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Preface

This thesis chronicles three studies in the representation theory of infinite-dimensional
Lie algebras. The first work concerns the imaginary highest-weight theory of affine sl(2).
Futorny [14] describes the structure of all but one of the universal objects of the theory,
the imaginary Verma modules. If reducible, an imaginary Verma module V(>') possesses
an infinite descending series of submodules such that the quotient of any submodule by
its successor is isomorphic to a certain module M(>') thatdepends only upon the highest
weight >.. The infinitely recurrent factor M(>') is reducible precisely when >. = O. The
structure of M(O) is apparent1y complicated, and not at all understood. The principal
result of the first work is a classification of the irreducible quotients of the submodules
of M(O). This classification complements the result of Futorny to provide a structura1
description of the imaginary Verma modules. One may define, for any function on the
integers with values in the field, an irreducible module of level zero for affine sl(2):

defines N(<p) irreducible module for affine sl(2).

The irreducible quotients of the submodu1es of M(O) are precisely the modules N(<p)

where <p is a linear combination of exponential functions with coefficients that are inte-
gral, even, and negative. The classification follows from the construction of a family of
singular vectors, and from a description of M(O) in terms of the symmetric functions.

The class of so-called exponentia1-polynomial modules, which is the class of those mod-
ules N(<p) defined by an exponential-polynomial function ip, therefore contains all the
irreducible quotients of the submodules of M(O). An exponential-polynomial function
ip is a function that may be written as a sum in which each summand is a product of
an exponential and a polynomial function. Equivalently, a function <p is exponential-
polynomial precisely when the sequence of its values

<p( -2), <p( -1), <p(O), <p(1), <p(2),

solves some linear homogeneous recurrence relation with constant coefficients. The val-
ues of the function ip provide the structure constants of the module N (<p), and so the
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exponential-polynomial modules may be thought of as modules with structure constants
of a limited complexity. The isomorphism classes of the exponential-polynomial mod-
ules parameterise the isomorphism classes of the modules N(cp) whose representatives
have only finite-dimensional weight spaces [3J [12J. The open problem of describing the
multiplicities of the weight spaces of an exponential-polynomial module may be resolved
through a study of the highest-weight representations of truncations of the loop algebra.

Any proper quotient of a loop algebra is isomorphic to a truncation of the form

where N is some non-negative integer. In the second work a highest-weight theory for
the truncation 9 is developed when the underlying Lie algebra 9 possesses a triangular
decomposition. The principal result is a reducibility criterion for the Verma modules
of 9 when 9 is a symmetrisable Kac-Moody Lie algebra, th~ Heisenberg algebra, or the
Virasoro algebra. This is achieved through a study of the Shapovalov formo

The third work employs the highest-weight theory of truncations of the loop algebra to
describe the multiplicities of the weight spaces of an exponential-polynomial module in
the case where 9 = sl(2). An exponential-polynomial module N(cp) may be realized as an
irreducible constituent of a loop module built from an irreducible highest-weight module
L(cp) for a truncation of the loop algebra. This realization, which is due to Chari and
Pressley [9], expresses the multiplicities of N (cp) in terms of the multiplicities of L(cp) via
a certain action of a finite cyclic group. In the particular case of 9 = sl(2), an expression
for the formal character ' of a module L( cp) may be deduced from the aforementioned
reducibility criterion for Verma modules of g. The third work develops a theory of semi-
invariants for finite cyclic groups and employs this expression to solve the multiplicity
problem for exponential-polynomial modules.

I am indebted to my supervisors, Alexander Molev at the Univers~ty of Sydney, and
Vyacheslav Futorny at the Universidade de São Paulo, for their academic guidance. I- -would like to extend further thanks to Vyacheslav for facilitating my transition to Brazil,
and for his friendship and support during a challenging period. I am very grateful to
Yuly Billig, under whose direction the second work was completed, for his counsel and
encouragement.

lThat is, the generating function defined by the multiplicities of the weight spaces.
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I am fortunate to be part of a wonderful family that has provided unwaivering support
throughout this most extended of adventures, and I am profoundly thankful for their
understanding. A whimsical undergraduate foray into mathematics has afforded my
passion and profession! Finally, I would like to thank my friends, in whose company the
triumphs and tribulations of this period were marked.

The content of this thesis is original work of which I am the sole author. The use of
existing works is explicitly and duly acknowledged in the texto

Benjamin J. Wilson
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CHAPTER 1

Recapitulation

Section 1 presents the preliminary results on exponential-polynomial modules and on

truncated current Lie algebras that are necessary to describe the results of the thesis in

Sections 2 - 4. The material of Section 1 is principally derived from Billig and Zhao [3],

Chari [6], and Chari and Pressley [9].

1. Exponential-Polynomial Modules and Truncáted Current Lie Algebras

The loop-module realisation motivates a study of an exponential-polynomial module via

an irreducible highest-weight representation of a truncated current Lie algebra. ln this

section, the exponential-polynomial modules and their corresponding truncated current

Lie algebras are constructed, and the realisation is described. Let Ik denote a field of

characteristic zero. Denote by 9 = spanlk { e, h, f } the three-dimensional Lie algebra sl(2)

with the commutation relations

[e,f] = h, [h,e] = 2e, [h, f] = -2f,

and triangular decomposition

(1.1) e E g+, h E f), f E g_.

For any Lie algebra u over Ik, denote by

the Z-graded loop alqebra associated to o, with the Lie bracket

x,y E o, i,j E Z.

An â-module M is Z-graded if M = EBnEz Mn and

m,nEZ.

The decomposition (1.1) defines a decomposition of fi

fi = fI+ EB6 EBfI-
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as a direct sum of Z-graded subalgebras. We consider g-modules M that are h-diagonal-
isable, i.e.

M = E9 MX where hlMX = X(h), h E f).
XE~'

A Z-graded g-module M may be decomposed

M= E9 M~,
(x,n)Es(M)

as a direct sum of homogeneous components M~, where

s(M) = { (X, n) E f)* x Z I M~ :f= O} .

The functional a E f)* given by «(h) = 2 is the positive root of g. The category Õ,
introduced by Chari [6], consists of those Z-graded g-modules M such that

for some finite subset A = AM C f)*. The morphisms of the category are the homo-
morphisms of Z-graded g-modules. For any Lie algebra a, a map e : M ---+ N is a
homomorphism of Z-graded â-modules M and N if e is a â-rnodule homomorphism and
if there exists k E Z such that e(MnYc Nn+k, for all n E Z.

1.1. Exponential-polynomial modules. Denote by F the vector space of func-
tions 'P : Z ---+ k. For any 'P E F, the rule

(1.2) mEZ,

defines a homomorphism ep: U(6) ---+ Ik[t,t-1] of Z-graded associative algebras, where the
grading of U(6) is defined by that of 6. Write H('P) for imep considered as a Z-graded
6-module via ep. Let

FI = {'P E F I im ó = k]t", t-r] for some r> O}.

For 'P E FI, write deg ç = r for the degree of 'P, where imep = k]t", t-r]. The set FI
consists of those functions whose support is not wholly contained in N or -N. The
module H('P) is irreducible and of dimension greater than one precisely when 'P E FI.
For 'P E F, consider H('P) as a (6 EB g+)-module via g+ . H('P) = O. Whenever H('P) is
irreducible, the induced g-module

(1.3)
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has a unique irreducible íE-graded quotient, which we denote by N(cp). It is shown in
[6] that, over an algebraically closed field, any irreducible object of the category 6 is of
the form N(cp). For any À E k", define the exponentiaI function

EXP(>.) : íE ---> k, EXP(À)(m) = Àm, mE íE.

A function cp E :F is exponential polynomial if it can be written as a finite sum of products
of polynomial and exponential functions, i.e.

(1.4)

for some polynomial functions cp).. E :F and distinct scalars À E Ikx. Write

[; = { cp E :F I sp is exponentiaI polynomial } .

Then [; \ {O} C :FI C :F. The exponential-polynomial functions are those whose succes-
sive values solve a homogeneous linear recurrence relation with constant coefficients.

A module N(cp) is exponential polynomial if ip E E, It is shown in [3] that the ho-
mogeneous components of an exponential-polynomial module are finite dimensional.
Conversely, for ip E :FI, the module N(cp) has finite-dimensionaI homogeneous com-
ponents only if sp E [; (cf. [12]). ln pa:vtÍcular, if k is algebraically closed, then the
exponential-polynomial modules {N(cp) I ip E [;} are precisely those irreducible objects
of the category 6 for which all homogeneous components are finite dimensional.

1.2. Loop modules and truncated current Lie algebras. For cp E :F, let Ikv<p
be the one-dimensionaI 6-module defined by

mE íE.

Let g+ . v<p= O,and denote by

(1.5)

the induced g-module. This module has a unique irreducible quotient L(cp). The modules
V(cp) and L( cp) are not íE-graded. Suppose that sp E E is an exponential-polynomial
function, and write c<p E Ik[t] for the characteristic polynornial! of the minimal-order
linear homogeneous recurrence relation that is soIved by the values of ip, It can be
shown that the ideal

lFor example, if cp = EXP(À), then c., = (t - À).
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acts trivially on the g-module L(:p). Hence L(:p) is a module for the "truncation"

(1.6)

of the loop algebra g. ALie algebra (1.6) is called a truncated curreni Lie algebm.

Let M be a g-module. The vector space M = M ®Ik Ik[t,t-1] is a Z-graded g-module
(called a loop module) via

x ® a· u ® b = (x ® a- u) ® ab, xEg, uEM, a,bEIk[t,t-1].

The Z-grading is defined by degree in the indeterminate t E Ik[t, t -1]. The loop-module
realisation, due to Chari and Pressley [9], relates the exponential-polynomial modules
to the irreducible highest-weight representations of a truncated current Lie algebra.
Chari and Pressley show that if <p E [; is non-zero and T' = deg <p, then the Z-graded
g-module L(:p) has precisely T' irreducible constituents, all of which are isomorphic to
the exponential-polynomial module N (<p). Moreover, the weight spaces of N (<p) are
described in terms of the semi-invariants of an action of thecyclic group Zr on L( :p). Thus
the exponential-polynomial modules, and in particular their weight-space multiplicities,
may be studied via highest-weight representations of truncated current Lie algebras.

The Chinese Remainder Theorem implies that if :p is written in the form (1.4), then

is an isomorphism of Lie algebras. Remarkably, if Ikis algebraically closed, then it follows
also that

is an isomorphism of g-modules (cf. Chapter 5). Therefore, in arder to study highest-
weight representations of truncated current Lie algebras, it is sufficient to consider only
truncated current Lie algebras of the form g(<p), where <p = aExP(À) and a E :F is a
polynomial function. In any such case,

where N = deg a.
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2. Imaginary Highest- Weight Representation Theory

Affine Lie algebras admit non-classical highest-weight theories through alternative parti-
tions of the root system. Although significant inroads have been made, much of the elas-
sical machinery is inapplicable in this broader context, and some fundamental questions
remain unanswered. ln particular, the structure of the reducible objects in non-classical
theories has not yet been fully understood. This question is addressed in this thesis for
affine sl(2), which has a unique non-classical highest-weight theory, termed imaginary.
The reducible Verma modules in the imaginary theory possess an infinite descending
series, with all factors isomorphic to a certain canonically associated module, the struc-
ture of which depends upon the highest weight. If the highest weight is non-zero, then
this factor module is irreducible, and conversely. Chapter 2 examines the degeneracy of
the factor module of highest-weight zero. The intricate structure of this module is un-

derstood via a realisation in terms of the symmetric functions. The realisation permits
the description of a family of singular vectors, and the classiâcation of the irreducible
subquotients as a certain subclass of the exponential-polynomial modules.

Let k denote a field of characteristic zero, and let 9 denote an affine Kac-Moody Lie
algebra over k. Write ~ C 9 for the Cartan subalgebra and fl C ~* for the root system.
Denote by g4>the root space associated to any root 4; E fl. So

ad hlg<p = 4;(h), h E~, 4; E fl.

A g-module V is called weight if the action of ~ upon V is diagonalisable. That is,

h E~, À E ~*.

2.1. Partitions and highest-weight theories. The notion of a highest-weight
module for 9 depends upon the partition of the root system. A subset P C fl is called
a partition of the root system if both

1. P is closed under root space addition, i.e. if 4;,1jJ E P and 4; + 1jJ E fl, then
4; + 1jJ E P;

11. P n - P = 0 and P U - P = fl.

If fl+(1T) denotes the set of positive roots with respect to some basis 1T C fl of the
root system, then P = fl+(1T) is an example of a partition. A partition P defines a
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decomposition of the Lie algebra 9 as a direct sum of subalgebras

9 = SJL EB~ EB1)1+, where 1)1+ = EBrPEPgrP, 1)1_ = EBrPEPg-rP.

A weight g-module V is of highest-weight À E ~* with respect to the partition P if there
exists v E VÀ such that

U(g) . v = V, and 1)1+. v = O.

Thus the choice of partition P defines a theory of highest-weight modules. A highest-
weight theory defined by the set of all positive roots P = 6.+(1f) with respect to some
basis tt of the root system is called classical. Two partitions are equivalent if they are
conjugate under the action of W x {±1 }, where W denotes the Weyl group associated
to the root system 6.. Equivalent partitions define similar highest-weight theories. All
partitions of the root system of a finite-dimensional semisimp1e comp1ex Lie a1gebra are
classical, and hence equiva1ent. In contrast, it has been shown by Jakobsen and Kac [19],
and by Futorny [13], that there are finitely many, but never one, inequiva1ent partitions
of the root system of an affine Lie a1gebra. Thus any affine bitLalgebra has mu1tip1e
distinct highest-weight theories.

2.2. lmaginary highest-weight theory for affine sl(2). Up to equiva1ence, there
is precisely one non-classical partition, the imaginary partition, of the root system of
affine sl(2). The associated imaginary highest-weight theory has been pioneered by Fu-
torny in [14], [15]. These works provide an a1most complete understanding of the uni-
versal objects of the theory, the imaginary Verma modules. Let 9 denote the affinisation
of g:

9 = 9 EBkc EBkd,

with Lie bracket relations:

[x @ tk, Y @ tl]

[d, x @tk]

[x, y] @ tk+l + kOk,-l( x I y)c, [c,g] = 0,

x,yEg, k,lEZ,

where ( . I . ) denotes the Killing form of g. The Cartan subalgebra ~ C 9 is given by

~ = span {h @ tO,c, d } .

Let IX, I) E ~* be such that

2, «(c) = 0,

I)(c) = 0,

«(d) = 0,

I)(d) = 1.0,
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Then b. = {±cx. + iõ I i E 2} U {iÕ I i E 2, i # O}. The imaginary partition P C b. is
given by

P = { cx.+ iõ I i E 2} U { iõ I i E 2, i > O} .

Thus the associated subalgebras 1)1+,1)1_ of 9 are given by

Let À E 6*, and consider the one-dimensional vector space !kvÀ as an (6 EB1)1+ )-module
via

h . VÀ = À(h)vÀ' h E 6.
Let V(À) denote the induced g-module:

V(À) = Indº ffi. !kvÀ·
f)EB J '+

The g-module V(À) is the universal highest-weight g~module of highest-w~ht À, and
so is called an imaginary Verma module. .
Theorem. [14] Let À E 6*. Then:

i. If À(C)# o, then V(.>') is irreducible.
11. Suppose that À(C)= o. Then V(À) has an infinite descending series of subrnod-

ules

such that any factor Vi /Vi+l, i ? O, is isomorphic to the quotient of g-modules

M (À) = V (À) / (h 0 tj .v À I j < O),

up to a shift in the Õ weight-decomposition. Moreover, if À(h 0 tO) # O, then
M(À) is irreducible.

The value À(d) of the action of d on the generating vector is immaterial to the structure
of the imaginary Verma module V(À). Hence the theorem above provides an almost
complete description of the structure of the imaginary Verma modules for g, lacking
only a statement about the imaginary Verma module of highest-weight zero. Part (ii) of
the Theorem motivates a study of V(O) through its canonically associated and infinitely
occurrent quotient M(O). Chapter 2 is an extensive study of the degeneracy of M(O).

The central element c acts trivially on the module M(O). Hence M(O) may be studied
as a 2-graded module for the loop algebra g. The g-module M(O) may be defined by

(2.1) M(O) = Indº _ !kuo,
f)EBg+
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where limo is the trivial one-dimensional (6 EBg+)-moduleo The module M(O) is Z-graded
by construction, and

s(M(O)) C (-Z+<x) X Zo

Thus M(O) E Õ. In fact, if À E ~* is such that À(c) = O, and sp E :F is given by

mEZ,

then the induced module defined by (1.3) and the canonical quotient M(À) are isomor-
phic as Z-graded g-modules.

Throughout the remainder of this section, all modules are Z-graded.

\
2.3. Symmetric functions and singular vectors. It is apparent from the con-

struction (2.1) that

M(O) = EB M(n) where M(n) = M(O)-ncx, n > O,
nEZ+

is a decomposition of M(O) as a direct sum of Z-graded 6-moduleso The 6-modules M(n)
have remarkable realisations in terms of the symmetric functions, and play a large part
in the structural description of the g-module M(O). For any positive integer n, let

A - 0,[ -1 -1]Sym(n)n - ~ Z1'Z1 "oo,Zn'Zn

denote the Ik-algebra of symmetric Laurent polynomials in the n indeterminates Z1,ooo, Zn'

The module M(n) may be considered as a graded An-module in such a way that the ac-
tion of 6 upon M(n) factors through an epimorphism of algebras u(6) ->+ An. Therefore,
it is sufficient to consider the module M(n) as a graded An-module. In fact, it may be
shown that as a graded An-module, M(n) is isomorphic to the graded regular module
for Ano Thus, in particular, the 6-module structure of M(n) may be understood via the
graded algebra Ano The classification of the irreducible quotients of the algebra An,
and the construction of singular vectors of M(O), together permit the classification of
the irreducible subquotients of the g-module M(O).

