the chosen PBW monomial basis for A(g_)"X. A further permutation

*

of columns is necessary; this is performed by an involution * on the partitions, and

encapsulated in a modification B of the Shapovalov form F. For any v = (7,d) € ¢,
write v* = (7,N — d) € C, and for any X € P, write

A ={y"|reAr}.
So (A%)* = (\*)N- for all A\ € P and all degrees d. For any x € Qy, let
B, : U(E-) ™ x UE-) X — U(H)
be the bilinear form defined by

By(y(N),y(1) =Fx(y(N),y(1"), A pePy
Relative to any linear order of the basis {y(A) | A € PX} of U(g_)"X, the matrices of

B, and F, are equal after a reordering of columns determined by the involution *. In

particular, the determinants detB,, and detF, are equal up to sign.
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48
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2. Decomposition of the Shapovalov Form

Throughout this section, let (g, bo, b, g+,w) denote a Lie algebra with triangular decom-
position, and let g denote the associated truncated current Lie algebra of nilpotency
index N. Let £ denote the collection of all two-dimensional arrays of non-negative in-
tegers with rows indexed by A} and columns indexed by {0,...,N }, with only a finite

number of non-zero entries. For any x € Q, let
L={LeLix=Y Y Laaa).
€A 0KdKN
The entries of an array in L, specify the multiplicity of each positive root in each
homogeneous degree component of a partition of x, i.e.

AEP;, &= (|25 Jaeay, €Ly,
0<d<N

Let
Pr={AeP|| >

=Lgag4 forallaoe Ay, 0<Kd<N}.

Then for any L € L, P is a non-empty finite set; if the root spaces of g are one-
dimensional, then Pr, is a singleton. The set £, parameterises a disjoint union decom-

position of the set P,:

(21) PX = I—-ILELX PL.

For any S C P, let
span(S) = spany {y(A) | A€ S},

so that, for example, span(P) = U(g-) and span(Py) = U(g-) * for any x € O,.
For any x € Q, the decomposition (2.1) of P, defines a decomposition of U(g_) X =
span(Py):

U@-)* = P span(Py).

BEly

We construct an ordering of the set £, and show that, relative to this ordering, any
matrix expression of the modified Shapovalov form B, for g is block-upper-triangular
(cf. Theorem 2.14). The following Corollary, immediate from Theorem 2.14, provides a
multiplicative decomposition of the Shapovalov determinant, and is the most important
result of this section.
Corollary 2.2. Let x € Q. Then

detBy = J] detBylspan(r,)-
LeLly
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2.1. An order on L,. Fix an arbitrary linearisation of the partial order on Q. If
X is a set with a linear order, write X1 for the set X with the reverse order, i.e. z < Y in
X1 if and only if z > y in X. For example, the order on Z, ' is such that 0 is maximal.

Suppose that (X;);>1 is a sequence of linearly ordered sets, and let
X=XixXox Xgx---

denote the ordered Cartesian product. The set X carries an order < x defined by declar-
ing, for all tuples (z;), (v;) € X, that (z;) <x (v;) if and only if there exists some m > 1
such that z; = y; for all 1 < ¢ < m, and z,, < yYpm,. This order on X is linear, and
is called the lezicographic order (or dictionary order). Fix an arbitrary enumeration of
the countable set Ay x {0,1,...,N}. Consider L as a subset of the ordered Cartesian
product of copies of the set Z, indexed by this enumeration. Write £(<) for the set £

with the associated lexicographic order. For any L € L, write

A(L) = (> Laox, Y Lage,..., Y Lano) € (QHN,

OLEA+ a€A+ OLGA+
N
Ll = (D Laoy D, Lagy--os D, Lan) €Zyt xZY.
aEA 4 aEA 4 aEA 4

For any x € 9, define a map
Ox : Lx — Q4NN x (z4 T x ZIJ\IF) x L(<)
by
0, (L) = (A(L),|L|, L), Le Ly,

Consider the sets (Q")N*! and Z, T x ZY to both carry lexicographic orders. Thus the

Cartesian product
(2.3) (Q YN+ x (24t x ZY) x £(<)

carries a lexicographic order, and this order is linear. For any x € Q. , we consider the
set L to carry the linear order defined by the injective map 6, and the linearly ordered
set (2.3).

2.2. Decomposition of the Shapovalov form.

Lemma 2.4. For any partitions A\, u € P,

x(N)y(p) = x(A0)y (L™)x(A)y (1) - x(AN)y (u0).
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Proof. By choice of order for the basis {x(7y) | 7 € C} of §4, and since y(u) = w(x(u)),
by definition,
x(A)y (k) = x(A%) - x(AN)y (M) -y (u).
As [x(\Y),y(u?)] = 0 if i + j > N, the claim follows. O

Proposition 2.5. Suppose that A\, u € Py, x € Q4, and further that AN = A(ud),
for all 0 < d < k, for some 0 < kK < N. Then

B(y(\),y(w) = [] BEOD, ) - By(\N),yW)),

0<d<k
where N = Uk<dgN A and p/ = Uk<dgN ul.
Proof. Under the hypotheses of the claim,

B(y(\),y(1) = alx(Ny(u")
= a0y ((E)NxAy ()N - x(AN)y (1))
(by Lemma 2.4)
= ax\)y (") )Xy (")) - x ANy ((N)))
= I aGOHye®)) - aExK )y - xONy (™))

0<d<k

(since gy (g)yo is an algebra homoemorphism)

=TI axOHye™) - By(V),y())

0<d<k
(by Lemma 2.4)

= ( JI BGOD.yuh)) BEO),y()). | 0
O<d<k

Lemma 2.6. Suppose that A\, u € P are partitions of homogeneous degree d.

i. If d =0 and || < |u|, or if d > 0 and |A| > |u|, then B(y(\),y(u)) =
ii. If || = |u| and |A*| # |u®| for some o € Ay, then B(y(A),y(n)) =

Proof. This Lemma follows essentially from Lemma 2.7 (page 38), applied to the Lie
algebra with triangular decomposition (§,bo,h,§+,w). Let A\, u € P be partitions of

homogeneous degree d. Since

x(A)y(p*) € U(8)\d+|u(N-d)»
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it follows from Lemma 1.1 that

(2.7) B(y(A), (1)) € UB)|A|det |l (N—d) -
On the other hand,
(2.8) deg;B(y(A),y(1)) < A, |

by Lemma 2.7 (page 38). Therefore, if B(y(/\),y(u)) # 0, and
B(y(\),y(u)) € U(B)m,

it must be that

(2.9) m < |AIN and m < |y|N,

since the degree of h € b in t is at most N. Combining (2.7) and (2.9), it follows that if
B(y(A),y(1)) # 0, then

(2.10) IAld + |ul (N — d) < XN,
and
(2.11) I\ld + | (N — d) < |g|N.

If d = 0, then inequality (2.10) becomes |u| < |A|. Hence, if d = 0, and |A| < |p|, then
B(y(A\),y(#)) = 0. If d > 0, then inequality (2.11) yields |A| < |u|. Hence, if d > 0 and
|A] > |ul, it must be that B(y(A),y(s)) = 0. This proves part (i).

Suppose now that |A\| = |u| = r, and that |[A%| # |u®| for some o« € Ay. Then, by
Lemma 2.7 (page 38), the inequality (2.8) becomes strict. Hence, if B(y(\),y(u)) # 0,
then the inequalities (2.10) and (2.11) are also strict. These both yield 7N < 7N, which
is absurd. Hence it must be that B(y(\),y(r)) = 0, and part (ii) is proven. O

Lemma 2.12. Suppose that v € Q and v & Q. Then U(§)" C g_U(g).

Proof. Because § = §— @ (h @ §4), we have U(§) = U(G_) U(H ® §+) by the PBW
Theorem. The set of all weights of the hg-module U (5 @ g+ ) is precisely 9, and so, for
any v € Q,

(2.13) UB) =Y eo, UBE-) XUBS§L).

Suppose that v € Q and v ¢ Q4. Then, in particular, v — x # 0, for any x € Q4, and
SO

U-)" C §g-U@).
Hence U(§)” C §-U(g) by equation (2.13). O
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Theorem 2.14. Suppose that x € Q4 , and that L, M € L. If L > M, then

B(y(A),y(n)) =0,

for all A € P, and p € Pyy.

Proof. Suppose that L, M € L, and that L > M. Then one of the following hold:

e A(L) > A(M); or
e A(L) = A(M) and |L| > |M]; or
e A(L)=A(M), |L| =|M] and L > M in L(<).

Let A € Pr and let u € Pyy.

Suppose that A(L) > A(M). Then there exists 0 < [ < N such that A(\Y) = A(u?)
forall 0 < d < I, and AN > A(p!) in @41, ie. AN) < A(pd) in Q4. If I > 0, then
Proposition 2.5 with £ =1 — 1 gives that

(2.15) B(y(A),y(p) = 6-B(y(X),y())

for some 6 € S(h), where X = Urcasn M and pf = Uicasn p. In the remaining case
where | = 0, equation (2.15) holds with A = X, u =y’ and § = 1. By Lemma 2.4,

(2.16) B(y(\),y(1) = alx\)y ()N - x(AN)y ((#5))).-
Since A((u*)N=!) = A(u!), the monomial x(A)y((p*)N~!) has weight v = AN — A(u!).
Now v & Q,, since A(\) < A() in Q,, and so
x(W)y ()" ) € 5-U()
by Lemma 2.12. Therefore
B(y(\),y(1)) =0,

by equation (2.16) and the definition of the projection q. Hence B(y(A),y(x)) = 0 by
equation (2.15).

Suppose instead that A(L) = A(M). Then by Proposition 2.5,
B(y(\),y(w) = J[ B, y(ud).
0<d<N
Suppose that |L| > |M|. Then either |\ < |u¢|, with d = 0, or [A\¢| > |u?| for some
0 < d < N. In either case,
B(y(A\),y(u%) =0,
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by Lemma 2.6 part (i), applied to the partitions \¢, u?. Suppose that |L| = |M| and
that L > M in £(<). Then

Log# Mygq forsome ae Ay, 0<d<N,

so that [(A%)*| # |(u%)®|. Therefore, Lemma 2.6 part (ii), applied to the partitions
M, pd, implies that B(y(A%),y(p4)) = 0. Hence B(y()),y(1)) = 0. O

3. Values of the Shapovalov Form

Throughout this section, let (g, ho, b, g+,w) denote a Lie algebra with triangular de-
composition, and let g denote the truncated current Lie algebra of nilpotency index N

associated to g. In Section 2, the space U(g_) X is decomposed,

U@G-)™ = (P span(Py)
LeL,
and it is demonstrated that the determinant of the (modified) Shapovalov form B,
on U(g—) X is the product of the determinants of the restrictions of B, to the spaces
span(PL), L € L,. In this section, the restrictions Blspan(p, ) are studied. Firstly, the
values of Blspan(p, ) With respect to the basis y()), A € Pr, are calculated (cf. Proposition
3.3). This permits the recognition of Blspan(p,), in the case where g carries a non-
degenerate pairing, as an S(h)-multiple of a non-degenerate bilinear form on span(Py)
(cf. Theorem 3.20). The form on span(Pr) is constructed as a symmetric tensor power

of the non-degenerate form on g.

3.1. Values of the restrictions B|span(p,). Whenever A, u € P and |A| = [u| = n,
let

sve) = Y TI xOuww),y(u)] € Sh),

7€Sym(n) 1<i<n
where (\;) and (p;), 1 < 7 < n are arbitrary enumerations of A and pu, respectively.

Lemma 3.1. Suppose that A, u € P and |A| = |y

i S(/\,u) = S(u,/\);

ii. if, in addition, A and p are homogeneous of degree-d in t, then

S(V',1) = SO 7).
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Proof. Let n = |A| = |u|, and choose some enumerations (A;), (ui), 1 < ¢ < n of A
and p. The anti-involution w point-wise fixes S(f)), and so w fixes S(/\, ,u). On the other
hand,

w(S(A, 1))

Z H T(l (ljll) ])

7€Sym(n) 1<i<n

- Z H [x(1:), y(Ar(iy) |

7€Sym(n) 1<i<n
= S(w )

proving part (i). Suppose that A\, u are homogeneous of degree-d in t. For each 1 < 7 < n,
let €;,7; € C be such that

Ai = (€&, d), wi = (v, d).

Then

(3.2) sS(u) = Y ] [xer) @ N y(n) @ t4)].

T€Sym(n) 1<i<n
For any 1 <i < m and 7 € Sym(n),
[X(er(i)) ® tN_dv y(rYi) ® td] = [X 6‘r(v,)) y Yi ] ® t
= [X(ev‘(z ) ®t a.Y(’YZ) ® tN_dlv
and hence S(/\*,p,) = S(/\,u*) by equation (3.2), proving part (ii). O

Proposition 3.3. Suppose that L € £, and that A\, x € Pr. Then

(3.4) B(y(\),yw) = [I I s> w9

0<d<N a€A |

and B(y(A),y(1)) = B(y(p),y(\)).

Proof. Let A\,u € Pr, L € L, and let 0 < d < N. Then
) = | = Loy, a €Ay

Write | = |A%| = |p¢]. Then by Lemma 2.7 (page 38), applied to the Lie algebra with
triangular decomposition (g, bo, b, §4,w),

deggB(y(AY), y(u?)) <1,

and the degree-/ component of B(y(/\d),y(,ud)) is given by
(3.5) IT s>, (uhy"),

aEA L
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since B(y(A\%),y(u?)) = a(x(A\%)y(u?*)). By Lemma 1.1, and since Id + [(N — d) = IN,

B(y(A),y(u%) € U(B) -

Therefore deg; B (y()\d),y(,ud)) > [, since deg,¢ < N for any ¢ € h; and so B(y()\d), y(ud))
is homogeneous of degree-l in §, and is equal to the expression (3.5). By Proposition
2.5,

B(y(\),y(w) = [[ B\, yw?),

0<d<N
and so the equation (3.4) follows. The symmetry of Bls,an(p,) follows from equation
(3.4),

B(y(\,yw) = [I T s ue®")

0<d<N a€A 4

= IL T sty o)

0<d<Na€lAy "

_ H H S([Ja’d, ()\a,d)*)

0<d<N a€A
= B(y(u),y(N)

and parts (i) and (ii) of Lemma 3.1. O

3.2. Tensor powers of bilinear forms. If U, V are vector spaces, and ¢ : UXV —

k is a bilinear map, write
(3.6) p:URQV -k

for the unique linear map such that ¢(u ® v) = ¢(u,v) for all u € U, v € V.
Proposition 3.7. Suppose that U, V' are vector spaces with bilinear forms. Then the
vector space U @V casries a bilinear form defined by

(3.8) (u1®v1|u2®v2)=(u1|u2)(v1|vg),

for all uy,ue € U and vy,vy € V. Moreover, if the forms on U and V' are non-degenerate,
then so is the form on U Q V.

Proof. Let ¢ : UxU — k, ¥ : VxV — k denote the bilinear forms on U, V, respectively.
Let

v:UQRQU)x (VR V) —k
be given by
v(u1 ® uz,v1 ® v2) = G(u1 ® ug)P(vy ® va),
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for all uy,up € U, vy,vg € V, where the maps ¢, are defined by (3.6). Then v is
bilinear, and so defines a linear map

r:(UQU)QVRV)—-k
by (3.6). Since
URU)KR(VRV)=2URV)RURQV),
the map U may be considered as a bilinear form
(1):URV)xUQV)— k.

Now if ui,us € U, v1,v2 € V, then

(1 ®u1|ue®u2) = D(u; ®uz v @ vg)
= v(u ®uz, vy Qv2)
= ¢lur ®u2)p(v1 ® v2)
= ¢(u1,u2)¥(v1,v2),
and so this is the required bilinear form. The non-degeneracy claim follows immediately
from the definition (3.8) of the form. O

For any vector space U and non-negative integer n, write
T"U)=UQ:---QU, (n times)
for the space of homogeneous degree-n tensors in U. For any u; € U, 1 < i < n, write
Qi1 Ui = U1 ® - ® Un,
so that
T*(U) =span { @, ui |u; €U, 1 <i<n}.

Write

i 1

Uy~ -Up = Hui = ﬁ Z ®?=1 Ug(s)

1=1 o€Sym(n)

for the symmetric tensor in u; € U, 1 < i < n, and let

MU} = span{Hui |uieU, 1<i<n}
i=1
denote the space of degree-n symmetric tensors in U. Let
W) =PT'U), SU)=Hsw),
n>0 n>0

denote the tensor and symmetric algebras over U, respectively.
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Proposition 3.9. Suppose that U is a vector space endowed with a bilinear form, and
that n > 0. Then S™(U) carries a bilinear form defined by

(Twl v == 3 Tlwlone),
i=1 i=1 " 7€Sym(n) i=1

for any u;,v; € U, 1 <1 < n. Moreover, if the form on U is non-degenerate, then so is
the form on S™(U).