An element v E M(O) is singular if g+ ov = 00 Non-trivial singular vectors generate
proper submodules. For any positive integer n, let

n, = II (Zi - Zj)2

1~i<j~n

E Ano

••
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In the theory of symmetric functions, the function Dn appears both as the square of the
Vandermonde determinant, and as the discriminant function for degree-n polynomials,
Let sgn(O') = ±1 denote the sign of a permutation 0',

Theorem. Let n be a positive integer. Then

i. All elements of the 6-submodule Dn ' M(n) are singular.
ii. The space Dn ' M(n) is spanned by singular vectors of the form

w(X) = L sgnlrr) TI f 0 tx;+O'(i) UO,

O'ESym(n) l~i~n

where X E zn and Uo denotes the generator of M(O),

Conjecture. Let n be a positive integer, and suppose that v E M(n) is singular. Then
v E Dn' M(n),

2.4. Structure of the canonical quotient M(O). A g-module Q is a subquotient
of a g-module M if there exists a chain of g-modules

M~N~P,

such that N/ P ~ Q. The preceding results may be employed to classify the irreducible
subquotients of the g-module M(O). Let

[(-) = {<p E [ I <p).. E -2Z+ for all À E kX } ,

in the notation of (1.4).
Theorem. For any <p E [(-), the g-module N(<p) is an irreducible subquotient of M(O),
Moreover, if k is algebraically closed, then any irreducible subquotient of M(O) is of the
form N(<p) for some sp E [(-).

3. Highest- Weight Theory for Truncated Current Lie AIgebras

Let 9 be aLie algebra over a field k of characteristic zero, and a fix positive integer N,

The Lie algebra

(3.1)

over k, with the Lie bracket

(3.2) x,yEg, i,j~O,
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is a truncated current Lie algebra. In Chapter 4, a highest-weight theory for 9 is de-
veloped when the underlying Lie algebra fi possesses a triangular decomposition. The
principal result is the reducibility criterion for the Verma modules of 9 for a wide class
of Lie algebras fi, including the symmetrisable Kac-Moody Lie algebras, the Heisenberg
algebra, and the Virasoro algebra. This is achieved through a study of the Shapovalov
formo In the particular case of fi = sl(2), an expression for the formal character of the
irreducible module L(<p) may be deduced from the reducibility criterion.

3.1. Truncated current Lie algebras. There have been various studies of trun-
cated current Lie algebras and their representation theory in the particular case where
fi is a semisimple finite-dimensional Lie algebra. There are applications in the theory of
soliton equations [5] [23] [26], and in this context the Lie algebra 9 is called a polyno-
mial Lie algebra. The paper [4] describes a construction of 9 via the Wigner contraction.
Takiff considered this case with N = 1 in [31], and thatwork was extended in [28], [16],
[17] without the restriction on N. As such, when fi is a semisimple finite-dimensional
Lie algebra, the Lie algebra 9 is often called a generalised Takiff algebra. The category
of modules for a truncated current Lie algebra is examined in [22].

3.2. Highest-weight modules. We assume that the Lie algebra g is equipped
with a triangular decomposition

(3.3) ~+ C f)*.

9+' v = O; U(9)' v = M; h . v = A(h)v, for all h E 6·

The fundamental definitions and results concerning Lie algebras with triangular decom-
positions and their highest-weight representation theory are the subject of Chapter 3
(here, f)o = f)). The exposition follows that of Moody and Pianzola [24], modified in ac-
cordance with our definitions. The triangular decomposition (3.3) of fi naturally defines
a triangular decomposition of 9,

where the subalgebra 6 and the subspaces 9(>are defined in the manner of (3.1), and
f) C 6 is the diagonal subalgebra. Hence a 9-module M is weight if the action of f) on
M is diagonalisable. A weight 9-module is of highest weight if there exists a non-zero
vector v E M, and a functional A E 6* such that

The unique functional A E f)* is the highest weight of the highest-weight module M.
Notice that the support of a weight module is a subset of h", while a highest-weight is

L
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an element of 6*. A highest-weight A E 6* may be thought of as a tuple of functionals
on ~,

All g-modules of highest weight A E 6* are homomorphic images of a certain universal
g-module of highest weight A, denoted by QJ(A). These universal modules QJ(A) are the
Verma modules of the highest-weight theory.

3.3. Reducibility of Verma modules. A single hypothesis suffices for the deriva-
tion of a criterion for the reducibility of a Verma module QJ(A) for 9 in terms of the func-
tional A E 6*. We assume that the triangular decomposition of 9 is non-degenerately

paired, i.e. that for each a E 6.+, a non-degenerate bilinear form

and a non-zero element h(a) E ~ are given, such that

[x,y] = (xIY)ah(a),

for all x E ga and Y E g-a. The symmetrisable Kac-Moody Lie algebras, the Virasoro
algebra, and the Heisenberg algebra all possess triangular decompositions that are non-
degenerately paired. The reducibility criterion is the following.

Theorem. The Verma module QJ(A) for 9 is reducible if and only if

for some positive root a E 6.+ of g.

Notice that the reducibility of QJ(A) depends only upon AN E h", the last component of
the tuple (3.4).

3.4. Applications of the Theorem. The criterion described by the Theorem has
many disguises, depending upon the underlying Lie algebra g.
Example 3.5. Let 9 = sl(3) be the Lie algebra of type A2. The diagonal subalgebra
~ is two-dimensional, and the root system 6. C ~* carries the geometry defined by the
Killing formo A Verma module QJ(A) for 9 is reducible if and only if AN is orthogonal to a
root. This is precisely when AN belongs to one of the three hyperplanes in ~* illustrated
in Figure 1(a). The arrows describe the root system.
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(a) g of type A2 (b) g of type G~l)

Figure 1: Reducibility criterion for the Verma modules of g, where 9 is of type A2 or
dI)

2

Example 3.6. Let 9 denote the fourteen-dimensional simple Lie algebra of type G2,

and let

denote the affinisation of 9 with central extension c and degree derivation d. Then 9 is
the Kac-Moody Lie algebra of type G~I). The diagonal subalgebra

(3.7) I) = 6 EB kc EB Ikd,

is obtained from the diagonal subalgebra I) of g. The Lie algebra 9 has a triangular
decomposition defined by a choice of simple roots. For any r E 1)*, denote by r the
restriction of r to 6 defined by (3.7). A Verma module m(A) for 9 is reducible precisely
when AN belongs to the infinite union of hyperplanes described in Figure l(b), where
the dashed line segment has length 1(AN,c) I.

4. Characters of Exponential-Polynomial Modules

Let 9 denote the Lie algebra sl(2) over an algebraically closed field k of characteristic
zero, and adopt the notations of Section 1. An expression for the formal character of an
exponential-polynomial module L(<p) is derived in Chapter 5. As described in Subsection
1.2, the loop-module realisation reduces this task to the study of the semi-invariants of a
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finite cyclic group acting on the irreducible highest-weight module L( cp) for the truncated
current Lie algebra g(cp) defined by (1.6). A certain generalisation of Molien's Theorem
in the case of a cyclic group describes the multiplicities of these semi-invariants. The
character of the exponential-polynomial module N (cp) is then expressed in terms of the
character of L( cp), obtained in Chapter 4.

For any sp E E, write

charN(cp) = L LdimN(cp)k,nXkzn E Z+[[X,Z,Z-llk
k~OnEZ

for the formal character of N (cp ), where

N(CP)k,n = N(cp)~(O)-k)(X k ~ O, n E Z.

For any positive integer r, define the function

Pr = L EXP(O E E,
(T=l

where the sum is over all roots of unity ç such that çr = 1. The function Pr takes the
constant value r on its support rZ. If cp E E is non-zero and deg ip = r, then it can be
shown that r > Oand

(4.1)

for some finite collection of polynomial functions ai E F and scalars Ài E ]kx, such that
if (Ài/ÀjY = 1, then i = j. The formal character of the exponential-polynomial module
N (cp) is described by the following theorem.
Theorem. Let sp E E be non-zero, and write r = deg ip, In the notation of (4.1),

(4.2)

where the inner sum is over the positive divisors d of r, the quantities cd(n) are Ra-
manujan sums, and

TI (1 - xai+1)
P. (X) = _a_i _EZ:-+'------:---;-;- __

'P (1 - X)M '

where M = Li(degai + 1) and the product is over those indices i for which ai E Z+.

The Ramanujan sum cd(n) is given by

(4.3)
cp( d) ~(d')

cd(n) = cp(d
'
) , di = d

gcd(d, n)'
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where cp denotes Euler's totient function and ~ denotes the Môbius function. The
expression (4.2) is the Ramanujan-Fourier transform of charN(cp).

It is apparent that Cd(-) is a function of period d, and thus it may be deduced fram
formula (4.2) that, for any k ~ O, the multiplicity function

n E Z,

has period r = deg ip, Therefore the character of N (cp) is completely described by the
array ofweight-space multiplicities [dimN(cp)k,n] where k ~ O and O ~ n < r. Examples
of these arrays, such as those illustrated by Figures 2(a) - 2(d), may be computed in a
straightforward manner using the formula (4.2). Columns are indexed left to right by n,
where O ~ n < r, while rows are indexed from top to bottom by k ~ o.

Greenstein [18] (see also [8, Section 4.1]) has derived an explicit formula for the for-
mal character of an integrable irreducible object of the category Õ. These objects are
precisely the exponential-polynomial modules N(cp) where cpis a linear combination of
exponential functions with non-negative integral coefficients. lndeed, our result may
alternatively be deduced by considering separately the case where N (cp) is integrable,
employing the result of Greenstein, and the case where N (cp) is not integrable, using
Molien's Theorem. Our appraach, via a general study of finite cyclic-group actions, has
the advantage of permitting a unified praof. Both approaches employ the explicit ex-
pression of the formal character of an irreducible highest-weight module for a truncated
current Lie algebra described in Chapter 4.



4. CHARACTERS OF EXPONENTIAL-POLYNOMIAL MODULES 15

1 O O O O O 1 O O O
1 1 1 1 1 1 2 2 2 2
3 2 3 2 3 2 10 8 10 8
4 3 3 4 3 3 30 30 30 30
3 2 3 2 3 2 86 80 84 80
1 1 1 1 1 1 198 198 198 198
1 O O O O O 434 424 434 424
O O O O O O 858 858 858 858

(a) 'P = P6 (b) 'P = -p4(EXP(À) + EXP(J.i))

1 O O O O O 1 O
1 1 1 1 1 1 2 2
4 3 4 3 4 3 5 3
10 9 9 10 9 9 6 6
22 20 22 20 22 20 9 7
42 42 42 42 42 42 10 10
80 75 78 76 78 75 13 11
132 132 132 132 132 132 14 14
217 212 217 212 217 212 17 15
335 333 333 335 333 333 18 18

(c) 'P = -P6 (d) 'P = p2(EXP(À) - EXP(J.i))

Figure 2: Array of weight-space multiplicitesof N( 'P)



 



CHAPTER 2

Imaginary Highest- Weight Representation Theory

Adopt the notation of Section 2 of Chapter 1. In particular, lk denotes any field of char-
acteristic zero, 9 denotes the Lie algebra sl(2), and 9 denotes the Z-graded loop algebra
associated to g. In this chapter, all modules are Z-graded, unless stated otherwise. For
any x E 9 and k E Z, write x(k) = x0tk.

1. The Canonical QuotienfM(O)

The following preliminary result provides a description of the action of 9 upon M(O).
Here, and throughout, the use of a hat above a term in a sum or product indicates the
omission of that termo The subalgebra g_ is abelian, and so U(g_) may be identified
with the infinite-rank polynomial ring

lk[f(j) Ij E Z].

Proposition 1.1. The following hold:

i. The g-module M(O) is generated by an element Uosuch that the action of U(g_)
on un is free, whilst the actions of U(g+) and U(6) are trivial.

ii. The g-module M(O) has a basis

(1.2) u { rr fbi) Uo 1 1'1 :s; 1'2 :s; ... :s; I'n, I' E zn}
n~O l~i~n

iii. The action of 9 on M(O) is given by

f(k)· rr fbi)UO
l~i~n

f(k) rr fbi)UO,

h(k)· rr fbi)UO
l~i~n l~i~n

e(k)· rr fbi)UO
l~i~n

-2 ---
fbl)'" fbi)'" fbj)'" fbn)fbi + I'j + k)uo,

l~i<j~n

for all I' E z-, n ~ O and k E Z.

17
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Proa]. Part (i) is clear, and part (ii) follows from part (i). To prove part (iii), we firstly
derive some commutation relations in U(g) before considering them in light of parts (i)
and (ii). If L is any Lie algebra and x E L, then the adjoint map

ad x : U (L) -+ U (L), ad x : Y f--4 [x, y] = xy - yx, Y E U (L),

is a derivation of the associative product of U(L). That is,

(1.3) [x, rr yd = L Y1" 'Yi-I[x,ydYi+1" ·Yn·
l:(i:(n l:(i:(n

This formula yields immediately the commutation equation

for all , E 7/.,n, n )! O and k E 7/.,. Using formula (1.3) and substituting the above
commutation equation for h(k),

[e(k), rr f(fi)]
l:(i:(n

-2 L ---f(ft} ... f(fi) ... f(fj) ... f(fr )f(fi + 'j + k)
l:(i<j:(n

+ L f(ft)··· ff,~) ... f(fr)h(fi + k)
l:(i:(n

for all, E 7/.,n,n )! Oand k E 7/.,. These formulae, in consideration of parts (i) and (ii),
immediately imply the formulae of part (iii), and completely describe the action of 9 on
M(O). O

Corollary 1.4. The g-module M(O) has a decomposition

M(O) = EB M(n),
nEZ+

as a direct sum of modules for 6, where

M(n) = span { rr f(xduQ I X E 7/.,n} ,
l:(i:(n

and M(n) = M(O) -no< for any n )! O.
Remark 1.5. It follows from Corollary 1.4 above, and Proposition 3.6 of [20], that the
only integrable subquotient of M(O) is the trivial one-dimensional g-module.
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2. Symmetric Function Realisation

This section presents a realisation of the 6-module M(n) as the graded regular mod-
ule of the symmetric Laurent polynomials in n variables. The realisation allows the
classification of the irreducible quotients of the 6-module M(n) outlined in Section 4.

Fix a positive integer n. The k-algebra An is Z-graded by total degree. The elementary
symmetric functions [i E An, 1 ~ i ~n, are defined by the polynomial equation

n n

(2.1) 11(1+ Zit) = 1+ L [i(Z1,"" zn)ti.
i=1 i=l

Notice that [n = Z1 ... Zn is invertible in An. For anyk:t;. Z, let

p(k) = z~ + ... + z~ E An,

denote the sum of k-powers of the indeterminates, and for any , E zn, write

m(rv) = ~ '" rr Z'ri. E Af n! L..,; cr(t) n·
crESym(n) 1~i~n

The symmetric polynomial mb) may alternatively be defined by

( ) - ~ '" 11 'Y"(i)m, - ,L..,; zi'
n.

crESym(n) l~i~n

The set {mb) I, E zn} spans the k-algebra An of symmetric Laurent polynomials.
Lemma 2.2. Let n > Oand " X E zn. Then

1
mb) .m(x) = n! L mb + XT)'

TESym(n)

where XT E zn is given by (XT)i = XT(i), for all 1 ~ i ~n and TE Sym(n).
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m(')') . m(x) = (~!)2 L L rr
aESym(n) rESym(n) l(i(n

Proof. Let 'Y,X E zn. Then

(~!)2 L
aESym(n) rESym(n) l(i(n

(substituting TO (7 for T)

(~)2 L L rr Z~'Y+XT)U(i)
n.

aESym(n) rESym(n) l(i(n

(since XroO' = (XT)O')
1

n! L
rESym(n)

rr

o

Proposition 2.3. For any positive integer n:

I. The k-algebra A; is generated by the set { t.i 11 ~ i ~n} U {t.n -1 }.

ii. The Ik-algebra An is generated by the set of power sums {p(k) I k E Z}.

Proof. Let

A+ - 0.[ ]Sym(n)n - ~ zl, ... , zn , A- = o·[z-l z-l]Sym(n)n ~ 1 , ... , n .

Then

(2.4) An = L t.;;-k . A~,
k~O

and, in particular,

(2.7)

(2.5) A; = A;;· A~.

Part (i) follows from the Fundamental Theorem of Symmetric Functions and equation
(2.4), while part (ii) follows from the Newton-Girard formulae and equation (2.5). O

Proposition 2.6. For any n > 0, M(n) is a Z-graded An-module via linear extension
of

with the Z-grading defined by

deg rr f(Xi) Uo = L Xi,
l(i(n l(i(n
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Proof. For any é, "f, X E zn,

m(é) . (mb)' II f(Xi)UO)
1:(i:(n

(~)2 L L II f(Xi+éIT(i) + "fr(i))UOn.
ITESym(n) rESym(n) 1:(i:(n

1 1L I L II f(Xi+(é+"fr)IT(i))UOn! n.
rESym(n) ITESym(n) 1:(i:(n

(substituting TO a for T)

(~! L m(é+"fr))' II f(Xi)UO
rESym(n) 1:(i:(n

(m(é)mb))' II f(Xi)UO,
1:(i:(n

by Lemma 2.2. As the polynomials mb) span An, linear extension of (2.7) endows
M(n) with the structure of a Z-graded An-module. O

Theorem 2.8. Let n > O. The action of U(6) on M(n) factors through an epimorphism

of graded álgebras defined by

\li : h(k) f-t -2p(k), k E Z.

That is, if p and 1/ denote the representations of U(6) and An on M(n), respectively,
then the following diagram commutes:

Proof. The map \li is an algebra epimorphism by Proposition 2.3 part (ii). Let k E Z,
and let &k = (k, O, ... ,O) E zn. Then

It follows that, for any X E zn,

and so h(k)IM(n) = \lI(h(k))IM(n) by Proposition 1.1 part (iii). O
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Therefore, for n > 0, it is sufficient to consider M(n) as a Z-graded An-module. Write
A~egfor the regular Z-graded An-module, i.e. for An considered as a Z-graded An-
module under multiplication.
Theorem 2.9. For any n > 0, the map

defined by linear extension of

e: rr f(Xi) Uo f--4 m(x),
l(i(n

is an isomorphism of Z-graded An-modules.

Proof. The map e is a bijection, by Proposition 1.1 part (ii). Let I,X E zn. Then

e (m(J) . rr f(Xi)uo)
l(i(n

Ln!
aESym(n)

1
m(x + Ia)

m(J) . m(x) (by Lemma 2.2)

m(J)' e( rr f(Xi)uo).
l(i(n

Hence e is an isomorphism of Z-graded An-modules. o

Corollary 2.10. Let n ~ ° and let v E M(n) be non-zero and homogeneous. Then
U(6)v and M(n) are isomorphic as 6-modules.

Proof. For n = 0, the statement is trivial. For n > 0, it is sufficient to employ Theorem
2.9, and observe that the ring An is an integral domain. O

3. Singular Vectors

The existence of non-zero singular vectors is related to the degeneracy of the module
M(O):
Proposition 3.1. Let n ~ O. Then

i. The set of all singular vectors in M(n) forms an 6-submodule.
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ii. If V E M(n) is non-zero and singular, and V = U(g)v, then V has decomposition

V - ffi v-mO(- Wm;;:'n , v-mO( C M(m),

into non-trivial eigenspaces for h(O).

Proof. The set of all singular vectors in M(n) clearly forms a vector space. Now suppose
that v E M(n) is singular. Then

e(k)(h(l)v) = -2e(k + l)v + h(l)e(k)v = O,

for any k, l E Z. Thus if v is singular, then so is h(l)v, for any l E Z, and so the set
of singular vectors in M(n) forms an 6-module, proving part (i). For part (ii), suppose
again that v E M(n) is a non-zero singular vector, and let V = U(g)v. Then

V = U(g) . v = U(g_) 0 U(6) . v C ffim>-n M(m),
• ?"

since U(g) = U(g_) 0U(6) 0U(g+). o
Theorem 3.2. For any n > Oand X E zn,

w(X) = L sgn(0") rr f(Xi + 0"(i)) uo
C7ESym(n) l!(i!(n

is a singular vector.

Proof. Singularity may be demonstrated directly by applying the formula for the action
of e(k), k E Z, of Proposition 1.1 part (iii). O

Lemma 3.3. For any n > O,the symmetric function Dn is equal to

L sgnfrr o T) rr Z~(i)+T(i)-2
C7,TESym(n) l!(i!(n

up to a change in signo

Proof. Let <J>n = LC7ESym(n) sgnío ) I11!(i!(n «i). It is not difficult to show that

1 ~ i < j ~ n,

and that <J>nlzi=O = Ofor all 1 ~ i ~n. Hence <J>n is equal up to sign to

rr Zi' rr (z, - Zj),
l!(i!(n l!(i<j!(n

by degree considerations. Therefore Dn and

rr z;2 . <J>~
l!(i!(n
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Lemma 3.4. Suppose that 9 E An and that glZi=Zj = O. Then (z, - Zj)2 divides 9 in
lk[zr1, ... ,z~ll·

Proof. Let a-t denote the ring automorphism of lk[zr1, ... ,z~ll that interchanges the
variables z, and Zj and leaves all other variables invariant. It is easy to convince oneself
that

(o-lh)lzi=Zj = hlzi=zj' h E lk[zr\ ,z~ll·

Now glZi=Zj = 0, and so 9 = (zi-zj)h, for some h E lk[zr1, , z~ll. Moreover, o-fh = -h,

since 0-19 = g. Therefore

and so hlzi=Zj = o. Hence (z, - Zj) divides h also.

Theorem 3.5. For any ti > 0,

o

Dn . M(n) = span {w(X) I X E 7l,n} ,

and hence all elements of the non-zero 6-submodule Dn . M(n) are singular.

Proof. Fix n > 0, and let

Wn = span {w(X) I X E 7l,n} .

The symmetric function realisation of Theorem 2.9 may be used to demonstrate the
inclusion w, C n, .M(n). Let X E t». Then

8(w(X)) = '" '" ( ) rr XT(i)+cr(r(i»n! ~ ~ sgn O" zi
rESym(n) crESym(n) l(i(n

1

~! L sgnf-r) L sgn(o-) rr Z~T(i)+cr(i)

rESym(n) crESym(n) l(i(n

(substituting O" o r-I for 0")

1
I L sgn(T)Fr,

n.
rESym(n)

where, for any TE Sym(n),

F '" ( ) rr XT(i)+cr(i)r = Z:: sgn O" Zi .
crESym(n) l(i(n

It is not difficult to verify that

1 ~ i < j ~ n, TE Sym(n).
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Therefore, for all 1 ~ i < j ~ n, 8(w(X)) is divisible by (z, - Zj)2 in lk[z]I:l, ... ,z;l], by
Lemma 3.4. Thus

since the factors (z, - Zj)2 are pairwise co-prime. In fact, h E An, since both 8(w(X))

and On are symmetric. Therefore, 8(w(X)) E On· An, and hence Wn C On· M(n). Now
let An = (rrl~i~n z;) . On· The factor rrl~i~n z; is invertible in An, and so~ " ~ """

by Theorem 2.9. In particular, by Corollary 1.4,

On . M(n) = span { An· rr f(Xi) Uo I X E zn} .
1!(i !(n

By Lemma 3.3, the polynomial An is equal up to sign to

L sgn(a o T) rr Z~(i)+T(i).
u,TESym(n) l!(i!(n

Therefore, for any X E zn,

An rr f(Xi) Uo
l!(i!(n
1

I L L sgn(a o T) rr f(Xi + (a o v)(i) + (T o v)(i)) Uo
n.

vESym(n) u,TESym(n) l!(i!(n

1
I L L sgn(aOT) rr f(Xi+a(i)+T(i))uon.

vESym(n) u,TESym(n) l!(i!(n

(substituting a o v-I for a and T o v-I for T)

L
uESym(n)

L
uESym(n)

sgn(a) L sgnf-r) rr f(Xi + a(i) + T(i))uo
TESym(n) l!(i!(n

where x(a) E zn is given by

1 ~ i ~n,

for all a E Sym(n). Hence On . M(n) C Wn. D

Conjecture 3.6. Let n > 0, and suppose that v E M(n) is singular. Then v E On· M(n).
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4. Irreducible Quotients of M(n)

For any Z-graded Ik-algebra B, write B(k), k E Z, for the graded components of B.

Proposition 4.1. Let n be a positive integer, and let B be a graded simple quotient of
the graded algebra An. Then B = lF[tm, t-m] for some positive divisor m of n and finite
algebraic field extension IFof k.

Proof. As f.n = ZI ... Zn is invertible in An, it must be that B(n) i= O. Let m be the
minimal positive integer such that B(m) i= O, and let u E B(m) be non-zero. Then u is
invertible, since B is simple, and so multiplication by uk is a vector-space automorphism
of B such that

l E Z.

In particular,

(4.2) k E Z.

Suppose that B(l) i= O, for some l E Z, and let q, r be the unique integers such that

l = qm +r, O ~ r < m.

Then

and so r = Oby the minimality of m. Hence

B = ffi B(km)
WkEZ '

and in particular m must be a divisor of n. Moreover, by (4.2),

via uk f---> tkm, k E Z. As An is finitely generated, by Proposition 2.3 part (i), so is the
Ik-algebra A~O). Hence B(O) is a finite algebraic field extension of k (see, for example, [1],
Proposition 7.9). O

Proposition 4.3. Let n be a positive integer, and suppose that ( : An ---> Ikis a non-zero
algebra homomorphism. Then there exist scalars aI, ... ,an, all non-zero and algebraic
over k, such that

n

«(p(k)) = L a~,
i=1

k E Z.
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Proof. Suppose that ( : An -> k is a non-zero homomorphism, and let
n

g(t) = 1 + L:((Edti E k]t].
i=1

As En = Zl ... Zn is invertible in An, it must be that ((En) =f O. Let aI, ... an be some
iteration of the scalars defined by

n

g(t) = rr (1 + ait).
i=1

Then by equation (2.1),

(4.4) 1 :s; i :s; n.

The ai are necessarily non-zero since

By Proposition 2.3 part (i), there is a unique algebra homomorphism with the property
(4.4), namely the restriction of the evaluation map

Zi 1-+ ai, 1 :s; i :s; n.

In particular, ((p(k)) = 2:~1a7, for all k E Z. D

Recall that e' -) C E is given by

[(-) = {i.p E E I i.p>..E -2Z+ for all À E Ikx } .

For any n ~ O,let
[(-n) = {i.p E [(-) I L: i.p>..= -2n},

>"Elkx

so that [( -) = Un~O [( -n).

Theorem 4;5. For any n ~ O and i.p E [(-n), the 6-module H(i.p) is an irreducible
quotient of the 6-module M(n). Moreover, if Ik is algebraically closed, then any irreducible
quotient of the 6-module M(n) is of the form H( i.p) for some sp E [( -n).

Proof. The statement is trivial for n = O, so suppose that n is a positive integer. Let
sp E [( -n), and let aI, ... an E Ikx be non-zero scalars such that

n

i.p(k) = -2L:a7,
i=1

k E Z.

Define
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by extension of Zi f-t Qit, 1::;i ::;n. Then

is a homomorphism of graded algebras, and so im 1]IAn may be considered as an An-
module, and as a quotient of the regular An-module A~eg. Therefore im 1]IAn is a quotient
of the An-module M(n), by Theorem 2.9. Now im1]IAn is an 6-module via the map
'li : U(6) ---+ An of Theorem 2.8. For any k E Z,

(1]IAn o 'lI)(h(k)) - 21]IAn (p( k))

cp(h(k)),

where cp : U(6) ---+ Ik[t,t-1j is defined by (1.2), page 2. Hence im1]IAn ~ H(cp) as 6-
modules, and so H(cp) is a quotient of the 6-module Men). It is not too difficult to verify
that H(cp) is an irreducible 6-module for any cp E [(-).

Now suppose that k is algebraically closed, and that r is an irreducible quotient of the
6-module M(n). By Theorems 2.8 and 2.9, r is an An-module, and a quotient of A~eg.
Hence there exists a simple quotient B of the graded algebra An

1]: An -» B,

such that B ~ r as An-modules, when B is considered as an An-module via the algebra
epimorphism 1]. Moreover, by Proposition 4.1, B = Ik[tm,t-mj for some positive divisor
m of n. Let ( : An ---+ Ikbe given by

1](X) = ((x)tdegx,

for all homogeneous x E An. Then ( is a non-zero algebra homomorphism, and so by
Proposition 4.3 there exist non-zero scalars Q1, ... , Qn E Ikx such that

n

1](p(k)) = ((p(k))tk = LQ~tk,
i=1

k E Z.

Therefore r ~H(cp), where

n

ip : Z ---+ k, cp(k) = -2LQ~,
i=1

k E Z,

by Theorem 2.8. o
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5. Irreducible Subquotients of M(O)

An 6-module r is weight if h(O) acts by a scalar h(O)lr on r. For any weight 6-module
r, write 't"(r) for the induced g-module

't"(r) = lnd~ . r, where g+. r = O.
f)Etlg+

Proposition 5.1. Let r be a weight 6-module. Then the g-module 't"(r) has a unique
maximal submodule that has trivial intersection with r.

Proof. Let À = h(O)lr. Then

't"(r) = EBn~O't"(rl~-n)/X,

and 't"(r)>' = r. If N C 't"(r) is a g-submodule that has trivial intersection with r, then

N C EBn>ol'(r) (>.-n)/X.

Hence the same is true of the sum of all such g-submodules. This sum is itself a g-
submodule, and its maximality and uniqueness follow from construction. O

For any 6-module r, denote by 2'(r) the quotient of 't"(r) by its unique maximal
submodule that has trivial intersection with r. Hence 2'(r) is an irreducible g-module
if r is an irreducible 6-module. ln particular, if cp E F', then the 6-module H(cp) is
irreducible, and so 2'(H(cp)) = N(cp).
Theorem 5.2. For any cp E [(-), the g-module N(cp) is an irreducible subquotient of
M(O). Moreover, if k is algebraically closed, then any irreducible subquotient of M(O)
is of the form N(cp) for some cp E [(-).

Proof. Let n be a positive integer, and let ip E [( -n). Theorem 3.5 guarantees the
existence of a non-zero singular vector v E M(n). The 6-module U(6)v contains only
singular vectors, and is isomorphic to M(n), by Corollary 2.10 and Proposition 3.1. Let
p = U(g)v. By the Poincaré-Birkhoff-Witt Theorem,

U(g) . v U(g_) 0 U(6) 0 U(g+) . v

U(g_) 0 U(6) . v.

Therefore P = U(g_)p-n/X where p-n/X = U(6)v ~ M(n). Hence, by Theorem 4.5, there
is an epimorphism of 6-modules

p-nIX _ H(cp),
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which extends to an epimorphism of 13-modules

p - N(cp).

Thus N(cp) is an irreducible subquotient of M(O).

Now suppose that Ik is algebraicalIy closed, and that N is an irreducible subquotient of
M(O). The support of N is a subset of the support -Z+<x of M(O). Let n denote the
minimal non-negative integer such that N-nex #- o. Then 13+. N'"?" = o. Thus there is
an epimorphism of 13-modulesN - .s!'(N-nex), and since N is irreducible, this map is
an isomorphism. Therefore, the weight space N-nex is an irreducible 6-module. lndeed,
a proper 6-submodule of N-nex generates a proper 13-submoduleof .s!'(N-nex) ~ N. Now
let P' C P be 13-submodulesof M(O) such that N = PI P'. Then N-lex = p-1exI pl-

1ex,
for all I ~ O,and in particular N-nex is a subquotient of the 6-module M(n). Therefore,
by CorolIary 2.10 and Theorem 4.5 there exists sp Çõ. [(-n) such that N-nex ~ H(cp) as
6-modules. Thus there is an isomorphism of 13-modules

which completes the proof of the Theorem. D

N ~ .s!'(N-nex) ~ .s!'(H(cp)) = N(cp),

The folIowing CorolIary is immediate from [3] and the inclusion [(-) C [.
Corollary 5.3. Suppose that Ik is algebraicalIy closed. Then the homogeneous compo-
nents of any irreducible subquotient of M(O) have finite dimension.



CHAPTER 3

Lie Algebras with Triangular Decomposition

This chapter develops the technology necessary for the study of the highest-weight theory

of truncated current Lie algebras undertaken in Chapter 4. The notion of aLie alge-

bra with triangular decomposition is introduced, and several examples are considered.

Fundamental results in the highest-weight representation theory are then described,

concluding with a proof of Shapovalov's Lemma. The content of this chapter is entirely

derivative of the book of Moody and Pianzola [24]. Let'lk -denote a field of characteristic

zero.

1. Lie Algebras with Triangular Decomposition

Let 9 be aLie algebra over the field k. A triangular decomposition of 9 is specified by a

pair of non-zero abelian subalgebras ~o C ~, a pair of distinguished non-zero subalgebras

9+, 9-, and an anti-involution (i.e. an anti-automorphism of order 2)

w: 9 ----+ 9,

such that:

i. 9 = 9- E9~ E99+;
11. the subalgebra 9+ is a non-zero weight module for ~o under the adjoint action,

with weights b..+ all non-zero;

iii. wl~ = id~ and W(9+) = 9_;
iv. the semigroup with identity Q+, generated by b..+ under addition, is freely

generated by a finite subset {aj }jEJ C Q+ consisting of linearly independent

elements of ~ô.

This definition is a modification of the definition of Moody and Pianzola [24]. There,

the set J is not required to be finite, root spaces may be infinite-dimensional, and ~o = ~.

We distinguish between ~o and ~ in order to include Example 1.6.

31
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Write º = LjEJ Zaj. Call the weights .0.+ of the f)o-module g+ the positive roots, and the
weight space ga corresponding to a E .0.+ the a-rooi space, so that g+ = EBaELl+ga. The
anti-involution ensures an analogous decomposition of g ; = EBaELl_ga, where ô , = -.0.+
(the negative roots) and g-a = w(ga) for all a E .0.+. Write .0. =.0.+ U.0._ for the roots
of g. Consider º+ to be partially ordered in the usual manner, i.e. for",' E º+,

We assume that all root spaces are finite-dimensional, and that .0.+ is a countable set.
For clarity, aLie algebra with triangular decomposition may be referred to as a five-tuple
(g, f)o,f),g+,w).
Example 1.1. Let g be a finite-dimensional semisimple Lie a1gebra over <C, with Cartan
subalgebra f) and root system .0.. Then

'.

Let 7f be a basis for .0., and 1et º+ be the additive semigroup generated by 7f. Write
.0.+ = .0.n º+, and let g+, g_ be given by

where .0._ = -.0.+. Then g+ is a weight-module for f)o= f) with weights .0.+, and

g = g- EBf)EBg+.

All root spaces are one-dimensional. For any a E .0.+, choose non-zero elements

An anti-involution w on g is defined by extension of

wl~ = id~, w(x(a)) = y(a), w(y(a)) = x(a), a E 7f.

Thus (g,g+,f),f),w) is aLie algebra with triangular decomposition. The semisimple
finite-dimensiona1 Lie a1gebras over <C are parameterised by Euclidean root systems, or
equivalently by the Cartan matrices. The Serre relations permit the construction of any
such Lie algebra from its Cartan matrix, and this construction works over an arbitrary
fie1d Ik of characteristic zero. The preceding assertions hold also for the Lie algebras over
Ik constructed in this manner. Here and throughout, semisimple finite-dimensional Lie
algebra means aLie algebra over Ik defined by a Cartan matrix and the Serre re1ations.
Example 1.2. It shall be convenient to consider the following particular case of Example
1.1 in greater detail. Let g denote sl(3), the finite-dimensiona1 semisimple Lie a1gebra
over Ik with root system A2. Denote by (Xl, (X2 the simple roots, by
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the Chevalley generators, and by ~ = lkh((Xd EBlkh((X2)the Cartan subalgebra, so that

Then the root system is defined by ~ = ~+ U ~_, where ~+ = {(Xl, (X2,(Xl+ (X2} and
~_ = -~+. Write

X((Xl+ (X2)= [X((Xd,X((X2)], y((Xl + (X2)= [y((X2),y((Xl)],

h( (Xl+ (X2)= h( (Xl)+ h( (X2).