Proof. Let A(U) denote the two-sided ideal of T(U) generated by the elements of the

set

{u1 ®ug —ug ®uq | up,up €U }.
Then T(U) = S(U)P A(U) is a direct sum of graded vector spaces. Hence, for any
n >0,

(3.10) T™(U) = SMU) D An(U)

is a direct sum of vector spaces, where A™(U) denotes the homogeneous degree-n com-
ponent of A(U). By Proposition 3.7, the tensor power T"(U) carries a bilinear form
defined by

n
(3.11) (@ ui | ®fyvi) = [[(uilw), u,vu €U, 1<i<n
i=1

Observe that for any u;,v; € U, 1 <1 < n,
n
> i lvegy)
o€Sym(n) =1

is independent of the enumeration of the elements vy, ..., v,. It follows that the direct
sum (3.10) is orthogonal, with respect to the bilinear form (3.11). A form is defined on
S™(U) by restriction of the form on T™(U). For any u;,v; € U, 1 < i < n,

n n 1 n
([Twl [Jv) = (m)2 > > T w1 vrgy)
=1 =1

o€Sym(n) T€Sym(n) 1=1

1 n
I S T Cuilvr)-

" 7€Sym(n) i=1

Hence S™(U) carries the required bilinear form. If the form on U is non-degenerate, then
by Proposition 3.7 the form on T™(U) is non-degenerate, and since the sum (3.10) is

orthogonal, the restriction of the form to S®(U) is non-degenerate also. O
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3.3. Lie algebras with non-degenerate pairing. A Lie algebra with triangular
decomposition (g, o, b, g+,w) is said to have non-degenerate pairing if for all @ € A,

there exists a non-zero h(a) € §, and a non-degenerate bilinear form
(-] )a:g*x g% =k,

such that

(3.12) [z1,w(z2)] = (71| z2)oh(a),

for all z1, x4 € g°.

If g has a non-degenerate pairing, then for any a € A, the space

[e]

(6% 9 %] =g~

is one-dimensional, and so the elements h(«) and h(~a) can differ only by a non-zero
scalar.

Example 3.13. Let g be a symmetrisable Kac-Moody Lie algebra over k (cf. Example
1.3, page 33), and let (- |-) denote a standard bilinear form on g (as per [20, page 20]).
The restriction of this form to § is non-degenerate. Therefore, for any x € h*, there

exists a unique h(x) € b such that

(x,h) =(h(x)|h) hebh.
The map h : h* — b is a linear isomorphism. For any o € A, let
(] )a:g®xg* =k,
be given by
(z1]|22)a = (21 |w(z2) ), x1, T2 € g%

Then for any a € A, the form (- |- )4 is non-degenerate, and is such that equation (3.12)
holds (see, for example, Theorem 2.2 of [20]). Hence g carries a non-degenerate pairing.
Example 3.14. Suppose that g is a Lie algebra with triangular decomposition, such

that for any root a € A,
dimg® =dimg ™ =1, and [g% g *]#0.
Then for each o € A, we may choose an arbitrary non-zero
h(e) € [g%977]

and let the form (|- ) : g% x g% — k be defined by equation (3.12).
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Example 3.15. Let g denote the Virasoro algebra (cf. Example 1.4, page 1.4). Let
a € A, and let m be the non-zero integer such that o = md. Then

ga = kL, g_a =KL _p,

and [Ly,, L_,, ] = 2mLg + ¢(m)c is non-zero. Therefore, by Example 3.14, g carries a

non-degenerate pairing, with
h(a) = 2mLg + ¥ (m)c, a = mb.

Example 3.16. The Heisenberg Lie algebra a carries a non-degenerate pairing (cf.
Example 1.5, page 34). Let a € A, and let m be the non-zero integer such that o = ms.
Then

a® = ka,, a *=ka_,,

and [am,,a—m | = mh is non-zero. Therefore, by Example 3.14, a carries a non-degenerate

pairing, with

h(a) = mh, a =mb.

Suppose that (g,ho,h,g+,w) is a Lie algebra with triangular decomposition and non-
degenerate pairing, and let g denote the truncated current Lie algebra with nilpotency
index N associated to g. Non-degenerate bilinear forms are defined on the homogeneous
degree components of the roots spaces of g in the following manner. For all « € A, and

0 < d < N, define a non-degenerate bilinear form (- |- )4 on g* ® t¢ by
(3.17) (219t | 22 @t g = (21| 52)ar 21,22 € 6™
Forall o € Ay and 0 < d < N, let

Cag={7€C|AM) =0, degyy=d}.
Lemma 3.18. Let a € Ay and let 0 < d < N. Then,

[x(6), y(¥*)] = (x(9) | X(¥) )aah(e) ® tV,
for all ¢,y € CAa,d.
Proof. Let ¢/,¢' € C be such that ¢ = (¢’,d) and ¢ = (¢/,d). Then

y(@") =y@) @ t" ! = w(x(¥)) ® ",
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and x(¢) = x(¢') ® t¢. Therefore

[x(4),y(¥")] [x(¢), w(x(¥")] @t
(x(¢) | x(¥) )ah(e) ® t¥
(x() | %(¥) Jaah(e) ® 7,

by equation (3.17). O

Il

3.4. Recognition of the restrictions Blpan(p, ). For any L € L, let
A= ® ® sted(s o 1),
0<d<N a€A

The vector space A has a basis parameterised by the partitions in Pr:
Pro> A o x(\) €A,

where, for all A\ € P,

®@ & II x:

0<d<N €A yerd

Proposition 3.19. Let « € A, and 0 < d < N. If \,u € P are partitions with
components in Cq 4 such that |A| = || = k, then

S(A #*) = k! (h(a) @ tN)* (2(V) | %(p))

where (-|-) is the form on S*(g* ® t?) defined by the form on g* ® t¢ and Proposition
3.9.

Proof. The claim follows from Lemma 3.18 and the definition of the form on S¥(g*®t9).
Let (A\;) and (y;), 1 < i < k be any enumerations of A and p, respectively. Then:

S(A, 1) > T xOwa) y(e)]

T€Sym(k) 1<i<k

= Z H 7(4) ) | x(1i) )o,ah(a) ® &

T€Sym(k) 1<i<k
= k! (h(a) ®tN Z H ‘rz) ) [ x(pi) )
: TESym(k) 1<i<k
=kl (h(e) @ t")* () |x(n)). O

I
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For any L € L, the vector spaces span(Pr) and Ay are isomorphic by linear extension
of the correspondence

y(A) = x(N), e Pr.

Let (- |-) denote the non-degenerate form on A, defined by the forms (3.17) on g® ® t¢
and by Propositions 3.7 and 3.9. So

N xw) =TI T O I=@>)),

0<d<N a€A

for all A\, u € Pr, where (x(A®%) | %(u®?)) is defined by Proposition 3.9. Let J;, be the

bilinear form on span(Pr) given by bilinear extension of

Je(yW Iy(w)) = (XN %)), ApePr.

Then the form J;, is non-degenerate.
Theorem 3.20. For any L € L,

Blspan(PL) =h(L)-J.

where h(L) € S(§) is given by

hD) = J] ]I Zad) (Ble)@ )i

0<d<N a€EA,

Proof. Let \,u € Pr. Then:

By, yw) = [[ I sO*% @)

0<d<N a€A .
(by Proposition 3.3)

= I II Zad) Ble) @ M)t (0 |2(u*%))
0<d<N a€A
(by Proposition 3.19)

= [ [T II Zaa) @@ ®tN)red] - (2(A) [X(n))
0<d<N a€A,

= h(L)-Jo(y(A) |y(w))-

The set {y(A) | A € P } is a basis for span(PL), and so the equality follows. a
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4. Reducibility of Verma Modules

Let (g, b0, b, 9+,w) denote a Lie algebra with triangular decomposition and non-degen-
erate pairing, and let (§,ho,H,§,w) denote the truncated current Lie algebra of nil-
potency index N associated to g. In this section we establish reducibility criterion for
a Verma module U(A) for § in terms of evaluations of the functional A € h*. We then
interpret this result separately for the semisimple finite-dimensional Lie algebras, for the
affine Kac-Moody Lie algebras, for the symmetrisable Kac-Moody Lie algebras, for the
Virasoro algebra and for the Heisenberg algebra.

Theorem 4.1. Let A € 6* and let x € Q.

i. The Verma module U(A) for § contains a non-zero primitive vector of weight

Aly, — x if and only if
(4.2) {(An, h(a)) =0

for some o € Ay such that xy —a € Qy;
ii. B(A) is reducible if and only if equation (4.2) holds for some o € A.

Proof. Let A € b* and let a € A,. By Proposition 2.4 (page 37), the Verma module
2B(A) has a non-zero primitive vector of weight Al — x if and only if the form F,(A) is
degenerate. The determinants detF, and det B, can differ only in sign, and

detF, (A) = (A,detF,).
Hence such a primitive vector exists if and only if (A, det B,) vanishes. Now

<Aadeth> - <A, H detB|span(’PL)>
LeLly

(by Corollary 2.2)
= (A, ] detJz-n(L)Pl)
Lely
(by Theorem 3.20)
=[] detJr- (A, n(L))P=l
LEL,
For any L € L,, the form J;, is non-degenerate, and so detJz, is a non-zero scalar. Hence
(A,det B, ) vanishes if and only if (A, h(L)) vanishes for some L € L,.. As

h(L)= [T Il Zad) (Bla) @),

0<d<N €A
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(A,detB,) vanishes if and only if (A,h(a) ® tY) is zero for some o € Ay for which
there exists L € £, and 0 < d < N with Ly 4 > 0. This condition on « is equivalent
to requiring that there exist some partition pu € P, for which |u®| > 0, which occurs
precisely when xy — a € Q.. Hence the first part is proven; as h(a) and h(—«) are
proportional, for any a € A, the second part follows. O

It is apparent from Theorem 4.1 that the reducibility of a Verma module U(A) for g
depends only upon Ay.

4.1. Symmetrisable Kac-Moody Lie algebras. Let g be a symmetrisable Kac-
Moody Lie algebra as per Examples 1.3 (page 33) and 3.13. The map

h:p* — b,
from Example 3.13 transports the non-degenerate form (-|-) on h to the space h* via

(x|v) = (h(x) |h(y)), XY € b*.

Hence, for any A € h* and a € A,
(An,h(a)) = (h(AN) [ h(a)) = (AN ]| @),

by definition of the map h. The following Corollary of Theorem 4.1 may be viewed as a
generalisation of Corollary 4.4.

Corollary 4.3. Let g be a symmetrisable Kac-Moody Lie algebra, and let g denote
the truncated current Lie algebra of nilpotency index N associated to g. Then, for any
A € b*, the Verma module 2(A) for § is reducible if and only if Ay is orthogonal to

some root of g with respect to the symmetric bilinear form.

4.2. Finite-dimensional semisimple Lie algebras. The following Corollary is
a special case of Corollary 4.3.
Corollary 4.4. Let g be a finite-dimensional semisimple Lie algebra, and let § denote
the truncated current Lie algebra of nilpotency index N associated to g. Then, for any
A € b*, the Verma module U(A) for g is reducible if and only if Ay is orthogonal to
some root of g in the geometry defined by the Killing form.

Hence the reducibility criterion for Verma modules for g can be described by a finite

union of hyperplanes in h*.
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Figure 1: Reducibility criterion for Verma modules of g, where g is of type G2

Example 4.5. Figure 1(a) of page 12 and Figure 1 of page 65 illustrate the reducibility
criterion for the Lie algebras g over R with root systems Ag and Gg, respectively. Roots
are drawn as arrows. A Verma module U(A) for g is reducible if and only if Ay belongs
to the union of hyperplanes indicated.

4.3. Affine Kac-Moody Lie algebras. We refine the criterion of Corollary 4.3
for the affine Kac-Moody Lie algebras. Let g denote a finite-dimensional semisimple Lie
algebra over the field k with Cartan subalgebra b, root system A and Killing form ( - | - ).
Let g denote the affinisation of g,

g=g®k[s,s7!] ®ke®kd,
with Lie bracket relations

[z©®s™,y®s"] [2,9]®s™ " + MO —n(z|y)e,  [c,g]=0,

[d,z®s™] = mzes™,
for all z,y € g and m,n € Z. Let A denote the root system of g, and let

h=hokedkd,
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denote the Cartan subalgebra. Consider any A € b* as a functional on § by declaring

6,5y = 0, (8,c) =0, (6,d) =1,
(T,ﬁ) = 0, (Tyey =1, (t,d) =0,

so that
(4.6) h* = b* dké @ kr.

The symmetric bilinear form (-|-) on h* may be obtained as an extension of the Killing

form on b*, via
@7 (81§ )=(1]§*)=0, (5]8)=(t|T)=0, (8]T)=1

The sum (4.6) is orthogonal with respect to this form. For any A € h*, let Aep
denote the projection of A on to h* defined by the decomposition (4.6). The root system
A = A™ U A™ of g is given by,

(4.8) A ={a+mb|lacA meZ}, A™={ms|meZ m#0}.

Corollary 4.9. Let g denote an affine Kac-Moody Lie algebra, and let g denote the
truncated current Lie algebra of nilpotency index N associated to g. Then, for any
A € B*, the Verma module B(A) for § is reducible if and only if (An,c) = 0or (Ay | a) =
m (AN, c) for some o € A and m € Z.

Proof. Tt is immediate from (4.6) and (4.7) that
A=A+ (A|T)6+ (A]d)T.
Hence
(A,c) = (A]d)(t,c) = (A]3).
Therefore (A, c) = 0 if and only if (A | ) = 0 for some 8 € A™. For o € A and m € Z,
(Ala+md)=(Ala)+m(A]8)=(A|a)+miA,c)

and so (A|a+mbd) = 0 if and only if ( Ala) = —m(A,c). The claim now follows from
(4.8) and Corollary 4.3. O



4. REDUCIBILITY OF VERMA MODULES 67

AV

S NN N

(a) g of type A;l) (b) g of type B(zl)

Figure 2: Reducibility criterion for the Verma modules of .g‘, where g is of type Agl) or
(1)
B,

Example 4.10. Figures 2(a) and 2(b) of page 67 and Figure 1(b) of page 12 illustrate
the reducibility criterion of Corollary 4.9 in the case where k = R and g is the Lie
algebra with root systems As, By and Go, respectively. Thus, respectively, g is the affine
Kac-Moody Lie algebra of type Agl), Bgl) and Ggl). A Verma module U(A) for g is
reducible if and only if An belongs to the described infinite union of hyperplanes, where
the length of the dashed line segment is [(AN,c)| times the length of a short root for g.

4.4. The Virasoro Algebra. The following Corollary is immediate from Theorem
4.1 and Examples 1.4 (page 1.4) and 3.15.
Corollary 4.11. Let g denote the Virasoro algebra, and let g denote the truncated
current Lie algebra of nilpotency index N associated to g. Then, for any A € §*, the
Verma module D(A) for g is reducible if and only if

2m(An, Lo) + ¢(m)(An,c) =0,

for some non-zero integer m.

Hence, if v is defined by ¢(m) = mslgm and k = R, a Verma module U(A) for g
is reducible if and only if Ay belongs to the infinite union of hyperplanes indicated
in Figure 3. The extension of a functional in the horizontal and vertical directions is

determined by evaluations at ¢ and Lo, respectively.
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Figure 3: Reducibility criterion for Verma modules of g, where g is the Virasoro algebra

4.5. The Heisenberg Algebra. The following Corollary is immediate from The-
orem 4.1 and Examples 1.5 (page 34) and 3.16.
Corollary 4.12. Let a denote the truncated current Lie algebra of nilpotency index N
associated to the Heisenberg algebra a. Then, for any A € §*, a Verma module 2(A) for
a is reducible if and only if (An,A) = 0.

4.A. Characters of Irreducible Highest-Weight Modules

Let g denote a Lie algebra with triangular decomposition and non-degenerate pairing,
and let g denote the truncated current Lie algebra of nilpotency index N associated to
g. Theorem 4.1 describes a reducibility criterion for Verma modules for g, but provides
little information on the size of the maximal submodule. This appendix describes the
characters of the irreducible highest-weight g-modules under the assumption that h is
one-dimensional (and hence hy = ). For example, g may be the Lie algebra sl(2), the

Witt algebra, or a modified Heisenberg algebra.

For any v € bh*, let £(7) denote the irreducible highest-weight g-module of highest-weight
v, and for any A € h*, let £(A) denote the irreducible highest-weight §-module of highest
weight A. Let

{eXIxebh™}
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denote a multiplicative copy of the additive group h*, so that
eX . g7 = Xt X,v € b*.

If M is a vector space graded by h*, M = ®,cp- MX, such that all components MX are
finite-dimensional, write
char M = Z (dim MX) eX.
x€h*
Proposition 4.A.1. Let g, § be as above, and let A € §*. Let 0 < m < N be minimal
such that A, = 0 for all m < n < N. Then, if m > 0,

char £(A) = e? . (charU(g_))™,
and if m = 0, then £(A) is a g-module isomorphic to £(Ap).
Proof. Suppose that m = 0. Since g is the quotient of g by' the ideal Bo<icng @ t', the

g-module £(Ay) is a natural g-module. Moreover, £(Ay) is an irreducible highest-weight
g-module of highest-weight A, and so £(Ag) = £(A).