Then for each a E ~+, the elements x(a),y(a),h(a) span a subalgebra of 9 isomorphic
to sl(2). The anti-involution w fixes ~ point-wise, and interchanges x(a) with y(a) for
every a E ~+. Write

and 9± = EBOE6+9±o. Then 9+ is a weight-module for ~o.7' f) with weights ~+, and

The semigroup º+ is generated by tt = {(Xl, (X2}. Note that the h(a) defined here are
only proportional to the elements h( a) defined later on.
Example 1.3. Let 9 be the Kac-Moody Lie algebra over lk associated to an n x n
generalised Cartan matrix (we paraphrase [20]). Let f) denote the Cartan subalgebra,
and ~ the root system. Then

and all root spaces are finite-dimensional. The collection II of simple roots is a linearly-
independent subset of the finite-dimensional space h". Let º+ denote the additive
semigroup generated by II, let ~+ = ~ n º+, and write

where ~_ = -~+. Then 9+ is a weight-module for f)o = f) with weights ~+, and

9 = 9- EBf) EB9+·

If ei, li, 1 ~ i ~ n, denote the Chevalley generatars of 9, then 9+ and 9_ are the
subalgebras generated by the e, and by the fi, respectively. An anti-involution w of 9 is
defined by extension of

wll) =idl), w(ei) = fi, w(J;) = ei, 1 ~ i ~ti,

(this w differs from the w af [20]). Thus (9,9+,f),f),w) is aLie algebra with triangular
decomposition.
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Example 1.4. Let 9 denote the k-vector space with basis the symbols

{ Lm I m E Z } U { C } ,

endowed with the Lie bracket given by

[c,9] = O, [Lm,Ln] = (m - n)Lm+n + 8m,-n'ljJ(m)c, m,n E Z,

where 'ljJ: Z ---4 k is any function satisfying 'ljJ(-m) = -'ljJ(m) for m E Z, and

'ljJ(m + n) = 2:"'-+::'ljJ(n)+ %~2:'ljJ(m), m,nEZ, mino

If 'ljJ = O, then the symbols Lm span a copy of the Witt algebra. The Viras oro olqe-
bra is the only non-split one-dimensional central extension of the Witt algebra, up to
isomorphism [21], and is typically defined with 'ljJ(m) = m

3

12m. Let

9± = EBm>OkL±m, ~o = ~= IkLoEB kc,

and let b E ~* be given by

Õ(Lo) = -1, b(c) = O.

Then 9 = 9- EB ~ EB 9+, and 9+ is a weight module for ~o = ~, with weights

6+ = {mb 1m> °} .
The semigroup º+ is generated by Õ. An anti-involution w is given by

w(c) = c, w(Lm) = L-m, mE Z,

and in this notation 9 is aLie algebra with triangular decomposition.
Example 1.5. Let a denote the k-vector space with basis the symbols

{am I m E Z } U {n, d},

endowed with the Lie bracket given by

[am,an] = m8m,-nn, [n,a] = 0, [d,am] = mam, m,n E Z.

The Lie algebra a is called the extended Heisenberg or oscillator algebra. Let

and let b E ~* be given by

Õ(ao) = Õ(lt) = 0, Õ(d) = 1.

Then a = a., EB ~ EB a+, and a+ is a weight module for ~o = ~, with weights

6+ = {mb 1m> O} .
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The semigroup Q+ is generated by Õ. An anti-involution w is given by

w(li) = li, w(d) = d, W(a.n) = a_m, mE Z,

and in this notation a is aLie algebra with triangular decomposition.
Example 1.6. Let 9 be a k-Lie algebra with triangular decomposition, denoted as
above, and let R be a commutative, associative Ik-algebrawith 1 (e.g. R = lk[t]/tN+llk[t],
N > O). Write g = 9 ®k R, and similarly for the subalgebras of g. Then g is a Ik-Lie
algebra with Lie bracket

[x®r,y®s] = [x,y] ®rs, x,y E g, r,s E R,

and contains 9 as a subalgebra via x 1--+ x ® 1. Moreover, g = g- EB 6 EB g+, and IJoC 6
are non-zero abelian subalgebras of g. The subalgebra 9+ is a weight module for IJowith
weights coincident with the weights ~+ of the IJo-module g+, and (9+)Q = (g+J 80 9

and g share the same roots ~ and root lattices Q, Q+" "The anti-involution w of g is
given by R-linear extension

w : x ® r 1--+ w(x) ® r, x E g, r E R,

and fixes 6 point-wise. Thus (9, IJo,6, g+, w) is a k-Lie algebra with triangular decompo-
sition.

2. Highest- Weight Representation Theory

Throughout this section, let (g, IJo,IJ,g+, w) denote aLie algebra with triangular deeom-
position. The universal highest-weight modules of g, called Verma modules, exist and
possess the usual properties. An extensive treatment of Verma modules and the Shapo-
valov form can be found in [24]; we present only the definitions and the most important
properties.

2.1. Highest-weight modules. A g-module M is weight if the action of IJoon M

is diagonalisable, i.e.

(2.1) hlMX = X(h) for all h E IJo,X E IJô'

The decomposition (2.1) is called the weight-space decomposition of M; the components
MX are called weight spaces. The suppori of a weight module M is the set

{ X E IJôI MX f. O} C IJô·
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i. g+. V = O;
I!. there exists A E f)*such that h . V = A(h)v, for all h E f).

For any X E f)ô, an element V E MX is a primitive vector of M if the submodule
U(g) . V C M is proper. Clearly M is reducible if and only if M has a non-zero primitive
vector. A non-zero vector V E M is a highest-weight vector if

The unique functional A E f)* is called the highest weight of the highest-weight vector
v. A weight g-module M is called highest weight (of highest weight A) if there exists a
highest-weight vector v E M (of highest weight A) that generates it.
Proposition 2.2. Suppose that M is a highest-weight g-module, generated bya highest-
weight vector v E M of highest weight A E f)*. Then

i. the support of M is contained in AI~o - Q+; .

ll. MAI~o = Ikv, and all weight spaces of M are finite-dimensional;
lll. M is indecomposable, and has a unique maximal submodule;
IV. if u E M is a highest-weight vector of highest-weight A' E h", and u generates

M, then A' = A and u is proportional to v.

Let A E h", and consider the one-dimensional vector space IkVA as an (f)E9g+ )-module
via

g+ . VA = O; h· VA = A(h)VA, h E f).

The induced module

QJ(A)= U(g) ®U(~EI1lJ+) kvA

is called the Verma module of highest-weight A.
Proposition 2.3. For any A E f)*,

i. Up to scalar multiplication, there is a unique epimorphism from QJ(A) to any
highest-weight module of highest-weight A, i.e. QJ(A) is the universal highest-
weight module of highest-weight A;

ii. QJ(A) is a free rank one U(g_)-module.

2.2. The Shapovalov Form. The Shapovalov form is a contragredient symmetric
bilinear form on U(g) with values in U(f)) = S(f)). The evaluation of the Shapovalov form
at A E f)*is a k-valued bilinear form, and is degenerate if and only if the Verma module
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m(A) is reducible. By the Leibniz rule, U(g) is a weight g-module, with weight-space
decomposition

The anti-involution w of 9 extends uniquely to an anti-involution of U(g) (denoted iden-
tically), and is such that

It follows from the Poincaré-Birkhoff-Witt (PBW) Theorem that U(g) may be decom-
posed

U(g) = U(~) EB {g_U(g) + U(g)g+}

as a direct sum of vector spaces. Further, both summands are two-sided U(~)-modules
preserved by w. Let q : U(g) ~ U(~) denote the projection onto the first summand
parallel to the second; the restriction qlu(g)o is an algebra homomorphism. Define

F : U(g) x U(g) ~ U(~) via F(x, y) = q(w(x)y), x, Y E U(g).

The bilinear form F is called the Shapovalov form; we consider its restriction

Distinct ~o-weight spaces of U(g_) are orthogonal with respect to F, and so the study
of F on U (g_) reduces to the study of the restrictions

Any A E ~* extends uniquely to a map U(~) ~ k; write F x(A) for the composition
of F x with this extension, and write RadF x(A) for its radical. The importance of the
Shapovalov form stems from the following facto
Proposition 2.4. Let X E Q+, A E ~*. Then RadFx(A) C m(A)AI~o-x is the Alf)o- X
weight space of the maximal submodule of the Verma module m(A).

In particular, a Verma module m(A) is irreducible if and only if the forms F x(A) are
non-degenerate for every X E Q+. Thus an understanding of the forms F x' X E Q+, is an
understanding of the irreducibility criterion of the Verma modules of the highest-weight
theory.
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2.3. Partitions and the Poincaré-Birkhoff- Witt Monornials. Let C be a set
parameterizing a root-basis (i.e. an ~o-weight basis) of 9+, via

C '3 'Y ~ x("f) E 9+·

Define D. : C --> D.+ by declaring x("f) E 9~b), for all 'Y E C. A partition is a finite
multiset with elements from C; write P for the set of all partitions. Set notation is used
for multisets throughout. The length 1>'1of a partition >.E P is the number of elements
of >., counting all repetition. Fix some ordering of the basis {x("f) 1'Y E C} of 9+; for
any >.E P, let

(2.5)

where k = 1>'1and (>'ih:(i:(k is an enumeration of the entries of >. such that (2.5) is
a PBW monomial with respect to the basis ordering. For any partition >. E P, write
y(>.) = w(x(>.)). By the PBW Theorem, the spaces U(g+), U(9-) have bases

{x(>') 1 x E P}, {y(>.) 1 x E P} ,

respectively. For any partition >.E P and positive root a E D.+, write

D.(>') = L D.("f);
1'EÀ

N' = {'Y E >. I D.h) = a} .

2.4. Shapovalov's Lemma. The proof of the following usefullemma is elementary.
Lemma 2.6. Suppose that >.E P, that 1>'1= r, that (>'ih:(i:(r is an enumeration of >.
and that T E Sym(r). Then

where R is a linear combination of terms x( cPl) ... x( cPs) where cPi E C for 1 ~ i ~s and
s < r.

The following Lemma is due to Shapovalov [30]. Our proof follows that of an analogous
statement in [24].
Lemma 2.7. Let (9,~o,~,9+,W) be aLie algebra with triangular decomposition. Sup-
pose that >.,fL E P, that 1>'1= r and IfLl = s, and that (>'ih:(i:(r and (fLih:(i:(s are
arbitrary enumerations of >.and u, respectively. Let

Then
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i. degljq(Z) ~ r, s;

ii. if r = s, but I>.QI =1= IJ.LQI for some a E ~+, then degljq(Z) < r = s;

iii. if r = s and I>.QI = IJ.LQI =: mQ for all a E ~+, then the degree r = s term of
q(Z) is

TI L TI [x(>'~(j»),Y(J.Lj)],
QE~+ TESym(m",) 10:(m",

where for each a E ~+, (>'jh0:(m"" (J.Ljh0:(m", are any fixed enumerations of
>.Q and J.LQ respectively.

Proof. The proof is by induction on 1>'1 + IJ.LI. It is straightforward to show that all
three parts hold whenever 1>'1 = Oor IJ.LI= O. Suppose then that all three parts hold for
all >.', J.L'E P such that 1>.'1 + IJ.L'I < 1>'1 + IJ.LI· Let ç E Sym(r), TE Sym(s), and write

By Lemma 2.6, Z = Z' + R, where R is a linear combination of terms

with r' < ror s' < s. Therefore, by inductive hypothesis, the Lemma holds for arbitrary
enumerations of >. and J.L, if it holds for any particular pair of enumerations. Consider
~+ to carry some linearisation of its usual partial order, and choose any enumerations
of >., J.Lsuch that

Moreover, as

q( w(x(>'r) ... x(>'1)Y(J.Ld ... Y(J.Ls)))

q(x(J.Ls)··· x(J.LdY(>'1)··· y(>'r)),

it may supposed without loss of generality that ~(J.Ld ~ ~(>'1). Now

q(Z) q(x(>'r) ... x(>'dY(J.Ld ... Y(J.Ls))

q([x(>'r)· ··x(>'d,y(J.Ld]y(J.L2)· ··Y(J.Ls))
r

Lq(Ai),
i=1

where, by the Leibniz rule,
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for 1 ~ i ~T. Let O ~ k ~ T be maximal such that .6.(Ài) = .6.(p,1)for all 1 ~ i ~k; the
terms A with 1 ~ i ~k and k < i ~T are to be considered separately. If 1 ~ i ~k,
then [X(Ài),Y(P,l)] E 1). Therefore, by the Leibniz rule,

where Zi = x(Àr) ... X(Ài+1)X(Ài-1) ... x(À1)y(P,2) ... Y(P,s) and Ri is a linear combina-
tion of terms

If instead k < i ~T, then Ai is a linear combination of terms

X(Àr) ... x(Ài+dx(-y)X(Ài-1)'" x(À1)y(P,2) ... y(p's),

where ~(-y) = ~(Ài) - ~(p,d E ~+, since .6.(p,d ~ ~(Àd ~ ~(Ài).

Note that degljq(Z) ~ max {degljq(Ai)}' Consider now each of the three parts of the
claim.

Part (i). For 1~ i ~k,

(2.8)

since qlu(g)o is an algebra homomorphism. By part (i) of the inductive hypothesis,

degljq(Zi), degljq(Rí) ~ T - 1, s - 1,

and so degljq(Ai) ~ T, s. For k < i ~T, again by part (i) of the inductive hypothesis,
degljq(Ai) ~ T, S - 1. Hence degljq(Z) ~ T, S, and so part (i) holds.

Part (ii). Suppose that T = s, and let a E .6.+ be such that INlel#- 1p,0<1.For 1~ i ~k,
consider q(Ai) by equation (2.8). By part (i) of the inductive hypothesis,

degljq(Ri) ~ T - 1 < T,

and so it remains only to consider q(Zi). Write À' (respectively, p,') for the parti-
tion consisting of the components of À (respectively, p,) except for Ài (respectively, p,d.
Then IÀ'I= 1p,'1and 1>.'0<1#- 1p,'O<I.Therefore, by part (ii) of the inductive hypothesis,
degljq(Zi) < T - 1; hence degljq(A) < T. For k < i ~ T, part (i) of the inductive
hypothesis implies that degljq(Ai) ~ S - 1< T. Therefore degljq(Z) < T, as required.

Part (iii). Suppose that T = S and that IÀO<I= 1p,0<1for all a E .6.+. Observe that for
k < i ~T, part (i) of the inductive hypothesis implies that

degljq(A) ~ S - 1< T;
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and that for 1 :::;i :::;k, by the same,

degl)q(Ri) :::;r-I < r.

Therefore, the terms q(Ai) for k < i :::;r and the terms q(Ri) for 1 :s; i :s; k can not
contribute to the degree-r component of q(Z); thus the degree-r component of q(Z) is
the degree-r component of

k

L q(Zi)[X(Ài), y(p,d J.
i=1

As Z, satisfies the conditions of part (iii) of the inductive hypothesis, for 1 :::;i :::;k, the
formula follows. O



 



CHAPTER 4

Highest- Weight Theory for Truncated Current Lie
AIgebras

In this chapter, the highest-weight theory for truncated current Lie algebras is extensively
studied, culminating in a reducibility criterion for the Verma modules. References to
material from Chapter 3 are distinguished by the specification of a page number in
parentheses. The notations of that chapter are used throughout. In particular, k is any
field of characteristic zero.

1. Truncated Current Lie Algebras

Let (9,f)o,f),9+,w) be a Lie algebra with triangular decomposition, and let C denote a
set parameterizing a root-basis for 9+. Fix a positive integer N, and let

9 = 90!k[tl/tN+1!k[t]

denote the associated truncated current Lie algebra with the triangular decomposi-
tion of Example 1.6 (page 35). The integer N is the nilpotency index of 9.. Let
ê = C x {O, ... , N}. Then ê parameterises a basis for 9+ consisting of f)o-weightvectors
of homogeneous degree in t, via

ê:3 , f--+ x(,) E 9+,

where x(,) = X(T) 0 td if, = (T, d) E é. Define

deg, : ê ----t { O, ... ,N }

via x(,) E 96.(-)-)0 tdegt(-)-) for all , E ê. Order the basis {x(,) I , E ê} of 9+ by fixing
an arbitrary linearisation of the partial order by increasing homogeneous degree in t, i.e.
so that

x(,) < x(,'), ",' E ê.
As per Subsection 2.3 (page 38), the PBW basis monomials of U(9+) with respect to
this ordered basis are parameterised by a collection P of partitions. Partitions here are
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(finite) multisets with elements from ê. For any X E Q+, let

Px = {À E P Ill(À) = X} .

For any O :( a « N and À E P, define

À is homogeneous of degree-d in t if À = Àd. The ordering of the basis of g+ is such that
for all À E P,

For any A E 6* and O :( d:( N, let Ad E f)* be given by

h E f).

1.1. The Shapovalov formo As in Section 2 (page 35), there is a decomposition

as a direct sum of two-sided U(g)O-modules. Denote by q : U(g) ---> U(6) the projection
onto the first summand, parallel to the second. Let

F :U(g) x U(g) ---> U(6)

denote the Shapovalov form, and write Fx for the restriction of F to the subspace
U(g_)-X, X E Q+.

The algebra U(g) = EBm~OU(g)mis graded by total degree in the indeterrninate t,

k

U(g)m = span { (Xl 0 td1 ) ... (Xk 0 tdk) I L di = m, k ~ O} .
i=l

For any subspace V C U(g), let

m~O,

and call V graded in t if V = EBm:>-OVm. The subalgebras U(g+), U(g_), and U(6) are
r

graded in t.
Lemma 1.1. For any m ~ O,q(U(g)m) C U(6)m'

Proof. The spaces g_U(g) and U(g)g+ are graded in t; hence so is the sum
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Therefore,

for any m ~ O. o
Examp1e 1.2. Let 9 = s1(3), and recall the notation of Example 1.2 (page 32). Let

N = 1, so that 9 = 9 EB (g ® t). Write C = .6.+ and ê = C x {O, 1}. Then 9+ has a basis

parameterised by ê:

Let X = CXI+ CX2·Then Px consists of the six partitions

(1.3) { (cxI , O), (CX2,O) } ,
{ («I , 1), (CX2,O) },

{(CXI + CX2,0)},

{(CXI + CX2,1)},

{ (cxI , O), ( CX2, 1) } ,

{ (CXI,1), (CX2,1) } .

Order the set {x(')') I 'Y E ê} by the enumeration

X(CXI)®tO, X(CXI+ CX2)®tO, X(CX2)®tO, X(CXI)®tI," X(CXI+CX2)®tl, X(CX2)®tl.