Suppose instead that m > 0. Then it must be that A,, # 0. Let §’ denote the truncated

current Lie algebra of nilpotency index m associated to g. Let
A = (Ao, Am) € (B),

and let U(A’) denote the Verma module for g’ of highest-weight A’. Since g’ is the
quotient of § by the ideal ®m<icng ® t', the §’-module V(A’) is a natural g-module.
Moreover, U(A’) is of highest-weight A as a g-module. Since § is one-dimensional, B(A’)
is an irreducible g’-module, by Theorem 4.1. Hence U(A’) is the irreducible g-module
of highest-weight A, i.e. £(A) = U(A’) as g-modules. In particular, £(A) and U(A’) are

isomorphic as 6*-graded vector spaces. Now
char B(A') = 0 . (charU(g_))™

by Proposition 2.3 part (ii) (page 36), and so the claim follows. O

4.B. Imaginary Highest-Weight Theory for Truncated Current Lie Algebras

Let g denote the finite-dimensional Lie algebra sl(2) over the field k, with root system
A= {£a}, and let g denote the affinisation of g (cf. Subsection 4.3). Let h denote the
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Cartan subalgebra of g, let A denote the root system, and let & denote the fundamental

imaginary root. Let
Ay ={ax+mdb|meZ}U{mdb|meZ m>0},
so that A=A, U—-A,. Let
g+ = @B6A+96, g—= @B€A+g_ﬁ,
so that
(4.B.1) g=9g-®hDdgy.

The subset A} C A is the imaginary partition of the root system (cf. Section 2 of
Chapter 1). The decomposition (4.B.1) defined by A, does not satisfy the axioms of
a triangular decomposition in the sense of Chapter 3, nor in the sense of [24]: the
additive semigroup Q4 generated by A, is not generated by any linearly independent
subset of Q. Let § denote the truncated current Lie algebra of nilpotency index N
associated to g. We investigate the difficulty inherent in employing our techniques to
derive reducibility criterion for the Verma modules 2(A) for §, A € h*. The Theorem
3.20 holds in this setting. However, as we shall see, the degeneracy of an evaluation
(A,By) of the modified Shapovalov form may not be deduced from the degeneracy of
the evaluations (A, B|s,an(p,)), Where L € Py.

Let N =1, and as per Chapter 3 and Section 1, let
c=A;, C=Cx{0,1}.
All root spaces of g are one-dimensional, so the choice of basis for g

C> B o x(8) eg°

is unique up to scalar multiples. Fix the order of the basis elements {x(y) | v € 7 } by
firstly comparing degree in the indeterminate t, and secondly by the following order of

{x(B)|BeC}:
—ox(oc— 28), x(oc — 8), x(x), x(x +8), x(ax+28),--- --x(8), x(28),---
For any integer m > 0, define partitions
pm = {(x—mb,0)}U{(8,0) (m times)},
Ym = {(x—mb,1)}U{(81) (m times)},
and A = { («,0) }. Let x = ax € Q. Then

{)‘}U{.um77m|m>0}cp)('
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Elementary computation using the Lie bracket relations shows that, for any m > 0,
B(y(A),y(¥m)) = (—2)"h(x —m8) ®t°,  B(y(im),y(A)) = (—2)"h(x — mé) @ t'.

Hence, if the basis { y(u) | # € Py } is to be linearly ordered so that the matrix repre-

sentation of B, is upper triangular, then it must be that both

y(um) <y(A), y(A) <y(vm),

for all m > 0. Thus the matrix of B, would be bilaterally infinite.

The degeneracy of a bilaterally-infinite upper-triangular matrix can not be determined
from its diagonal entries, as the following simple example demonstrates. Let V' denote

the vector space with basis the symbols

(4.B.2) {vm|m€eZ}

and let ® : V' — V be defined by linear extension of the rule
D vy > Vg, m € Z.

Then @ is an automorphism of V. Order the basis elements (4.B.2) by their indices.
Then the matrix representation M of ® with respect to this ordered basis will be upper
triangular, in the sense that M;; = 0 whenever ¢ > j. However, the diagonal entries

M, ; are all identically zero.






CHAPTER 5

Characters of Exponential-Polynomial Modules

1. Preliminaries

For any positive integer r, denote by Z, the additive group of integers considered modulo
r, by R(r) the set of primitive roots of unity of order 7, and by ¢, some fixed element of
R(r). Denote by ordn the order of a finite-order automorphism 7. If n is an endomor-

phism of a vector space V, write
VT ={veV [nw) =)

for the eigenspace of eigenvalue ), for any X € k. Let A = k[t,t7!].

1.1. Ramanujan sums. Let p denote the Mobius function, i.e. the function
u:N—{-1,0,1}

such that pu(d) = (—1)! if d is the product of I distinct primes, [ > 0, and p(d) = 0
otherwise. For any r > 0, the function p satisfies the fundamental property
(1.1) > w(d) = 61,

d|r
where ¢ denotes the Kronecker function. A summation ) djr @d is to be understood as
the sum of all the agy where d is a positive divisor of 7. Let ¢ : N — N denote Euler’s

totient function, so that
od) = #{0<k<d|ged(kd) =1}, d>0.

For any positive integer d and n € Z, the quantity c4(n) defined by (4.3) (page 13) is
called a Ramanujan sum, a von Sterneck function, or a modified Euler number. These
quantities have extensive applications in number theory (see, for example, [29], [25]),
although we require only the most basic properties, such as those described in [11]. In
particular, we note the identities

(12) c(n)= Y, "= Y du()

CER(T) d|ged(r,n)
73
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where n € Z and r > 0. The function c4(-) : Z — k is a d-even arithmetic function, i.e.
ca(n) = cq(ged(d,n)), n€Z.

Any r-even arithmetic function may be expressed as a linear combination of the functions
cq(+), where d is a divisor of r [10]; such an expression is called a Ramanujan-Fourier
transform.

1.2. Exponential-polynomial functions. Define an endomorphism 7 of the vec-

tor space F via
(Tw)(m)=90(m+1)7 m € Z, @Gf

The rule t — 7 endows F with the structure of an .A-module. For any ¢ € F, the action
of h on H(yp), via @, may be equivalently defined by

(h®a)-b=(a-p)(0)(ad), ae A beimp C A

Define € C F by
(1.3) E={peF|c-¢=0 for some ceklt]}

For any ¢ € &, the annihilator ann(y) C k[t] is a non-zero ideal of k[t]; the unique monic
generator c, € ann(y) is called the characteristic polynomial of p. The equivalence of
these definitions and those given in Section 1 of Chapter 1 is demonstrated by Proposition
1.8. The definition (1.3) implies that £ is a submodule of the A-module F.

The exponential-polynomial functions are those whose values solve a homogeneous linear
recurrence relation with constant coefficients. Indeed, suppose that c(t) € k[t] is a non-
zero polynomial of degree g, and write c(t) = ZZ:O ckt®. Then c- ¢ = 0 if and only
if

(1.4) 0= (c-¢)(m) = cop(m) + crp(m + 1) + -+ cgp(m + q),

for all m € Z, i.e. precisely when the values of ¢ satisfy the recurrence relation (1.4)
defined by c¢. In particular, a solution ¢ to ¢-¢ = 0 is determined by any g of its
consecutive values. Therefore, if ¢ € £ is non-zero, then the support of ¢ is not wholly
contained in any of the infinite subsets of consecutive integers N, —N C Z. It follows
from Lemma 1.5 that the submonoid of Z generated by the support of ¢ is of the form
rZ, for some r > 0. Equivalently, im@ = k[t",t™"], and so ¢ € F'. Thus £\ {0} C F'.
Lemma 1.5. Suppose that A is a submonoid of Z such that N, —N ¢ A. Then A = rZ,

where r € A is any non-zero element of minimal absolute value.
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Proof. Let r € ANN be of minimal absolute value. For any m € AN —N, we have that
m + kr € A where k is the unique positive integer such that

0<m+kor <r.