Then the PBW basis monomials of U(9_)-X corresponding to the partitions (1.3) are,

respectively,

Y(CXI+ CX2)® tO,

y( CXI+ CX2)® tI,

y(CX2)® tI. Y(CXI)® tO,

y(CX2)® tI. Y(CXI)® tI.

For notational convenience, write hoc;,j = h(cx.;) ® tj, for i = 1,2 and j = 0,1. The

restriction Fx of the Shapovalov form, expressed as a matrix with respect to the ordered

basis (1.4), appears below.

hOC1+"'2,0+ h"'l,O h"'l,O h"'1,oh"'2,1 + h"'l,l h"'l,l (h"'2,0 + 2) h"'l,1 h"'1,lh"'2,1

h"'l'O h"'l + "'2,0 h"'l,1 -h"'2,1 h"'l +"'2,1 O·

h"'1,oh"'2,1 + h"'l,l h"'l,1 O h"'1,lh"'2,1 O O

h"'1,I(h"'2'0 + 2) -h"'2,1 h"'1,lh"'2,1 O O O

h"'l,1 h"'l +"'2,1 O O O O

h"'l ,1h"'2,1 O O O O O

This is an e1ementary calculation using the commutation relations. Observe that this

matrix is triangular, and that in particular the determinant (the Shapovalov determinant

at X) must be the product of the diagonal entries, viz.,

(1.5)

up to signo This provides a criterion for the existence of primitive vectors in the weight

space AI~o - X of a Verma module QJ(A), A E 6*. We shall prove that the Shapovalov

determinant always lies in S(I:J® tN), and that for 9 a semisimple finite-dimensional Lie

algebra, the factors of the Shapovalov determinant are the analogues of those of (1.5).
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Example 1.6. Let 9 be the VirasorojWitt algebra, and adopt the notation of Example
1.4 (page 1.4). Let N = 1, and X = 26. Write C = .6.+ and ê = C x {O, I}. Then Px
consists of the five partitions

(1.7) { (6, O), (6, O) }, {(26, O) }, {(6, O), (6, 1) }, {(26, 1) }, {(6, 1), (6, 1) } .

Order the basis

for 9+ firstly by increasing degree d, and secondly by increasing index m. Then the
PBW basis monomials of U(9- )-X corresponding to (1.7) are, respectively,

Write 0m,i = (2mLo + 'Ij;(m)c) 0 ti, for m, i ~O. The matrix of F x' expressed with
respect to the ordered basis (1.8), appears below:' "

201,0(01,0 + 1) 301,0 201,1(01,0 + 1) 301,1 2(01,1)2
301,0 O2,0 301,1 02,1 O

201,1(01,0 + 1) 301,1 °I,l O O
301,1 O2,1 O O O

2(rh,d2 O O O O

Hence the Shapovalov determinant at X is given by det Fx = 40L 0~,1'
Example 1.9. Let 9 be the VirasorojWitt algebra, and adopt the notation of Example
1.4 (page 1.4). Let N = 2, and X = 26. Write C = .6.+ and ê = C x {O, 1,2}. Then Px
consists of the nine partitions

(1.10)
{(6,0),(6,0)},
{(6,0),(6,2) },
{(6,1),(6,2) },

{(26,0)} ,
{(2&,1)},
{ (2&,2) } ,

{(&,O), (&, I)},
{(&, 1), (&, 1) } ,
{(&,2), (&,2)}.

Order the basis {x(')') 11 E ê} as per Example 1.6. Then the PBW basis monomials of
U(9_)-X corresponding to (1.10) are, respectively,

(1.11)
(L_10tO)2,

L-I 0 t2 . L-I 0 tO,
L-I 0 t2 . L-I 0 tI,

L-2 0 tO,
L-2 0 tI,
L_2 0 t2,

L-I 0 tI . L-I 0 t",
(L-l 0 t1)2,
(L-l 0 t2)2.

The matrix of F x with respect to the ordered basis (1.11) appears on page 48. Notice
that the matrix has seven non-zero entries on the diagonal. Hence there is no reordering
of the basis (1.11) that will render the matrix triangular.
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1.2. A modification of the Shapovalov Form. As observed in Example 1.9,
it is not always the case that the matrix for Fx' X E Q+, can be made triangular by
an ordering of the chosen PBW monomial basis for U(g_)-x. A further permutation
of columns is necessary; this is performed by an involution * on the partitions, and
encapsulated in a modification B of the Shapovalov form F. For any "t = (T, d) E ê,
write -: = (T, N - d) E ê, and for any À E P, write

À* = { "(* I "( E À} .

80 (Àd)* = (À*)N-d for all À E P and all degrees d. For any X E Q+, let

Bx : U(g_)-X x U(g_)-X ---> U(6)

be the bilinear form defined by

Relative to any linear order of the basis {y(À) I À E P~} of U(g_)-X, the matrices of
Bx and F x are equal after a reordering of columns determined by the involution *. In
particular, the determinants det Bç and detF x are equal up to signo



20
1,

0(
01

,0
+

1)
30

1,
0

20
1,

1(
01

,0
+

1)
20

1,
2(

01
,0

+
1)

30
1,

1
2(

O
i,l

+
01

,2
)

20
1,

10
1,

2
30

1,
2

2°
i,2

30
1,

0
O

2,
0

30
1,

1
30

1,
2

O
2,

1
30

1,
2

O
O

2,
2

O
20

1,
1(

0 1
,0

+
1)

30
1,

1
01

,2
(0

1,
0

+
2)

+
O

i,1
01

,1
01

,2
30

1,
2

20
1,

10
1,

2
°i

,2
O

O
20

1,
2(

0 1
,0

+
1)

30
1,

2
01

,1
0 1

,2
O

i2
O

O
O

O
O

30
1,

1
O

2,
1

30
1,

2
O

O
2,

2
O

O
O

O

2(
O

i,1
+

01
,2

)
30

1,
2

20
1,

10
1,

2
O

O
20

i,2
O

O
O

20
1,

10
1,

2
O

O
i,2

O
O

O
O

O
O

30
1,

2
O

2,
2

O
O

O
O

O
O

O
20

i,2
O

O
O

O
O

O
O

O

M
at

rix
of

th
e

Sh
ap

ov
al

ov
fo

rm
F

X
fo

r
th

e
V

ira
so

ro
/W

itt
tru

nc
at

ed
cu

rre
nt

Li
e

al
ge

br
a.

X
=

26
,

N
=

2,
O

m
,i

:=
(2

m
Lo

+
'ljJ

(m
)c

)
0

ti,
m

,i
~

Q.

.,. 00 ~ :r: Õ :r: trl o: >cl ::8 trl Õ :r: >-
j

>-
j :r: trl o ~ Ó ;:o >-
j ê z o ~ trl t:I o c:: ;:o E:l z >-
j r t!J :> r O trl to ~ r.n



2. DECOMPOSITION OF THE SHAPOVALOV FORM 49

2. Decomposition of the Shapovalov Form

Throughout this section, let (9, ~o,~, 9+, w) denote aLie algebra with triangular decom-
position, and let g denote the associated truncated current Lie algebra of nilpotency
index N. Let L denote the colIection of all two-dimensional arrays of non-negative in-
tegers with rows indexed by ~+ and columns indexed by {O, ... ,N}, with only a finite
number of non-zero entries. For any X E Q+, let

c, = {L E L I X = L L La,d a} .
aELl+ O:::;d:::;N

The entries of an array in Lx specify the multiplicity of each positive root in each
homogeneous degree component of a partition of X, i.e.

Let

Then for any L E L, PL is a non-empty finite set; if the root spaces of 9 are one-
dimensional, then PL is a singleton. The set Lx parameterises a disjoint union decom-
position of the set Px:

(2.1)

For any Se P, let

span(S) = spand y(À) I À E S},

so that, for example, span(P) = U(g_) and span(Px) = U(g_)-X for any X E Q+.

For any X E Q+, the decomposition (2.1) of Px defines a decomposition of U(g_)-X =

span(Px):
U(g_)-X = EB span(PL).

LELx

We construct an ordering of the set Lx and show that, relative to this ordering, any
matrix expression of the modified Shapovalov form Bx for g is block-upper-triangular
(cf. Theorem 2.14). The folIowing CorolIary, immediate from Theorem 2.14, provides a
multiplicative decornposition of the Shapovalov determinant, and is the most important
result of this section.
Corollary 2.2. Let X E Q+. Then

detBx = TI detBxlspan(h)'
LELx
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2.1. An order on Lx' Fix an arbitrary linearisation of the partial order on º+. If
X is a set with a linear order, write xt for the set X with the reverse order, i.e. x ~ Y in
xt if and only if x ~ Y in X. For example, the order on Z+ t is such that Ois maximal.
Suppose that (Xik::~l is a sequence of linearly ordered sets, and let

denote the ordered Cartesian product. The set X carries an order <x defined by declar-
ing, for all tuples (Xi), (Yi) E X, that (Xi) <x (Yi) if and only if there exists some m ~ 1
such that Xi = Yi for all 1 ~ i < m, and Xm < Ym. This order on X is linear, and
is called the lexicographic order (or dictionary order). Fix an arbitrary enumeration of
the countable set ~+ X {O, 1, ... ,N}. Consider L as a subset of the ordered Cartesian
product of copies of the set Z+ indexed by this enumeration. Write L(~) for the set L
with the associated lexicographic order. For any L E L, write

~(L) ( L Lo,oCY., L Lo,lCY., ... , L Lo,NCY.) E (º+ t)N+r,
oE6+ oE6+ oE6+

ILI (L Lo,o, L Lo,l,···, L Lo,N) E Z+t X Z~.
oE6+ oE6+ oE6+

For any X E º+, define a map

by

Bx(L) = (~(L), ILI, L), L E Lx.

Consider the sets (º+ t)N+l and Z+t X Z~ to both carry lexicographic orders. Thus the
Cartesian product

(2.3)

carries a lexicographic arder, and this order is linear. For any X E º+, we consider the
set Lx to carry the linear order defined by the injective map Bx and the linearly ordered
set (2.3).

2.2. Decomposition of the Shapovalov formo

Lemma 2.4. For any partitions À,;..t E P,
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Proo]. By choice of order for the basis {x(--y) I "t E ê} of 9+, and since y(p,) = w(x(p,)),
by definition,

x(>.)y(p,) = x(>.o) ... x(>.N)y(p,N) ... y(p,0).

As [x(N), y(p,j) 1 = O if i + j > N, the claim follows. o
Proposition 2.5. Suppose that >.,p, E Px, X E º+, and further that 6.(>.d) = 6.(p,d),
for all O ~ d ~ k, for some O ~ k ~ N. Then

B(y(>.),y(p,)) = rr B(y(>.d),y(p,d)) . B(y(>.'),y(p,')),
O~d~k

Proo]. Under the hypotheses of the claim,

q(x(>.)y(p,*))

q(x( >.o)y((p,*)N)x( >.1)y( (p,*)N-1) ... x( >.N)y((p,*)0))

(by Lemma 2.4)

q(x(>.O)y((p,0) *)x( x 1)y( (p,1)*) ... x(>.N)y( (p,N) *))

rr q(x(>.d)y(p,d*)). q(x(>.k+1)y((p,k+1)*) ... x(>.N)y((p,N)*))
O~d~k
(since qlu(ij)o is an algebra homomorphism)

rr q(x(>.d)y(p,d*)). B(y(>.'),y(p,'))
O~d~k
(by Lemma 2.4)

= (rr B(y(>.d),y(p,d))) .B(y(>.'),y(P,')).
O~d~k

o

Lemma 2.6. Suppose that >.,p, E Pare partitions of homogeneous degree d.

i. If d = O and 1>'1< 1p,1,or if d > O and 1>'1> 1p,1,then B(y(>.),y(p,)) = O.
ii. If 1>'1= 1p,1and 1>'°1=l-Ip,°l for some D: E 6.+, then B(y(>.),y(p,)) = O.

Proof. This Lemma follows essentially from Lemma 2.7 (page 38), applied to the Lie
algebra with triangular decomposition (9, ~o, 6,9+,w). Let >.,p, E P be partitions of
homogeneous degree d. Since
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it follows from Lemma 1.1 that

(2.7)

On the other hand,

(2.8) deg~B(y(À.),Y(J-l)) ~ 1>'1, 1J-l1

by Lemma 2.7 (page 38). Therefore, if B(Y(>.),Y(J-l)) =1= 0, and

B(Y(>.),Y(J-l)) E U(6)m,

it must be that

(2.9) m ~ I>'IN and m ~ 1J-lIN,

since the degree of h E 6 in t is at most N. Combining (2.7) and (2.9), it follows that if

B(Y(>.),Y(J-l)) =1= 0, then

(2.10) 1>'ld+ 1J-lI(N- d) ~ IXIN,

and

If d = 0, then inequality (2.10) becomes 1J-l1~ 1>'1. Hence, if d = 0, and 1>'1< 1J-l1,then

B(Y(>.),Y(J-l)) = O. If d > 0, then inequality (2.11) yields 1>'1~ 1J-l1.Hence, if d > ° and

1>'1> 1J-l1,it must be that B(Y(>.),Y(J-l)) = O. This proves part (i).

Suppose now that 1>'1= 1J-l1= r, and that IN\<I =1= IJ-lQIfor some a E .6.+. Then, by

Lemma 2.7 (page 38), the inequality (2.8) becomes strict. Hence, if B (y( >.), Y(J-l)) =1= 0,
then the inequalities (2.10) and (2.11) are also strict. These both yield rN < rN, which

is absurdo Hence it must be that B(Y(>.),Y(J-l)) = 0, and part (ii) is proven. O

Lemma 2.12. Suppose that v E º and v'Í- º+. Then U(gr C g_U(g).

Proof. Because 9 = g- EB(6 EBg+), we have U(g) = U(g_) 0 U(6 EBg+) by the PBW

Theorem. The set of all weights of the ~o-module U(6 EBg+) is precisely º+, and so, for

any v E º,
(2.13)

Suppose that v E º and v 'Í- º+. Then, in particular, v - X =1= 0, for any X E º+, and

so
U(g_r-X C g_U(g).

Hence U(g)l/ C g_U(g) by equation (2.13). O
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Theorem 2.14. Suppose that X E º+, and that L, M E c.; If L> M, then

B(y(>.),y(J.L)) = O,

for all >. E PL and J.LE PM·

Proof. Suppose that L, M E Lx. and that L > M. Then one of the following hold:

• !::l(L) > !::l(M); or
• !::l(L) = !::l(M) and ILI > IMI; or
• !::l(L) = !::l(M), ILI = IMI and L> M in L(~).

Let >. E PL and let J.LE PM·

Suppose that !::l(L) > !::l(M). Then there exists O ~ l ~. N such that !::l(>.d) = !::l(J.Ld)
for all O ~ d < l, and !::l(>.l) > !::l(J.Ll) in º+t, i.e. !::l(>.l) < !::l(J.Ll) in º+. If l > O, then
Proposition 2.5 with k = l-I gives that

(2.15) B(y(>.),y(J.L)) = ().B(y(>.'),y(J.L'))

for some () E S(6), where X = U1":::d":::N>.d and J.L'= U1":::d":::NJ.Ld. ln the remaining case-...;;:::-...;;::: -s -...;::

where l = O,equation (2.15) holds with >. = X, J.L= J.L'and ()= 1. By Lemma 2.4,

(2.16) B(y(>.'),y(J.L')) = q(x(>.I)Y((J.L*)N-l) ... x(>.N)y((J.L*)O)).

Since !::l((J.L*)N-l) = !::l(J.Ll), the monomial x(>.I)Y((J.L*)N-l) has weight v = !::l(>.l) - !::l(J.Ll).
Now v rt º+, since !::l(>.l) < !::l(J.Ll) in º+, and so

x(>.I)Y((J.L*)N-l) E g_U(g)

by Lemma 2.12. Therefore

B (y( >.'), Y(J.L')) = O,

by equation (2.16) and the definition of the projection q. Hence B(y(>.),y(J.L)) = O by

equation (2.15).

Suppose instead that !::l(L) = !::l(M). Then by Proposition 2.5,

B(y(>.),y(J.L)) = II B(y(>.d),Y(J.Ld)).
O:(d:(N

Suppose that ILI > IMI. Then either I>.dl < lJ.Ldl,with d = O, or I>.dl > lJ.Ldlfor some
O< d ~ N. In either case,
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by Lemma 2.6 part (i), applied to the partitions Àd, f.td. Suppose that ILI = IMI and
that L> M in .c(~). Then

Lo,d -I Mo,d for some a E ~+, O~ d ~ N,

so that I(Àd)OI -I 1(f.td)OI. Therefore, Lemma 2.6 part (ii), applied to the partitions
Àd,f.td, implies that B(Y(Àd),y(f.td)) = O. Hence B(Y(À),y(f.t)) = O. D

3. Values of the Shapovalov Form

Throughout this section, let (g,f)o,f),g+,w) denote aLie algebra with triangular de-
composition, and let 9 denote the truncated current Lie algebra of nilpotency index N
associated to g. ln Section 2, the space U(g_)-X is dec?mposed,

U(g_)-X = EB span(PL)
LELx

and it is demonstrated that the determinant of the (modified) Shapovalov form Bx
on U(g_)-X is the product of the determinants of the restrictions of Bx to the spaces
span(PL), L E .cx. ln this section, the restrictions Blspan(Pd are studied. Firstly, the
values of B Ispan(Pd with respect to the basis y (À), À E P L, are calculated (cf. Proposi tion
3.3). This permits the recognition of Blspan(Pd' in the case where 9 carries a non-
degenerate pairing, as an S(6)-multiple of a non-degenerate bilinear form on span(PL)
(cf. Theorem 3.20). The form on span(PL) is constructed as a symmetric tensor power
of the non-degenerate form on g.

3.1. Values ofthe restrictions Blspan(h). Whenever À,f.t E P and IÀI = If.tl = n,
let

TESym(n) l:(i:(n

where (Ài) and (f.ti), 1 ~ i ~n are arbitrary enumerations of À and u, respectively.
Lemma 3.1. Suppose that À, f.t E P and IÀI = If.tl.

1. S(À,f.t) = S(f.t,À);
11. if, in addition, À and f.t are homogeneous of degree-d in t, then
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Proof. Let n = 1>'1= 1f.L1,and choose some enumerations (>'i), (f.Li), 1 ~ i ~ n of >.

and u, The anti-involution w point-wise fixes S(6), and so w fixes S(>.,f.L). On the other

hand,

w(S(>',f.L)) = L rr W([X(>'T(i»),Y(f.Li)])
TESym(n) l!(i!(n

L rr [X(f.Li),y(>'T(i»)]
TESym(n) l!(i!(n

proving part (i). Suppose that >., f.L are homogeneous of degree-d in t. For each 1~ i ~n,
let Ei, "fi E C be such that

Then

(3.2) S(>.*, f.L) = L rr [X(ET(i») ® tN-d, y("ti) ® td].

TESym(n) l!(i!(n

For any 1 ~ i ~n and T E Sym(n),

[X(ET(i»),y("ti)] ® tN

[X(ET(i») ® td,y("ti) ® tN-d],

and hence S(>.*,f.L) = S(>.,f.L*) by equation (3.2), proving part (ii). o
Proposition 3.3. Suppose that L E L, and that >., f.L E PL. Then

(3.4) B(y(>.),y(f.L)) = rr rr S(N:t,d, (f.LCt,d)*)
O!(d!(N CtE6.+

and B(y(>.),y(f.L)) = B(y(f.L),Y(>.)).

Proof. Let x, f.L E PL, L E c, and let O ~ d ~ N. Then

I>.Ct,dl = If.LCt,dI = LCt,d, a E .6.+.

Write l = I>.dl = lf.Ldl. Then by Lemma 2.7 (page 38), applied to the Lie algebra with

triangular decomposition (g, 1J0, 6, g+, w),

deg&B(y(>.d),Y(f.Ld)) ~ l,

and the degree-l component of B (y(>.d), Y(f.Ld)) is given by

(3.5) rr S(>.Ct,d, (f.LCt,d)*),
CtE6.+
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since B(Y(Àd),Y(J..Ld)) = q(X(Àd)Y(J..Ld*)). By Lemma 1.1, and since ld+l(N - d) = lN,

B(Y(Àd),Y(J..Ld)) E U(6)1N-

Therefore deg~B (Y(Àd), Y(J..Ld)) ~ l, since degt4> ~ N for any 4> E 6; and so B (Y(Àd), Y(J..Ld))
is homogeneous of degree-l in 6, and is equal to the expression (3.5). By Proposition
2.5,

B(Y(À),y(J..L)) = rr B(y(.\d),Y(J..Ld)),
O(d(N

and so the equation (3.4) follows, The symmetry of Blspan(PLl follows from equation
(3.4),

rr rr S(X~,d, (J..La,d)*)
O(d(N aE6.+

rr rr S((J..La,d)*,Àa,d)
O(d(N aE6.+· '.

rr rr S(J..La,d, (X"d)*)
O(d(N aE6.+

and parts (i) and (ii) of Lemma 3.1. o

3.2. Tensor powers of bilinear forms. If U, Vare vector spaces, and 4> : U x V ---->

Ik is a bilinear map, write

(3.6)

for the unique linear map such that ~(u @ v) = 4>(u,v) for all u E U, v E V.
Proposition 3.7. Suppose that U, Vare vector spaces with bilinear forrns. Then the
vector space U 0 V carries a bilinear form defined by

(3.8)

for all UI, u2 E U and vI, v2 E V. Moreover, if the forms on U and Vare non-degenerate,
then so is the form on U 0v.

Proo]. Let 4> : U x U ----> Ik, 'Ij; : V x V ----> k denote the bilinear forms on U, V, respectively.
Let

1/ : (U 0 U) x (V 0 V) ----> k

be given by
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for all Ul, U2 EU, VI, V2 E V, where the maps J,;j; are defined by (3.6). Then v is
bilinear, and so defines a linear map

í/ : (U ® U) ®(V ® V) --4 Ik

by (3.6). Since
(U®U)®(V®V) ~ (U®V)®(U®V),

the map í/ may be considered as a bilinear form

( ·1· ) : (U ® V) x (U ® V) --4 lk.

Now if Ul, U2 E U, VI, V2 E V, then

í/(Ul ® U2 ® VI ® V2)

V(Ul ® U2, VI ® V2)

J(Ul ® UÚ;P(Vl ® V2)

cp( Ul, U2)'Ij;( VI, V2),

and so this is the required bilinear formo The non-degeneracy claim follows immediately
from the definition (3.8) of the formo O

For any vector space U and non-negative integer n, write

Tn(U) = U ® ... ® U, (n times)

for the space of homogeneous degree-n tensors in U. For any Ui E U, 1 !( i !( n, write

so that

Write
n 1

Ul" 'Un = rr Ui = I" L ®~=1 Ua(i)n.
i=1 aESym(n)

for the symmetric tensor in Ui EU, 1 !( i !( n, and let
n

sn(u) = span {rr Ui 1 ui E U, 1 !( i !( n}

i=1

denote the space of degree-n symmetric tensors in U. Let

T(U) = EB Tn(U),
n~O

S(U) = EB sn(u),
n~O

denote the tensor and symmetric algebras over U, respectively.

...•
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Proposition 3.9. Suppose that U is a vector space endowed with a bilinear form, and
that n ~ O. Then sn(u) carries a bilinear form defined by

for any Ui, Vi E U, 1 ~ i ~n. Moreover, if the form on U is non-degenerate, then so is
the form on S" (U).

Proof. Let A(U) denote the two-sided ideal of T(U) generated by the elements of the
set

Then T(U)

n ~ O,

{ Ul 0 U2 - U2 0 Ul I Ul, U2 EU} .

S(U) EB A(U) is a direct sum of graded vector spaces. Hence, for any

(3.10)

is a direct sum of vector spaces, where An(u) denotes the homogeneous degree-n com-
ponent of A(U). By Proposition 3.7, the tensor power Tn(U) carries a bilinear form
defined by

(3.11)
n

(®7=1 Ui I ®7=1 Vi ) = II (Ui I Vi ),
i=1

Observe that for any Ui, Vi E U, 1 ~ i ~n,
n

L II (Ui I Vcr(i) )
crESym(n) i=1

is independent of the enumeration of the elements VI, ... ,Vn. It follows that the direct
sum (3.10) is orthogonal, with respect to the bilinear form (3.11). A form is defined on
sn(u) by restriction of the form on Tn(U). For any Ui, Vi E U, 1 ~ i ~n,

n n

1 2 IIn

(,.) L L (Ucr(i) I Vr(i) )n.
crESym(n) rESym(n) i=1i=1 i=1

1, L II( Ui I Vr(i))'n.
rESym(n) i=1

n

Hence sn(u) carries the required bilinear formo If the form on U is non-degenerate, then
by Proposition 3.7 the form on Tn(U) is non-degenerate, and since the sum (3.10) is
orthogonal, the restriction of the form to sn(u) is non-degenerate also. O
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3.3. Lie algebras with non-degenerate pairing. ALie algebra with triangular
decomposition (g, ~o,~, g+, w) is said to have non-degenerate pairing if for all a E .60,
there exists a non-zero h( a) E ~, and a non-degenerate bilinear form

such that

(3.12)

If 9 has a non-degenerate pairing, then for any a E .60, the space

is one-dimensional, and so the elements h(a) and h( --":0:) can differ only by a non-zero
scalar.
Example 3.13. Let 9 be a symmetrisable Kac-Moody Lie algebra over k (cf. Example
1.3, page 33), and let ( . I· ) denote a standard bilinear form on 9 (as per [20, page 20]).
The restriction of this form to ~ is non-degenerate. Therefore, for any X E ~*, there
exists a unique h(X) E ~ such that

(X,h) = (h(X) 1 h) h E ~.

The map h : ~* -+ ~ is a linear isomorphism. For any a E .60, let

be given by

Then for any a E .60, the form ( . 1 . )0' is non-degenerate, and is such that equation (3.12)
holds (see, for example, Theorem 2.2 of [20]). Hence 9 carries a non-degenerate pairing.
Example 3.14. Suppose that 9 is aLie algebra with triangular decomposition, such
that for any root a E .60,

Then for each a E .60, we may choose an arbitrary non-zero

and let the form ( . 1 . )0' : gO' X gO' -+ k be defined by equation (3.12).



h(a) = 2mLo + 'ljJ(m)c, a=mb.
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Example 3.15. Let O denote the Virasoro algebra (cf. Example 1.4, page 1.4). Let
a E .6, and let m be the non-zero integer such that a = mb. Then

and [Lm,L-m 1 = 2mLo + 'ljJ(m)c is non-zero. Therefore, by Example 3.14, O carries a
non-degenerate pairing, with

Example 3.16. The Heisenberg Lie algebra (1 carries a non-degenerate pairing (cf.
Example 1.5, page 34). Let a E .6, and let m be the non-zero integer such that a = mb.
Then

(1-0 = Ika_m,

and [am, a-m 1 = mti is non-zero. Therefore, by Example 3.14, (1 carries a non-degenerate
pairing, with

h(a) = mli, a=mb.

Suppose that (O,f)o,f),O+,w) is aLie algebra with triangular decomposition and non-
degenerate pairing, and let fi denote the truncated current Lie algebra with nilpotency
index N associated to g. Non-degenerate bilinear forms are defined on the homogeneous
degree components of the roots spaces of fi in the following manner. For all a E .6+ and
O~ d ~ N, define a non-degenerate bilinear form ( ·1· )o,d on 000 td by

(3.17)

For all a E .6+ and O~ d ~ N, let

Lemma 3.18. Let a E .6+ and let O~ d ~ N. Then,

for all cjJ, 'ljJ E êo,d.

Proof. Let cjJ', 'ljJ' E C be such that cjJ = (cjJ', d) and 'ljJ = ('ljJ', d). Then

y('ljJ*) = y('ljJ') 0 tN-d = w(x('ljJ')) 0 tN-d,
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and X(eP) = X(eP') @ td. Therefore

[X(eP),Y(1f*)] = [X(eP'),W(X(1f'))] @tN

(X(eP') I X(1f') )Qh(a) @ tN

(X(eP) I X(1f) )Q,dh(a) @ tN,

by equation (3.17). O

3.4. Recognition of the restrictions B Ispan(PL)' For any L E L, let

AL = ® ® SLc>,d(gQ @td).

O:(d:(N QE6.+

The vector space AL has a basis parameterised by the partitions in PL:

where, for all À E P,

X(À) = ® ® rr x(-y).
O:(d:(N QE6.+ -yEÀc>,d

Proposition 3.19. Let a E ~+ and O :s; d :s; N. If À, J..L E Pare partitions with

components in êQ,d such that IÀI = l/-ll = k, then

where ( . I· ) is the form on Sk(gQ @ td) defined by the form on gQ @ td and Proposition

3.9.

Proo]. The claim follows from Lemma 3.18 and the definition of the form on Sk(gQ@td).

Let (Ài) and (/-li), 1 :s; i :s; k be any enumerations of À and u, respectively. Then:

S(À, /-l*) = L rr [X(Àr(i))' Y(/-li*)]
rESym(k) l:(i:(k

L rr (X(Àr(i)) I X(/-li) )Q,dh(a) @ tN

rESym(k) l:(i:(k

k! (h(a) @ tN)k ~! L rr (X(Àr(i)) I X(/-li) )Q,d
rESym(k) l:(i:(k

.•
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For any L E L, the vector spaces span(PL) and AL are isomorphic by linear extension
of the correspondence

Let ( ·1· ) denote the non-degenerate form on AL defined by the forms (3.17) on 90 ® td

and by Propositions 3.7 and 3.9. 50

(X(À) 1 x(J.L) ) = II II (x(Ào,d) 1 x(J.L°,d) ),
O~d~N oEb.+

for all À, J.LE PL, where (X(Ào,d) 1 X(J.L°,d) ) is defined by Proposition 3.9. Let h be the
bilinear form on span(PL) given by bilinear extension of

Then the form J L is non-degenerate.
Theorem 3.20. For any L E L,

Blspan(Pd = h(L) .h

where h(L) E 5(6) is given by

h(L) = II II (Lo,d!) (h(a) ® tN)L",d.
O~d~N oEb.+

Proof. Let À, J.LE PL. Then:

B(Y(À),y(J.L)) = II II 5(Ào,d, (J.L0,d)*)
O~d~N oEb.+

(by Proposition 3.3)

II II (Lo,d!) (h (a) ® tN)L",d( x(Ào,d) 1 x(J.L°,d) )
O~d~N oEb.+

(by Proposition 3.19)

[II II (Loi) (h(a) ® tN)L",d] . (x(À) 1 x(J.L) )
O~d~N oEb.+

h(L) . h( y(À) 1 Y(J.L))·

The set {y(À) 1 À E PL} is a basis for span(PL), and so the equality follows. O
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4. Reducibility of Verma Modules

Let (9, ~o, ~, 9+, w) denote aLie algebra with triangular deeomposition and non-degen-
erate pairing, and let (g, ~O, 6, g+, w) denote the truneated eurrent Lie algebra of nil-
poteney index N assoeiated to 9. In this seetion we establish redueibility eriterion for
a Verma module SV(A)for 9 in terms of evaluations of the funetional A E 6*. We then
interpret this result separately for the semisimple finite-dimensional Lie algebras, for the
affine Kae-Moody Lie algebras, for the symmetrisable Kae-Moody Lie algebras, for the
Virasoro algebra and for the Heisenberg algebra.
Theorem 4.1. Let A E 6* and let X E Q+.

i. The Verma module SV(A) for 9 eontains a non-zero primitive veetor of weight
Alflo- X if and only if

(4.2)

for some a E 6+ sueh that X - a E Q+;

11. SV(A) is redueible if and only if equation (4.2) holds for some a E 6.

Proo]. Let A E 6* and let a E 6+. By Proposition 2.4 (page 37), the Verma module
SV(A)has a non-zero primitive vector of weight Alflo- X if and only if the form Fx(A) is
degenerate. The determinants det Fx and det Bx ean differ only in sign, and

Henee sueh a primitive vector exists if and only if (A, det Bx) vanishes. Now

(A, det Bx) = (A, rr det B Ispan(PLl)
LELx

(by Corollary 2.2)

(A, rr deth' h(L)lhl)
LELx

(by Theorem 3.20)

rr deth' (A,h(L))lhl.
LELx

For any L E LX' the form J L is non-degenerate, and so det J L is a non-zero sealar. Henee
(A,detBx) vanishes if and only if (A,h(L)) vanishes for some L E LX' As

h(L) = rr rr (La,d!) (h(a) 0 tN)La,d,
O:(d:(N aEL'>.+



64 4. HIGHEST-WEIGHT THEORY FOR TRUNCATED CURRENT LIE ALGEBRAS

(A,det Bç) vanishes if and only if (A,h(a) 0 tN) is zero for some a E .6.+ for which
there exists L E LX and O ~ d ~ N with La,d > O. This condition on a is equivalent
to requiring that there exist some partition f.l E Px for which If.lal > O, which occurs
precisely when X - a E º+. Hence the first part is proven; as h(a) and h( -a) are
proportional, for any a E .6., the second part follows. O

It is apparent from Theorem 4.1 that the reducibility of a Verma module m(A) for 9
depends only upon AN.

4.1. Symmetrisable Kac-Moody Lie algebras. Let 9 be a symmetrisable Kac-
Moody Lie algebra as per Examples 1.3 (page 33) and 3.13. The map

h:~*--->~,

from Example 3.13 transports the non-degenerate form ( ·1 . ) on ~ to the space ~* via

X,'YE~*.

Hence, for any A E 6* and a E .6.,

by definition of the map h. The following Corollary of Theorem 4.1 may be viewed as a
generalisation of Corollary 4.4.
Corollary 4.3. Let 9 be a symmetrisable Kac-Moody Lie algebra, and let 9 denote
the truncated current Lie algebra of nilpotency index N associated to g. Then, 'for any
A E 6*, the Verma module m(A) for 9 is reducible if and only if AN is orthogonal to
some root of 9 with respect to the symmetric bilinear formo

4.2. Finite-dimensional semisimple Lie algebras. The following Corollary is
a special case of Corollary 4.3.
Corollary 4.4. Let 9 be a finite-dimensional semisimple Lie algebra, and let 9 denote
the truncated current Lie algebra of nilpotency index N associated to g. Then, for any
A E 6*, the Verma module m(A) for 9 is reducible if and only if AN is orthogonal to
some root of 9 in the geometry defined by the Killing formo

Hence the reducibility criterion for Verma modules for 9 can be described by a finite
union of hyperplanes in h".
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Figure 1: Reducibility criterion for Verma modules of g, where 9 is of type G2

Example 4.5. Figure l(a) of page 12 and Figure 1 of page 65 illustrate the reducibility

criterion for the Lie algebras 9 over IR with root systems A2 and G2, respectively. Roots

are drawn as arrows. A Verma module m(A) for 9 is reducible if and only if AN belongs

to the union of hyperplanes indicated.

4.3. Affine Kac-Moody Lie algebras. We refine the criterion of Corollary 4.3

for the affine Kac-Moody Lie algebras. Let fi denote a finite-dimensional semisimple Lie

algebra over the field k with Cartan subalgebra 6, root system Li and Killing form ( . I . ).

Let 9 denote the affinisation of fi,

with Lie bracket relations

[x ® sm, y ® sn ]

[d,x®sm]

[x, y] ® sm+n + mOm,-n( x I y)c, [c,g] = 0,

for all x, y E fi and m, n E Z. Let ~ denote the root system of g, and let

~ = ~EBkc EBkd ,
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denote the Cartan subalgebra. Consider any A E 6* as a funetional on I) by declaring

A(e) = A(d) = O.

This identifies 6* with a subspaee of 1)*. Let Õ,TE 1)* be given by

0,

0,

(Õ, e) = 0,

(T, e) = 1,

(S.d) = 1,

(T,d) = 0,

so that

(4.6) 1)* = 6* EB lkõ EBlk-r.

The symmetrie bilinear form ( ·1 . ) on 1)* may be obtained as an extension of the Killing
form on 6*, via

(4.7) ( Õ 1 6* ) = (T 1 6* ) = 0, ( Õ 1 Õ ) = (T 1 T) = 0, (ÕIT)=l.

The sum (4.6) is orthogonal with respeet to this formo For any A E 1)*, let Ã E 6*
denote the prajeetion of A on to 6* defined by the deeomposition (4.6). The root system
b, = b,re U b,im of 9 is given by,

(4.8) b,re = { a + mÕ 1 a E Li, m E Z} , b,im = { mÕ 1 m E Z, m =I=- O} .