Thus m+kr = 0 by the minimality of r; it follows that r divides m, for any m € AN —N.
Moreover,

—-r=m+((k-1)r €A
since k — 1 is non-negative. It follows therefore that —r is the element of minimal
absolute value in A N —N. The argument above with inequalities reversed shows that
—r divides all positive elements of A, and so A C rZ. The opposite inclusion is obvious

since r, —r € A and A is closed under addition. O

For any k > 0 and A € k*, define the function 0, ; € F by

Ork(m) =mFA™,  meZ

Lemma 1.6. For any A\, u € k* and k£ > 0,

: - k-1 (k )

(6= ) Ok = (A= w0k + A5 (5)8ns5

ii. (t— )\)k : 9,\71C = k‘!)\ke)\,o.
Proof. For any m € 7Z,

(t-0xk)(m) =Oxp(m+1) = (m+1)"AmH!
= AXoiq (j)m])‘

)‘Z?:O (?)e/\,j(m)

Therefore,
(b= ) Ok = A5 (5)0x; — 1B,
and so part (i) is proven. Part (ii) is proven by induction. The claim is trivial if k& = 0,

so suppose that the claim holds for some k£ > 0. Then

(=N B = (6= N AETLo (F1)0
= A(’“Zl)k!/\’“em (by inductive hypothesis)
= (k+ 1A a,,,
where part (i) is used in obtaining the first and second equalities. Therefore the claim
holds for all ¥ > 0 by induction. 0

Proposition 1.7. The set {6y% | A € k*, kK> 0} C F is linearly independent.
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Proof. Suppose that vy, € k, A € kX, k > 0, are scalars such that the sum

P= > > MOk

Aek* k20

is finite and equal to zero. Write Z = { A € k* | 7ok # 0 for some k >0}, and let
ny=max{k|nr#0}, AeZ
Then, for any \ € Z,

0 = JG—-mwmt 2w o

HeEZ
= H (t - .u')nu-i_l“&’\'u : (’Y)\,nxex\,nx)
HEZ
= Pmy A ny! H (A= p)™+1. 0,0,
HEZ pF#N _
by Lemma 1.6. Therefore 7, ,, = 0 for all A € Z, which is absurd, unless Z is the empty
set. (I

Proposition 1.8. Suppose that ¢ € £. Then ¢ has a unique expression
(1.9) o= prExp(N),
Aekx
as a finite sum of products of polynomials functions ¢y and exponential functions EXP()),
A € k*. Moreover,
(1.10) co(t) = [ (6 — A)desertt,
AeZ
where Z = { A ek* | py #0}.

Proof. Let c € k[t] be of degree q. The equation ¢ - ¢ = 0 is equivalent to the relation
(1.4), and so the space consisting of all solutions ¢ is at most g-dimensional. Now write
Z C k* for the set of all roots of ¢. The field k is algebraically closed, and so
(1.11) e(t) ~ex [T =™,

AEZ

where my is the multiplicity of the root A € Z. Lemma 1.6 shows that the set
{0kl A€Z, 0<k<my},

which is of size Z,\eZ m) = ¢, consists of solutions to c¢- ¢ = 0. By Proposition 1.7, this
set is linearly independent, and hence is a basis for the solution space. Therefore any

@ € &€ has a unique expression (1.9).

W
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Now suppose that ¢ has the form (1.9), let ¢ € k[t] be non-zero, and write ¢ in the
form (1.11). By Lemma 1.6 part (i), ¢- ¢ = 0 if and only if m) > degp) whenever
»x # 0. The polynomial (1.10) is the minimal degree monic polynomial that satisfies

this condition, and hence is the characteristic polynomial. O

2. Loop-Module Realisation of N(y)

For ¢ € F, let kv, be the one-dimensional 6-module defined by
h®a- vy, = (a-p)(0)vy, a€ A
Let g4 - v, =0, and denote by

V(p) = Indg@m kvv,.l
the induced g-module. This definition is equivalent to the definition (1.5) of Chapter
1. The module V() and its unique irreducible quotient L(y) are not Z-graded. In this
section, it is shown that if ¢ € F’, then N(yp) is isomorphic to an irreducible constituent
of the loop module @), and moreover that this constituent may be described in terms
of the semi-invariants of an action of the cyclic group Z, on L(p), r = deg . The results

of this section are due to Chari and Pressley [9] (see also [7]).

2.1. Cyclic group action on L(y).
Lemma 2.1. Suppose that ¢ € F’, that r = deg ¢, and that ¢ € k* is such that (" = 1.
Then for all a € A,

(a(Ct) - )(0) = (a - #)(0).

Proof. The support of ¢ is contained in rZ. Therefore, if a(t) = 3, a;t*, then
@) - ©)0) = Y. alli)= Y. api)=(a-p)(0). O

=0 (mod r) 1=0 (mod r)

Proposition 2.2. Suppose that ¢ € F', and that r = degy. Then there exists an
order-r automorphism 1 = n,, of the vector space L(¢) defined by n(v,) = v, and

nz®a-w)=z®a(('t) n(w), z€g, acA wellp),
where ( = (.. Moreover, 11 decomposes L(p) as a direct sum of eigenspaces

L(w) = D LI

1€EZLy



78 5. CHARACTERS OF EXPONENTIAL-POLYNOMIAL MODULES

in a manner compatible with the weight-space decomposition induced by h ® t0.

Proof. The rule t — (1t extends to an automorphism of A, which defines an auto-
morphism of the loop algebra g. This automorphism in turn defines an automorphism
n of U(g). The universal module V(¢) may be realised as the quotient of U(g) by the
left ideal I generated by g, and by the elements of the set

{h®a—(a-9)(0)|ac A}.
The map n preserves this set by Lemma 2.1:

nh®a-(a-9)(0) = hea(™'t) - (a-¢)(0)
= h®a(C™') — (a(¢7't) - 9)(0).

Clearly n preserves g, and so n(I) = I. Therefore 1 is well-defined on the quotient
V(y) of U(g). The monomial N

fRt" - fRt™ v, €V(p)

is an eigenvector of eigenvalue (~™ where m = Zle n;, and so the Poincaré-Birkhoff-

Witt Theorem guarantees a decomposition

(2.3) Vip) = P V(o2

1€ELr
of V(i) into eigenspaces for n. It is easy to check that 1 commutes with the action of
h ® t°, and that if U is a submodule of V(p), then so is n(U). Thus, if U is a proper
submodule, then so is 1(U). Hence 1 preserves the maximal submodule of V(y), and so
is defined on the quotient L(p). This induced map is of order r, by construction, and
decomposes L(p) in the manner claimed by (2.3). O

2.2. Irreducible constituents of the loop module. For any ¢ € F', define an

—

automorphism 7, of the vector space L(y) via
Ap(u®a) =n,w @a(Gt), uel(p), acA,

where r = deg .
Theorem 2.4. Suppose that ¢ € F/, and that r = degyp. Let ( = ¢, and fj = Ny,. Then:

1. M is automorphism of the Z-graded §-module L/(;) of order r;
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e,

ii. 1] decomposes L(y) as a direct sum of eigenspaces
) = o\
L) = D LI
1E€ELr
where
L)E = P L. t™ i€y
meZ

—_—

iii. For any 7 € Z,, the Z-graded g-modules L(y) 21’ and N(p) are isomorphic.

Proof. For any z € g, u € L(p), a € A and m € Z,

Azt™ - u®a) = A(z@t™ u) ®t™a)
= (M(z@t™ - u) @t"a(Ct)
= ("¢ (W) ®t"a(CY)
= z®t" - (n(u) ®a(Ct))
= z®t" -f(u®a),

where 1 = 1,. The map 1 is of order r by definition, and so part (i) is proven. Part
(ii) follows immediately from Proposition 2.2. Let i € Z,, and write U = L(yp) 21" The
generating weight spaces U?(®% ¢ U and H(p) C N(y) are isomorphic as Z-graded

h-modules, via

Vo ® LIS g m € Z.

This map extends uniquely to an epimorphism of Z-graded g-modules U — N(¢). There-
fore it is sufficient to prove that U is an irreducible Z-graded g-module. Suppose that
W is a graded submodule of U. Then W contains a non-zero homogeneous maximal
vector v ® t". The g-module epimorphism U — L(p) that is induced by t +— 1 maps
this element to a non-zero maximal vector of L(y). Therefore v = Av,, is a non-zero
scalar multiple of the highest-weight vector. Hence W has non-trivial intersection with
the generating weight space U#(0)% of U. The Z-graded h-module U?O% is irreducible,
so UPOx W, and thus W = U. Therefore U is irreducible. O

2.3. Characters and semi-invariants. Theorem 2.4 describes the modules N(yp)
in terms of the semi-invariants of L(¢) with respect to the action of the cyclic group Z,
defined by 1, where r = degy. In particular, we have the following description of the

character of an exponential-polynomial module.
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Corollary 2.5. Suppose that ¢ € £ is non-zero and that deg¢ = r. Then

charN(p) =Y > dimL(p),[2. X 2",
k>0 nezZ

where ¢ = (.

3. Semi-invariants of Actions of Finite Cyclic Groups

A Z, -graded vector-space is a vector space V over k with a decomposition V' = @k>o V(k)
of V into finite-dimensional subspaces indexed by Z,. If V is a Z-graded vector space

and r is a positive integer, then the tensor power
Vi=Ve -V (7 times)
is also a Z-graded vector space, with the decomposition

Vi=@ixo VT (k),  V7(k) =By ppp=k V(E1) ® - @ V (k).

The finite cyclic group Z, acts on V" by cycling homogeneous tensors; the generator
1 € Z, acts via the vector space automorphism

0r V1 Q- QUr =V QU1 QUr_1, Uiev;

and this action preserves the grading, so that o.(V"(k)) = V" (k), for any k > 0. For
any U C V7, let
U, = U|‘C’;, n € Z.

The automorphism o, decomposes V" as a direct sum of Z -graded vector spaces

Vi=@nez, Vo, Vi =@ Va(k),  Vi(k) = (V7 (k). .
Associated to any Z.-graded vector space U is the generating function
Py(X) =Y dimUpXF € Z,[[X]].
k>0
Theorem. For any Z-graded vector space V, r > 0 and n € Z,

P (X) = 13 culm) (20 (xh) .
d|r

In this section, we describe an elementary proof of this statement. In the particular case
where U is the regular representation of Z, and V' = S(U) is the symmetric algebra, the
statement follows from Molien’s Theorem and the identity (1.2).
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Fix a Z4-graded vector space V, let
B={(k,s)€Z2|1<s<dimV(k)}

and for each k > 0, choose a basis { v¥ }1<s<dimV(k) for V(k). For any r > 0 and k > 0,
let

D,k ={((k1,81),...,(kr,sr)) €B" | > I_ki=k}.
The elements of D, j, parameterise a graded basis of V" (k):
Drk> ((k1,81),. s (krose)) =1 & v=ve -0 cVk).
Define an automorphism T, of the sets D, via the rule
T 2 (k1381 s 20 5 (Bry 8r)) B ((Kips S0 (K15 815+ w5 (Brm15:8r—1 1)
The automorphisms o, and T, are compatible in the sense that

or(vr) = Ve (1) IeD,g, k20

For I € D,, write ord] = d for the minimal positive integer such that (t,)%(I) = I.

For any positive divisor d of r, let
Opalk) =341l €Dy |ordl =41}, k>0,
and write 0, 4(X) = Zk>0 Oryd(k)X]C for the generating function. It is apparent that

(3.1) Pyr(X) = (PyX))" =D 0,4(X)
dlr

Lemma 3.2. Suppose that {,r are positive integers and that [ | . Then

{d|d>0, r/l|d and d|r}={r/d |d >0, d|Il}.

Proof. If d > 0 and % | d, then there exists some positive integer s such that
l

r r
= A mm et
o (l/s)
if in addition d | r, then d’ := [/s is a positive integer, and so d = r/d’ with d' | I.
Conversely, if d' | [, then r/l | r/d’, and it is obvious that r/d’ | r. O

Proposition 3.3. For any Z-graded vector space V' and any r > 0,
i
Pvr(X) = - Y. do:(X).
d| ged(r,n)

for all n € Z.
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Proof. Suppose that k > 0, and write Deg = UOePO for the decomposition of D, &
into a disjoint union of orbits for the action of Z, defined by T,. Then

Vi(k)= @ Uo, Uo=span{v;|Iec0},
OeP

and moreover o,(Up) = Up. For any orbit O € P, the action of o, on Uo defines the
regular representation of Zy, where d = #0O is the size of the orbit; in particular, the
eigenvalues of ¢, on Up are precisely the roots of unity ¢ such that ¢? = 1, each with
multiplicity 1. Now (" is of order é?i(TTn)' Therefore,

= #{O€eP|#0 =1 for some d | ged(r,n) }

where the last equality follows from Lemma 3.2 with | — ged(r,n). The number of orbits
O € P of size r/d is precisely d/r-0,, /d(k). It follows therefore that

dmVi(k)= Y 20,:(k),

'd
d|ged(r,n)

which yields the required equality of generating functions. O

Proposition 3.4. For any Z.-graded vector space V and positive integers r,d with
d|r,
Or.a(X) = Oq (X )

Proof. Suppose that k > 0, that
I'=((k1,51),....(kr,8:)) € D,k
and that ordI = d. Then
I' = ((k1,81), ..., (kq,sq)) € Dd’%.

and ordI” = d. This establishes a bijection between order-d elements of the sets D,k
and D, xa, and so O, 4(k) = Od,d(de). Therefore

Ora(X) = > O0gq(kd)xk
k>0

= ) Oga(k)(X3)*

k>0
= 044(X3). O
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It follows immediately from Proposition 3.4 and equation (3.1) that

(3.5) (Pv(X)" =D Ogq(X3).
dlr

Proposition 3.6. For any Z,-graded vector space V and r > 0,

U]

0:0(X) = Y u(d) (v (x4) "

d|r

Proof. The claim is trivial if r = 1, so suppose that s > 1 and that the claim holds for
all 0 <7 < s. Then:

O5s(X) = (Pv(X))'~ )Y 0u4a(Xi) (by equation (3.5))
d|s,d#s

e

= (Pv(X))’ - Z Z u(d') <Wv(X%)) (by inductive hypothesis)
d|s,d#s d'|d

= (X)) - D (Y wa) (Pv(xo):
e|s,e#1  dle,d#e

(write e = S—L‘iii and use Lemma 3.2)

= (Pv(X)'= X (~u(e) (Pv(X)*  (by equation (1.1))
els,e#1

= > ule) (Pv(X))e,

els

and so the claim holds for s also. O

Theorem 3.7. For any Z-graded vector space V, r > 0 and n € Z,

a3

Py (X) = %ch(n) (#v(x9)”.

d|r
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Proof. For any n € Z,

Py (X) = Z a0y« (by Proposition 3.3)
d|gcd('r n)

= - Z dﬁgé (Xd) (by Proposition 3.4)
r d|gcd Tn)

r

= = Z dz d'( de/))—, (by Proposition 3.6)

r
dlged(r,n)  d'|5

= (Y ) @vx):

elr  dlged(e,n)

= ~Zce ) (Pyv(X9))*,

elr

where the last equality follows from equation (1.2).- . O

4. Exponential-Polynomial Modules

In this section, we show that if ¢ € £, then the module L(¢) is an irreducible highest-
weight module for the truncated current Lie algebra g(y). An explicit formula for the
character of such a module was obtained in Chapter 4. Therefore, we are able to derive

an explicit formula for char N(¢) by employing the results of Sections 2 and 3.

4.1. Modules for truncated current Lie algebras.
Proposition 4.1. Suppose that ¢ € £. Then the defining ideal g ® c, A C g acts
trivially on the g-module L(p), and so L(ip) is a g(y)-module.

Proof. Let kv denote the one-dimensional h-module defined by
h®a-vy=(a v)(0)vy, a€ A

Then by definition of the characteristic polynomial c,, the subalgebra h ® c, A C 6 acts
trivially upon v, and so kv, may be considered as an f(p)-module. Let g4 (¢)-vy =0,
and let

_ a()
M= Indb(cp)®9+(<ﬁ)

denote the induced g(yp)-module. Denote by L the unique irreducible quotient of M.

Then L is a g-module, via the canonical epimorphism g — g(y), and is irreducible with
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highest-weight defined by the function . Hence L(¢) = L as g-modules, and the claim

follows from the construction of L. O

4.2. Tensor products.
Proposition 4.2. Let p1,p5 € £. Then

L(i1 + w2) = L(p1) @ L(w2),

as g-modules if ¢y, and c,, are co-prime.

Proof. Let ¢ = ¢1 + p2. Then c, = cy,Cyp, since ¢, and cy,, are co-prime. By
Proposition 4.1, L(p) is an irreducible module for g(y¢), and by the Chinese Remainder
Theorem,

(4.3) 8(0) = g(p1) © g(p2).

By Proposition, 4.1 L(y;) is a module for g(y;), i = 1,2. The Lie algebra g(¢;) is finite-
dimensional, and k is algebraically closed, and so U(g(p;)) is Schurian [27], i = 1,2.
Thus U(g(p;)) is tensor-simple [2], and so L(¢1) @ L(p2) is an irreducible module for
U(g(e1)) @ U(g(2)). The decomposition (4.3) and the Poincaré-Birkhoff-Witt Theorem
imply that

U(g(p1)) QU (a(2)) = Ul(a(p)),

and so L(¢1) @ L(¢2) is an irreducible module for g(y). The irreducible highest-weight
modules L(¢) and L(yp1) @ L(p2) are of equal highest weight, by the Leibniz rule, and

hence are isomorphic. O

4.3. Semi-invariants of the modules L(y).
Lemma 4.4. Suppose that ¢ € £ is non-zero. Then ¢ € F', and ¢y = ;) whenever
A Cek* and (" =1, r = deg . Moreover, there exists ¥ € £ such that

i. o = p,9, and
ii. cp = [liez, cy (i) is a decomposition of ¢, into co-prime factors.

Proof. According to the discussion of subsection 1.2, ¢ € F' and r = degy > 0. Thus
the support of ¢ is contained in the support rZ of p, and so ¢ = %prw. Hence

Pr= fW Z P(¢in)
1€ZT
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for any A € k*. If (" = 1, then the expression on the right-hand side is invariant under
the substitution A — (A, and so the first claim is proven.