Corollary 4.9. Let 9 denote an affine Kae-Moody Lie algebra, and let 9 denote the
truneated eurrent Lie algebra of nilpoteney index N assoeiated to g. Then, for any
A E 6*, the Verma module QJ(A) for 9 is redueible if and only if (AN, e) = ° or (AN 1 a) =
m (AN, e) for some a E Li and m E Z.

Proo]. It is immediate from (4.6) and (4.7) that

A = Ã + (A 1 T)Õ + (A 1 Õ)T.

Henee

(A,e) = (Alõ)(T,e) = (Alõ).

Therefore (A, e) = ° if and only if (A 1 j3) = ° for some j3 E b,im. For a E Li and mE Z,

( A I a + mÕ ) = ( A I a) + m( A I õ) = ( Ã 1 a) + m(A, e)

and so (A 1 a + mÕ ) = ° if and only if ( Ã 1 a ) = -m(A, e). The claim now follows from
(4.8) and Corollary 4.3. O
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(a) 9 of type A~l)

67

(b) 9 of type B~l)

Figure 2: Reducibility criterion for the Verma modules of ·9, where 9 is of type A~l) or
B(l)

2

Example 4.10. Figures 2(a) and 2(b) of page 67 and Figure 1(b) of page 12 illustrate
the reducibility criterion of Corollary 4.9 in the case where k = IR and 9 is the Lie
algebra with root systems A2, B2 and G2, respectively. Thus, respectively, 9 is the affine
Kac-Moody Lie algebra of type A~l), B~l) and G~l). A Verma module m(A) for 9 is
reducible if and only if AN belongs to the described infinite union of hyperplanes, where
the length of the dashed line segment is I(AN, c) I times the length of a short root for g.

4.4. The Virasoro Algebra. The following Corollary is immediate from T.heorem
4.1 and Examples 1.4 (page 1.4) and 3.15.
Corollary 4.11. Let 9 denote the Virasoro algebra, and let 9 denote the truncated
current Lie algebra of nilpotency index N associated to g. Then, for any A E 6*, the
Verma module m(A) for 9 is reducible if and only if

for some non-zero integer m.

3Hence, if 'ljJ is defined by 'ljJ(m) = m 12m and k = IR, a Verma module m(A) for fi
is reducible if and only if AN belongs to the infinite union of hyperplanes indicated
in Figure 3. The extension of a functional in the horizontal and vertical directions is
determined by evaluations at c and Lo, respectively.
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Figure 3: Reducibility criterion for Verma modules of g, where 9 is the Virasoro algebra

4.5. The Heisenberg Algebra. The following Corollary is immediate from The-
orem 4.1 and Examples 1.5 (page 34) and 3.16.
Corollary 4.12. Let â denote the truncated current Lie algebra of nilpotency index N
associated to the Heisenberg algebra a. Then, for any A E 6*, a Verma module QJ(A)for
â is reducible if and only if (AN, h) = O.

4.A. Characters of lrreducible Highest- Weight Modules

Let 9 denote aLie algebra with triangular decomposition and non-degenerate pairing,
and let 9 denote the truncated current Lie algebra of nilpotency index N associated to
g. Theorem 4.1 describes a reducibility criterion for Verma modules for g, but provides
little information on the size of the maximal submodule. This appendix describes the
characters of the irreducible highest-weight g-modules under the assumption that I) is
one-dimensional (and hence 1)0 = 1)). For example, 9 may be the Lie algebra sl(2), the
Witt algebra, or a modified Heisenberg algebra.

For any "(E 1)*, let ,C( "() denote the irreducible highest-weight g-module of highest-weight
"(, and for any A E 6*, let 'c(A) denote the irreducible highest-weight g-module of highest
weight A. Let

{eX I X E 1)* }
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denote a multiplicative copy of the additive group 1)*, so that

X" E 1)*.

If M is a vector space graded by 1)*, M = EBxE~.MX,such that all components MX are
finite-dimensional, write

char M = L (dimMX) eX.

XE~'

Proposition 4.A.1. Let 9,9 be as above, and let A E 6*. Let o:::;; m:::;; N be minimal
such that An = O for all m < n :::;;N. Then, if m > O,

and if m = O, then ~(A) is a g-module isomorphic to ~(Ao).

Proo]. Suppose that m = O. Since 9 is the quotient of 9 by the ideal EBO<i:::;Ng® ti, the
g-module ~(Ao) is a natural g-module. Moreover, ~(Ao) is an irreducible highest-weight
g-module of highest-weight A, and so ~(Ao) ~ ~(A).

Suppose instead that m > O. Then it must be that Am I- o. Let g' denote the truncated
current Lie algebra of nilpotency index m associated to g. Let

by Proposition 2.3 part (ii) (page 36), and so the claim follows. o

A' = (Ao, ... , Am) E (6')*,
and let QJ(A') denote the Verma module for g' of highest-weight A'. Since g' is the
quotient of 9 by the ideal EBm<i:::;N9® ti, the g'-module QJ(A') is a natural g-module.
Moreover, QJ(A') is of highest-weight A as a g-module. Since I) is one-dimensional, QJ(A')
is an irreducible g'-module, by Theorem 4.1. Hence QJ(A') is the irreducible g-f!1odule
of highest-weight A, i.e. ~(A) ~ QJ(A') as g-modules. In particular, ~(A) and QJ(A') are
isomorphic as 6*-graded vector spaces. Now

4.B. lmaginary Highest- Weight Theory for Truncated Current Lie Algebr as

Let fi denote the finite-dimensional Lie algebra sl(2) over the field k, with root system
fi = {±cx}, and let 9 denote the affinisation of fi (cf. Subsection 4.3). Let I) denote the
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Cartan subalgebra of 9, let tl denote the root system, and let Õdenote the fundamental
imaginary root. Let

tl+ = { a + mÕ I m EZ} U {mb I m EZ, m > O} ,

so that tl = tl+ U - tl+. Let

9+ = EB ,6Ell+ 9,6,

so that

(4.B.1) 9 = 9- EB f) EB 9+·

The subset tl+ C tl is the imaginary partition of the root system (cf. Section 2 of
Chapter 1). The decomposition (4.B.1) defined by tl+ does not satisfy the axioms of
a triangular decomposition in the sense of Chapter 3, nor in the sense of [24]: the
additive semigroup º+ generated by tl+ is not generated by any linearly independent
subset of º+. Let g denote the truncated current Lie algebra of nilpotency index N
associated to 9. We investigate the difRculty inherent in employing our techniques to
derive reducibility criterion for the Verma modules QJ(A) for g, A E 6*. The Theorem
3.20 holds in this setting. However, as we shall see, the degeneracy of an evaluation
(A, Bx) of the modified Shapovalov form may not be deduced from the degeneracy of
the evaluations (A,Blspan(h»)' where L E Px'

Let N = 1, and as per Chapter 3 and Section 1, let

c = tl+, ê = C x {O, I}.

All root spaces of 9 are one-dimensional, so the choice of basis for 9+

C:3 (3 ~ x((3) E 9,6

is unique up to scalar multiples. Fix the order of the basis elements {x({) I, E ê} by
firstly comparing degree in the indeterminate t, and secondly by the following order of
{x((3) I (3 E C}:

···x(a-2Õ), x(a-õ), x(a), x(a+õ), x(a+2õ),··· ... x(õ), x(2Õ),···

For any integer m > 0, define partitions

f.Lm {(a - mõ,O)} U {(õ,O) (m times)},

1m { (a - mb, 1) } U { (õ, 1) (m times) } ,

and À = {(a,O)}. Let X = a E º+. Then

{À} U {f.Lm, "[m. 1m> O} C Px'

•••
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Elementary computation using the Lie bracket relations shows that, for any m > O,

Hence, if the basis {Y(J.L) I J.L E Px} is to be linearly ordered so that the matrix repre-
sentation of Bx is upper triangular, then it must be that both

for all m > O. Thus the matrix of Bx would be bilaterally infinite.

The degeneracy of a bilaterally-infinite upper-triangular matrix can not be determined
from its diagonal entries, as the following simple example demonstrates. Let V denote
the vector space with basis the symbols

(4.B.2) {v-. I m E Z}

and let <I>: V -t V be defined by linear extension of the rule

mEZ.

Then <I>is an automorphism of V. Order the basis elements (4.B.2) by their indices.
Then the matrix representation M of <I>with respect to this ordered basis will be upper
triangular, in the sense that Mi,j = O whenever i > j. However, the diagonal entries
Mi,i are all identically zero.



 



CHAPTER 5

Characters of Exponential- Polynomial Modules

1. Preliminaries

For any positive integer r, denote by Zr the additive group of integers considered modulo
r, by R(r) the set of primitive roots of unity of order r, and by (r some fixed element of
R(r). Denote by ord 1] the order of a finite-order automorphism 1]. If 1] is an endomor-
phism of a vector space V, write

VIJ = {v E V 11](v) = ÀV}

for the eigenspace of eigenvalue À, for any À E k. Let A = Ik[t,t-l].

1.1. Ramanujan sums. Let ~ denote the Mõbius function, i.e. the function

u : N ---> {-1,0, I}

such that ~(d) = (_1)1 if d is the product of l distinct primes, l ~ 0, and ~(d) = °
otherwise. For any r > 0, the function u satisfies the fundamental property

(1.1) L ~(d) = 8r,l,

dlr

where 8 denotes the Kronecker function. A summation I:d1r ad is to be understood as
the sum of all the ad where d is a positive divisor of r. Let cp : N ---> N denote Euler's
totient function, so that

cp (d) = # {° < k ~ d I gcd (k, d) = 1 } , d> O.

For any positive integer d and ti E Z, the quantity Cd( n) defined by (4.3) (page 13) is
called a Ramanujan sum, a von Sterneck function, or a modified Euler number. These
quantities have extensive applications in number theory (see, for example, [29], [25]),
although we require only the most basic properties, such as those described in [11].ln
particular, we note the identities

(1.2) cr(n) = L (n = L d~(~)
(E3t(r) dlgcd(r,n)

73
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where n E Z and r > O. The function Cd(-) : Z -'> lk is a d-even arithmetic function, i.e.

Any r-even arithmetic function may be expressed as a linear combination of the functions
Cd('), where d is a divisor of r [10]; such an expression is called a Ramanujan-Fourier
transformo

1.2. Exponential-polynomial functions. Define an endomorphism T of the vec-
tor space F via

(T . <p)(m) = <p(m + 1), mE Z, <pE F.

(h ® a) . b = (a· <p)(O)(ab), aE.A, b E imepC A.

The rule t 1--7 T endows F with the structure of an A-module. For any ip E F, the action
of 6 on H(<p), via ep, may be equivalently defined by

Define E C F by

(1.3) E = {<pE F I c· <p= O for some c E lk[t]}

For any sp E E, the annihilator ann( <p) C lk[t]is a non-zero ideal of lk[t];the unique monic
generator cepE ann( <p) is called the characteristic polynomial of ip. The equivalence of
these definitions and those given in Section 1of Chapter 1 is demonstrated by Proposition
1.8. The definition (1.3) implies that E is a submodule of the A-module F.

The exponential-polynomial functions are those whose values solve a homogeneous linear
recurrence relation with constant coefficients. lndeed, suppose that c(t) E lk[t] is a non-
zero polynomial of degree q, and write c(t) = 2:.:%=0 Cktk. Then c· sp == O if and only
if

(1.4) O = (c· <p)(m) = co<p(m) + cl<P(m + 1) + ... + cq<p(m + q),

for all m E Z, i.e. precisely when the values of sp satisfy the recurrence relation (1.4)
defined by C. ln particular, a solution sp to c· sp = O is determined by any q of its
consecutive values. Therefore, if <pE E is non-zero, then the support of sp is not wholly
contained in any of the infinite subsets of consecutive integers N, -N C Z. It follows
from Lemma 1.5 that the submonoid of Z generated by the support of sp is of the form
-z, for some r > O. Equivalently, imep= lk[tr,t-r], and so sp E P. Thus E \ {O} C P.
Lemma 1.5. Suppose that A is a submonoid of Z such that N,-N rt. A. Then A = -z,
where r E A is any non-zero element of minimal absolute value.
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Proo]. Let r E AnN be of minimal absolute value. For any m E An -N, we have that
m + kr E A where k is the unique positive integer such that

° ~m + kor < r.

Thus m-s-kr = ° by the minimality of r: it follows that r divides m, for any m E An-N.
Moreover,

-r = m + (k - l)r E A

since k - 1 is non-negative. It follows therefore that -r is the element of minimal
absolute value in A n -N. The argument above with inequalities reversed shows that
-r divides all positive elements of A, and so A C ríZ. The opposite inclusion is obvious
since r, -r E A and A is closed under addition. O

For any k )! ° and >. E Ikx , define the function 8>',k E F by

mE íZ.

Lemma 1.6. For any x, J-l E Ikx and k > 0,

1. (t - J-l) . 8>.,k = (>' - J-l)8>.,k + >. 2:7~~ (~)8>.,jj
ii. (t - >.)k . 8>.,k = k!>.k8>.,0.

Proo]. For any m E íZ,

(m + l)k >.m+l
>.",k (k)mj >.m

~J=o J

>.2:7=0 (~)8>.,j(m).

Therefore,

(t - J-l)' 8>.,k = >'2:7=0 (~)8>.,j - J-l8>.,k,

and so part (i) is proven. Part (ii) is proven by induction. The claim is trivial if k = 0,
so suppose that the claim holds for some k )! O. Then

(t - >.)k . >. ",k (k+l)8 .
~J=o J >',J

>.(kt1)k!>.k8>.,0 (by inductive hypothesis)

(k + 1)!>.k+l8>.,0,

where part (i) is used in obtaining the first and second equalities. Therefore the claim
holds for all k )! ° by induction. O

Proposition 1. 7. The set {8 >',k I x E Ikx, k )! O} C F is linearly independent.
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Proo]. Suppose that "(>",k E k, À E Ikx, k ~ O, are scalars such that the sum

sp = L L "(>..,k8>..,k,
>"EIkX k;;:'O

is finite and equal to zero. Write Z = { À E Ikx I "(>",k -=I O for some k ~ O}, and let

n>.. = max { k I "(>",k -=I O} , À E Z.

Then, for any À E Z,

O rr (t - f..L)nl'+l-<5A,1' • ip
Ji-EZrr (t - f..L)nl'+l-<5A,1' • ("(>..,nA8)"nJ

Ji-EZ

"()"nAÀnAn),! rr (À - f..L)nl'+1 ·8>",0,
Ji-EZ,Ji-oF),

by Lemma 1.6. Therefore "()"nA = Ofor all À E Z, which is absurd, unless Z is the empty
set. O

(1.9) cp = L cp),EXP(À),
),EIkX

Proposition 1.8. Suppose that cp E E. Then ip has a unique expression

as a finite sum of products of polynomials functions cp), and exponential functions EXP( À),
À E Ik-. Moreover,

(1.10) ccp(t) = rr (t - À)degCPA+1,
),EZ

where Z = {À E Ikx I cp), -=I O}.

Proof. Let c E Ik[t]be of degree q. The equation c· cp = Ois equivalent to the relation
(1.4), and so the space consisting of all solutions sp is at most q-dimensional. Now write
Z C Ikx for the set of all roots of c. The field k is algebraically closed, and so

{ 8 >",k I À E Z, O ~ k < m), } ,

c(t) ""lkx rr (t - À)mA,

),EZ

where m>..is the multiplicity of the root À E Z. Lemma 1.6 shows that the set

(1.11)

which is of size L:),EZ m), = q, consists of solutions to c sp = O. By Proposition 1.7, this
set is linearly independent, and hence is a basis for the solution space. Therefore any
sp E E has a unique expression (1.9).
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Now suppose that sp has the form (1.9), let c E Ik[t] be non-zero, and write C in the
form (1.11). By Lemma 1.6 part (i), C· sp = O if and only if mÀ > deg CPÀ whenever
CPÀ :f:. O. The polynomial (1.10) is the minimal degree monic polynomial that satisfies
this condition, and hence is the characteristic polynomial. O

2. Loop-Module Realisation of N(cp)

For cp E :F, let Ikvepbe the one-dimensional 6-module defined by

h 0 a· vep= (a· cp)(O)vep, a E A.

Let g+ . Vcp = O, and denote by

V(cp)= lnd~ ~ Ikvepf)EBg+ .
the induced g-module. This definition is equivalent to the definition (1.5) of Chapter
1. The module V(cp) and its unique irreducible quotient L(cp)are not Z-graded. In this
section, it is shown that if sp E :F', then N(cp) is isomorphic to an irreducible constituent
of the loop module L(cp),and moreover that this constituent may be described in terms
of the semi-invariants of an action of the cyclic group Zr on L(cp), r = deg ip, The results
of this section are due to Chari and Pressley [9] (see also [7]).

2.1. Cyclic group action on L(cp).
Lemma 2.1. Suppose that sp E:F', that r = degcp, and that (E Ikx is such that (r = 1.
Then for all a E A,

(a((t) . cp)(O) = (a· cp)(O).

Proof. The support of cp is contained in rZ. Therefore, if a(t) = Li aiti, then

(a((t) . cp)(O) = L ai Çcp(i) = L ai cp(i) = (a· cp)(O). O
i:=O (mod r) i:=O (mod r)

Proposition 2.2. Suppose that cp E :F', and that r = deg ip, Then there exists an
order-r automorphism TI= Tlepof the vector space L(cp)defined by TI(vep)= vepand

TI(X 0 a . w) = x 0 a(C1t) . TI(w), x E 9, a E A, w E L(cp),

where ( = (r. Moreover, TIdecomposes L(cp)as a direct sum of eigenspaces

L(cp)= EB L(cp)l~i
iEZr
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in a manner compatible with the weight-space decomposition induced by h @ tO.

Proo]. The rule t I---> (-lt extends to an automorphism of A, which defines an auto-
morphism of the loop algebra g. This automorphism in turn defines an automorphism
11 of U(g). The universal module V(cp) may be realised as the quotient of U(g) by the
left ideal I generated by g+ and by the elements of the set

{h @ a - (a· cp)(O) I a E A} .

The map 11 preserves this set by Lemma 2.1:

l1(h @ a - (a· cp)(O)) h @ a(C1t) - (a· cp)(O)

h @ a(C1t) - (a(C1t) . cp)(O).