Multiplication by ¢, decomposes k* into a disjoint union of orbits for the cyclic group Z,,
and all orbits are of size r. Choose any set B of representatives, so that k* = l—lile ¢iB.
Then ¥ = ), p ¢AEXP()) has the required property, by Proposition 1.8. O

Remark 4.5. The function 9 € £ of Lemma 4.4 is not unique. Indeed, if
Y= Z a; EXP(14;)
i
has the required property, then so does ¢’ = 3", a;EXP({J* ;) for any n; € Z,.

For any ¢ € F, consider L(y) as a Z-graded vector space via
Lip) =P LK),  Lip)k) =Lp)¥OP* k>0
k>0

Proposition 4.6. Suppose that ¢ € £ is non-zero and that ¢ = p,1, where r = deg ¢

and ¢ € £, as per Lemma 4.4. Then there exists an isomorphism

Q:L(p) = L)

of Z-graded vector spaces such that o, =Qon,o ot

Proof. For j € Z,, write ¥/ = EXP(Cr_j)w. Then ¢, = Hjle cys is a decomposition of
¢, into co-prime factors, and p = ) ez, 1?. By the Chinese Remainder Theorem, there
exists a finite linearly independent set {a; |i € I } C A such that {a; +cyA|i e} is
a basis for A/c,A and

a; =0 (modcy), j#O0 (modr), i€l, jE€EZ.

Write a; ;(t) = ai(CT_jt), i€ 1, j €Z,. Then by symmetry, {a;j +cyAli€l}isa
basis for A/c,,;.A and

ai; =0 (modcyk), j#k (modr), 1€l, jkeEZ,.
For any ¢ € I and j € Z,,
47 M ®ai;-w) =£®ai;(¢ ') Np(w) =f@aijrn ne(w),  w e L(p).
By Proposition 4.2, there exists an isomorphism

T : L(p) = Qjez, L)
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of g-modules, and we may assume that Y(v,) = ®;ez, vy For any k € Z,, identify
(4.8) L@F) =10 9L ® - ®1C Qjez, L)

Then L(4*) is generated by the action of the basis {f ® a; ) | i € I} of g4 (¥*) on the
highest-weight vector Y (v,,). Therefore, modulo the identification (4.8),

(Tom,o YT H(LEWF) c L@,  kez,

by equation (4.7). Since 1, is an automorphism of the Z -graded vector space L(¢), the

restriction
(TonyoX 1) : L(v*) — Ly ),

is an isomorphism of the Z-graded vector spaces. These isomorphisms obviously induce
isomorphisms €; : L(7) — L(¥°) = L(¢), and '

6 [lier(f® ai,j)ki Vs = [Lie/(E® a;)ki Vi,
by equation (4.7). Let € = @),cz, €;, and write 2 for the composition

€0 : L(p) — L(¥)".

The vector space L(¢)" is spanned by the homogeneous tensors

Qjecz, [licr(f ® ai)¥iivy,  ki;>0.

WV

For any homogeneous tensor of this form

(RonyoQ™h) - (Qjez, [ies(f® a;)FtIvy)
=eo(YTomn,o T_l)(®j62, [LerE® ai,j)ki‘jvw)
=e€o(Tom,o T‘l)(l'[jez, [Le/(f® a; j)*ed - ®jez, Vyi)
. ﬁ(Hjle Hiel(f &® ai,j)ki‘jfl - ®jez, Vipi )
= e(Qjez, [Lies(f ® aij)ki-1vy,)
= Qjez, [ies(f ® ai)i-1vy
= 0:(Qjez, [Lie/E® a;)Feivy),

where the second and fourth equalities are by construction of the polynomials a; ; and

the Leibniz rule. Therefore Qon, 0 Q™! = o, as required. O
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4.4. Character Formulae.
Theorem 4.9. Suppose that a € F is a polynomial function and that ¢ = agxp()) for
some \ € k*. Then

1_xa+l

PLyX)= X
e (1 — X)~(dega)=1  otherwise.

ifan+,

Proof. Let N = dega, and write ¢ = ZE:O a0y k. By Proposition 4.1, L(y) is a module
for the truncated current Lie algebra g(y). The Cartan subalgebra of g(y) has a basis

{h®@(t-N*|0<k<N}.
By Lemma 1.6, h® (t — AN acts on the highest-weight vector v, by the scalar
(4.10) (6 — NN ) (0) = Nt\Vay.

If N = 0, then (4.10) takes the value a € k, and so L(y) is the irreducible g-module of
highest weight a. Therefore

1_xa+1

Pup(0 = T
=

ifaeZy,

otherwise.

If N > 0, then ay is non-zero; thus (4.10) is non-zero and the claim follows from Propo-
sition 4.A.1 (page 69). ]

Suppose that ¢ € £ is non-zero, deg ¢ = r, and that ¥ € £ is given by Lemma 4.4. Then
(4.11) P = aEXP()\)

for some finite collection of polynomial functions a; € F and distinct A; € k*, such that
if (/\i/)\j)r =1, then 7 = j.
Theorem 4.12. Suppose that ¢ € £ is non-zero, deg ¢ = r, and that

= pr Z a; EXP(\;)

1

where the a; € F and \; € k* are given by (4.11). Let
Hai€Z+ (1 - Xal+1)
Qa-x7
where M = ) .(dega; + 1) and the product is over those indices ¢ such that a; € Z,.

Then ) .
charN(y) = - Z Z cq(n) (PLP(Xd)) “ gz,

n€Z d|r

P«p(X) =
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Proof. By Corollary 2.5 and Proposition 4.6,

char N(¢p Z Py (X
nez

and by Theorem 3.7

(4.13) Py (X ch <3;”L ») (X ))

s

By Proposition 4.2, there is an 1somorphlsm of g-modules
L) = @, LYY,  ¥' = aExp(\),
since the ); are distinct. In particular, & () = I; 2. (), and so

Py =P

by Theorem 4.9. Therefore the claim follows from equation (4.13).
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Index of Symbols

{1,2,...}

{0,1,2,...}

ring of integers

ring of integers modulo r

fields of real and complex numbers
non-zero elements of a field k
primitive roots of unity of order r
fixed element of R(r)

greatest common divisor
symmetric group on n symbols
sign of o € Sym(n)

size of a finite set S

Kronecker function

evaluation of a functional A at v
dual of the vector space V
endomorphism algebra of V'
ring of Laurent polynomials
universal enveloping algebra
Poincaré-Birkhoff-Witt
symmetric algebra of V'

tensor algebra of V'

adjoint operator of z € g

root space of g

weight space of a module M

space of eigenvectors of eigenvalue A for n € EndV

basis elements of sl(2)

positive root of sl(2)
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f’

deg ¢
EXP(A)
P

vy
M(0)

INDEX OF SYMBOLS

loop algebra associated to a Lie algebra a 1

loop module associated to M 4

vector space of all functions ¢ : Z — k

set of ¢ € F such that H(y) is irreducible and not one-dimensional 2
vector space of exponential-polynomial functions 3, 74
degree of ¢ € F’

exponential map EXP(A\)(m) = A™ 3
coefficient of EXP(A) in the expression of p € €

characteristic polynomial of ¢ € &€ 3, 74

Chari’s category O o 2
Z-graded h-module defined by peF
irreducible Z-graded g-module defined by ¢ € F’

universal g-module defined by ¢ € F’ (not graded) 3,77
irreducible g-module defined by ¢ € F’ (not graded) 3,77
truncation of the loop algebra g 4

imaginary Verma module of highest-weight A
quotient of the imaginary Verma module V(0) :
weight space of M(0) 8,18

T @tk | 17
ring of symmetric Laurent polynomials in n variables 8
elementary symmetric function 19
sum of k-powers of the indeterminants 19
spanning set element of A, 19
discriminant function 8
singular vector 9,23
universal g-module generated by the h-module T’ 29
final §-module generated by the h-module I 29
negative, even sums of exponential functions 9



gl=n)

INDEX OF SYMBOLS

all ¢ € £(7) such that coefficients sum to —2n

diagonal subalgebra of g

involution on g

Verma module of highest-weight A €
component of a functional A € h*
Shapovalov form

projection defining Shapovalov form
set that parameterises a root basis of g
set of partitions in C or C

length of A € P

weight of A € P

PBW monomials defined by A € P

truncated current Lie algebra

nilpotency index of §

€x {0;...,N¥}

dual of A € P

modified Shapovalov form

set of multiplicity arrays

non-degenerate bilinear form on g® x g—¢

element of h given by non-degenerate pairing

formal character of an exponential-polynomial module
- homogeneous component an exponential-polynomial module

function with constant value r on its support rZ

elementary exponential-polynomial function
Ramanujan sum

Euler’s totient function

Mobius function

Poincaré series of a Z -graded vector space V

cyclic automorphism of L(p)

cyclic automorphism the g-module L(yp)

11,
37,

38,
38,

38,
32,

11,
11,

13,

27

43
47
47
49
59
59

13
13
13
75
73
73
73
80

77

78
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