Clearly 11 preserves g+, and so 11(1) = I. Therefore 11 is well-defined on the quotient
V(cp) of U(g). The monomial

is an eigenvector of eigenvalue (-m where m = 2..:7=1 tu ; and so the Poincaré-Birkhoff-
Witt Theorem guarantees a decomposition

(2.3) V(cp) = EB V(CP)I~i
iEZr

of V(cp) into eigenspaces for 11. It is easy to check that 11 commutes with the action of
h @ tO, and that if U is a submodule of V(cp), then so is 11 (U). Thus, if U is a proper
submodule, then so is l1(U). Hence 11 preserves the maximal submodule of V(cp), .and so
is defined on the quotient L(cp). This induced map is of order r, by construction, and
decomposes L(<p) in the manner claimed by (2.3). O

2.2. Irreducible constituents of the loop module. For any cp E :F', define an-automorphism T]cp of the vector space L( cp) via

U E L(cp), a E A,

where r = deg sp,

Theorem 2.4. Suppose that ip E :F', and that r = deg .p. Let ( = (r and T] = T]cp. Then:

i. T] is automorphism of the Z-graded g-module L( cp) of order r;
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ii. fJ decomposes L( cp) as a direct sum of eigenspaces

L(cp) = E9 C(;)I~i'
iEl,r

where

C(;)I~i = E9 L(CP)I~Ln ® tm,
mEl,

lU. For any i E ZTl the Z-graded g-modules C(;)I~iand N (cp) are isomorphic.

Proo]. For any x E 9, u E L(cp), a E A and mE Z,

fJ(x ® tm . U ® a) fJ((x ® tm . u) ® tma)

(ml1(x ® tm . u) ® tma((t)

(mCm(x ® tm . 11(il)) ® tma((t)

x ® tm . (11(U) ® a((t))

x®tm ·fJ(u®a),

where 11 = 11cp' The map fJ is of order r by definition, and so part (i) is proven. Part
(ii) follows immediately from Proposition 2.2. Let i E z., and write U = L(cp)l~i' The
generating weight spaces Ucp(O)1X C U and H( cp) C N (cp) are isomorphic as Z-graded
6-modules, via

mEZ.

This map extends uniquely to an epimorphism of Z-graded g-modules U ----> N (cp). There-
fore it is sufficient to prove that U is an irreducible Z-graded g-module. Suppose that
W is a graded submodule of U. Then W contains a non-zero homogeneous maximal
vector v ® t". The g-module epimorphism U ----> L(cp) that is induced by t f-+ 1 maps
this element to a non-zero maximal vector of L(cp). Therefore v = ÀVcp is a non-zero
scalar multiple of the highest-weight vector. Hence W has non-trivial intersection with
the generating weight space Ucp(O)1X of U. The Z-graded 6-module Ucp(O)1X is irreducible,
so Ucp(O)1X C W, and thus W = U. Therefore U is irreducible. O

2.3. Characters and semi-invariants. Theorem 2.4 describes the modules N(cp)
in terms of the semi-invariants of L( cp) with respect to the action of the cyclic group Zr
defined by 11, where r = deg ip, ln particular, we have the following description of the
character of an exponential-polynomial module.

79



80 5. CHARACTERS OF EXPONENTIAL-POLYNOMIAL MODULES

Corollary 2.5. Suppose that <p E [; is non-zero and that deg cp = r. Then

char Nfo) = L L dim L(CPhl(n xkzn,

k:;:'OnEZ
where (= (r.

3. Semi-invariants of Actions of Finite Cyclic Groups

A Z+-graded uector-space is a vector space V over k with a decomposition V = EBk:;:'O V(k)
of V into finite-dimensional subspaces indexed by Z+. If V is a Zrgraded vectar space
and r is a positive integer, then the tensar power

Vr:= V®···®V (r times)

is also a Z+-graded vector space, with the decomposition

The finite cyclic group Zr acts on Vr by cycling homogeneous tensors; the generator
1 E Zr acts via the vector space automorphism

Vi E V,

and this action preserves the grading, so that CTr(vr(k)) = vr(k), for any k ;:;:, O. For
any U C v', let

n E Z.

The automorphism CTrdecomposes Vr as a direct sum of Z+-graded vector spaces

Associated to any Z+-graded vector space U is the generating function

.9'u(X) = LdimUkXk E Z+[[X]].
k:;:'O

Theorem. For any Z+-graded vectar space V, r > Oand n E Z,

1,", ( d)J.9'v~(X) = -:;:Z:: cd(n) .9'v(X) .
dlr

ln this section, we describe an elementary proof of this statement. ln the particular case
where U is the regular representation of Zr and V = S(U) is the symmetric algebra, the
statement follows from Molien's Theorem and the identity (1.2).
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Fix a Z+-graded vector space V, let

B = {(k, s) E Z! 11 ~ s ~ dim V(k) }

and for each k > 0, choose a basis {v~ }I!(s!(dim V(k) for V(k). For any r > ° and k ;? 0,
let

The elements of Dr,k parameterise a graded basis of Vr(k):

Define an automorphism Tr of the sets Dr,k via the rule

The automorphisms CTr and Tr are compatible in the sense that

I E Dr,k, k;? O.

For I E Dr,k, write ordI = d for the minimal positive integer such that (Tr)d(I) = I.

For any positive divisor d of r, let

Or,d(k) = # {I E Dr,k I ordI = d}, k ;? 0,

and write tlr,d(X) = 2:k~O Or,d( k) Xk for the generating function. It is apparent that

&vr(X) = (&v(X)y = L tlr,d(X)
dlr

Lemma 3.2. Suppose that l, r are positive integers and that li r. Then

(3.1)

{d I d » 0, r/li d and d I r} = {r/di I di > 0, di Il}.

Proof. If d > ° and y I d, then there exists some positive integer s such that
r r

d=ys=(l/s);

if in addition d I r, then di := lf s is a positive integer, and so d = r/di with di I l.
Conversely, if di Il, then r/li r/di, and it is obvious that r/di I r. O

Proposition 3.3. For any Z+-graded vector space V and any r > 0,

1
&vr(X) = - " dâ; ;:(X).

n r ~ 'd
dlgcd(r,n)

for all ti E Z.
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Proof. Suppose that k ;:?! 0, and write Dr,k = UOEP O for the decomposition of Dr,k
into a disjoint union of orbits for the action of Zr defined by 'Tr. Then

Vr(k) = EB Uo,
OEP

and moreover O"r(UO) = Ur). For any orbit O E P, the action of a; on Ur, defines the
regular representation of Zd, where d = #0 is the size of the orbit; in particular, the
eigenvalues of c; on Uo are precisely the roots of unity ( such that (d = 1, each with
multiplicity 1. Now ç: is of order gcd(r,n)' Therefore,

Ur, = span {VI I I E O} ,

where the last equality follows frorn Lemma 3.2 with l = gcd(r, n). The number of orbits
O E P of size rId is precisely di r . Or,r / d( k). It follQws.therefore that

dim V;(k) = L ~Or,~ (k),
dlgcd(r,n)

which yields the required equality of generating functions. o

# {O E P I gcd(r,n)I #0 }
# {O E P I #0 = ~ for some di gcd(r, n) }

Proposition 3.4. For any Z+-graded vector space V and positive integers r, d with
d I r,

Proof. Suppose that k ;:?! 0, that

and that ord I = d. Then

and ordI' = d. This establishes a bijection between order-d elements of the sets Dr,k
and Dd 1s.Q, and so Or,d(k) = Od,d(~d). Therefore

, r

ó'r,d(X) = L Od,d(~d)Xk
k)!O

L Od,d(k) (X~)k
k)!O

ó'd,d(X~). o
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It follows immediately from Proposition 3.4 and equation (3.1) that

(3.5) (9v(X)r = L ó'd,d(X~).
dlr

Proposition 3.6. For any Z+-graded vector space V and r > O,

ó'r,r(X) = L ~(d) (9v(Xd)) ~ .
dlr

Proo]. The claim is trivial if r = 1, so suppose that s > 1 and that the claim holds for
all O< r < s. Then:

(9v(X))S - L ó'd,d(X~) (by equation (3.5))
dls,dios

d

(9v(X))S - L L ~(d/) (9v(Xs~')) di (by inductive hypothesis)
dls,#s d'ld

(9v(X))S - L (L ~(d)) (9v(Xe))~
els,eiol dle,dioe

(write e = s~' and use Lemma 3.2)

(9v(X))S - L (-~(e)) (9v(xe))~ (by equation (1.1))
els,eiol

L ~(e) (9v(xe))~ ,
eis

and so the claim holds for s also. o

Theorem 3.7. For any Z+-graded vector space V, r > Oand n E Z,



where the last equality follows from equation (1.2) .. o
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Proo]. For any n E Z,

1
&'vnr(X) = - "" d â; z (X) (by Proposition 3.3)r ~ 'd

dlgcd(r,n)

1
(by Proposition 3.4)

~ I: dI:!l-(d') (&'v(Xddl
)) d~1 (by Proposition 3.6)

dlgcd(r,n) dll ~

4. Exponential-Polynomial Modules

ln this section, we show that if ip E [, then the module L(<p)is an irreducible highest-
weight module for the truncated current Lie algebra g(:p). An explicit formula for the
character of such a module was obtained in Chapter 4. Therefore, we are able to derive
an explicit formula for char N'(o] by employing the results of Sections 2 and 3.

4.1. Modules for truncated current Lie algebras.

Proposition 4.1. Suppose that <p E E: Then the defining ideal 9 0 G<pA C fi acts
trivially on the fi-module L(<p),and so L(<p)is a g(<p)-module.

Proo]. Let kv + denote the one-dimensional 6-module defined by

h 0 a· v+ = (a· <p)(O)v+, a E A.

Then by definition of the characteristic polynomial c<p, the subalgebra ~ 0 c<pA C 6 acts
trivially upon v+, and so kv+ may be considered as an ~(<p)-module. Let g+ (<p) . v+ = o,
and let

M - I d9(<P) D.
- n Q(<P)$9+(<P) IJI.V+

denote the induced g(<p)-module. Denote by L the unique irreducible quotient of M.
Then L is a fi-module, via the canonical epimorphism fi ->t g(<p), and is irreducible with
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highest-weight defined by the function sp. Hence L( rp) s::' L as g-modules, and the claim
follows from the construction of L. O

4.2. Tensor products.

Proposition 4.2. Let rpl, rp2 E E. Then

as g-modules if C<Pl and C<P2 are co-prime.

Proof. Let ip = rpl + rp2· Then c<p = C<Pl Cc,02 since Cc,ol and C<P2 are co-prime. By
Proposition 4.1, L(rp) is an irreducible module for g(rp), and by the Chinese Remainder
Theorem,

(4.3)

By Proposition, 4.1 L(rpi) is a module for g(rpi), i = 1,2. The Lie algebra g(rpi) is finite-
dimensional, and Ik is algebraically closed, and so U(g(rpi)) is Schurian [27], i = 1,2.
Thus U(g( rpi)) is tensor-simple [2], and so L( rpd ® L( rp2) is an irreducible module for
U(g( rpl)) ® U(g( 'P2)). The decomposition (4.3) and the Poincaré-Birkhoff-Witt Theorem
imply that

and so L(rpl) ® L(rp2) is an irreducible module for g(rp). The irreducible highest-weight
modules L(rp) and L(rpd ® L(rp2) are of equal highest weight, by the Leibniz rule, and
hence are isomorphic. O

4.3. Semi-invariants of the modules L(rp).
Lemma 4.4. Suppose that ip E E is non-zero. Then rp E F', and rp).. = rpç).. whenever
À, ( E Ikx and C = 1, r = deg rp. Moreover, there exists 'lj; E E such that

i. ip = ~r'lj;, and
ii. Cc,o = Ilar c",((;t) is a decomposition of Cc,o into co-prime factors.

Proof. According to the discussion of subsection 1.2, sp E :F' and r = deg rp > O. Thus
the support of sp is contained in the support rZ of ~r and so rp = ~~rrp. Hence

1 1
rp)..= (-~rrp);.. = - L rp(Ç~)..),

r r
iEZr
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k~O

L(<p)(k) = L(<p)(cp(O)-k)oc,k;:? O.
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for any ÀE ]kx. If (r = 1, then the expression on the right-hand side is invariant under
the substitution À f-+ (À, and so the first claim is proven.

Multiplication by (r decomposes k " into a disjoint union of orbits for the cyclic group Zr,
and all orbits are of size r. Choose any set B of representatives, so that ]kx = UiEZr (:B.

Then'lj; = L>.EB <p>.EXP(À)has the required property, by Proposition 1.8. O

Remark 4.5. The function 'lj;E [ of Lemma 4.4 is not unique. lndeed, if

has the required property, then so does 'lj;'= Li aiExp((;:if..Li) for any ni E Zr.

For any sp E F, consider L(<p) as a Z+-graded vector space via

Proposition 4.6. Suppose that ip E E is non-zero and that ip = Pr'lj;, where r = deg sp

and 'lj;E E; as per Lemma 4.4. Then there exists an isomorphism

of Z+-graded vector spaces such that o; = O o TJcp o 0-1.

Proo]. For j E Zn write 'lj;j= EXP((;j)'lj;. Then Ccp = IljEzr c1{;jis a decomposition of
Ccp into co-prime factors, and <p= LjEZr 'lj;j. By the Chinese Remainder Theorem, there
exists a finite linearly independent set {ai I i E I} C A such that {ai + C1{;A I i E I} is
a basis for AI c1{;A and

ai == O (mod c1{;j), j"t O (mod r), i E I, j E Zr·

Write ai,j(t) = ai ((r-jt), i E I, j E Zr. Then by symmetry, {ai,j + c1{;jA I i E I} is a
basis for AI c1{;jA and

ai,j == O (mod C1{;k), j t'. k (mod r), i E I, i. k E Zr.

For any i E I and j E Zr,

(4.7) W E L(<p).

By Proposition 4.2, there exists an isomorphism
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of g-modules, and we may assume that Y(vrp)= 0jEZr V'Ij;i. For any k E Zr, identify

(4.8)

Then L(1Pk) is generated by the action of the basis {f 0 ai,k I i E I} of 9+(1Pk) on the
highest-weight vector Y(vrp). Therefore, modulo the identification (4.8),

by equation (4.7). Since l1rpis an automorphism of the Z+-graded vector space L(<p), the
restriction

is an isomorphism of the Z+-graded vector spaces. These isomorphisms obviously induce
isomorphisms Ej : L(1Pj) -+ L(1PO) = L(1P), and .

by equation (4.7). Let E= ®jEZr Ej, and write n for the composition

E o Y : L(<p) -+ L(1Pr.

The vector space L( 1Pt is spanned by the homogeneous tensors

For any homogeneous tensor of this form

(nol1rpon-1) . (®jEZr11El(f0ai)ki,iV'lj;)

= Eo (Y o l1rpo y-1)( ®jEZr 110(f 0 ai,j )ki,iv'lj;i)

= Eo (Y o l1rpo y-1) (TIjEzr TIiEl(f 0 ai,j )ki,i . 0jEZr V'lj;i )

= E(TIjEZrTIiEl(f 0 ai,j)ki,i-1 . 0jEZr V'lj;i)

= E(® jEZr TIiEI(f 0 ai,j )ki,i-1 V'lj;i)

= ®jEZr TIiEI(f 0 ai)ki,i-1v'Ij;

= OA®jEZr TIiE1(f0 ai)ki,iv'lj;),

where the second and fourth equalities are by construction of the polynomials ai,j and
the Leibniz rule. Therefore no l1rpo n-1 = (Jr as required. O
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4.4. Character Formulae.

Theorem 4.9. Suppose that a E F is a polynomial function and that sp = aExP(À) for

some À E Ikx. Then

{

I_xa+l
.9L (X) = l=X

('1') (1 _ x)-(dega)-l

if a E Z+,

otherwise.

Proo]. Let N = dega, and write ip = Lr=o ak9>.,k' By Proposition 4.1, L(rp) is a module
for the truncated current Lie algebra g(rp). The Cartan subalgebra of g(rp) has a basis

{h ® (t - À)k I O :s; k :s; N} .

By Lemma 1.6, h ® (t - À)N acts on the highest-weight vector v<pby the scalar

(4.10)

If N = O, then (4.10) takes the value a E k, and so L(rp)" is the irreducible g-module of

highest weight a. Therefore

{

l_xa+l if a E Z+,
.9L(<p)(X) = ~-X

l-X otherwise.

If N > O, then aN is non-zero; thus (4.10) is non-zero and the claim follows from Propo-

sition 4.A.1 (page 69). O

Suppose that sp E [ is non-zero, deg sp = r, and that 1/J E E is given by Lemma 4.4. Then

(4.11)

for some finite collection of polynomial functions ai E F and distinct Ài E k x,' such that

if (ÀdÀj)r = 1, then i = j.

Theorem 4.12. Suppose that sp E [ is non-zero, degrp = r, and that

rp = Pr L aiEXP(Ài)

where the ai E F and Ài E Ikx are given by (4.11). Let

TI (1 - Xai+l)
P (X) = ai EZ+

'I' --~(l~-~X~)M~--'

where M = Li(degai + 1) and the product is over those indices i such that ai E Z+.

Then
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Proof. By Corollary 2.5 and Proposition 4.6,

charN(cp) = L &'L(1/J)~(x)zn,
nEZ

and by Theorem 3.7

&'L(1/J)~(X) = ~LCd(n) (&'L(,p) (Xd)) ~.
dlr

By Proposition 4.2, there is an isomorphism of g-modules

(4.13)

since the 0i are distinct. In particular, &'L(,p) = Di &'L(,pi), and so

&'L(,p) = P<p

by Theorem 4.9. Therefore the claim follows from equation (4.13). o



 



N
Z+
Z
Zr
IR, C
]kx
R(r)
(r
gcd(m, n)
Sym(n)
sgn(0")
#S
8
(A, v)

V*
EndV
A
U(g)
PBW
S(V)
T(V)
adx
gQ
MX
V/1

e,h,f

<X

Index of Syrnbols

{l, 2, }

{O,1,2, }

ring of integers

ring of integers modulo r

fields of real and complex numbers

non-zero elements of a field Ik
primitive roots of unity of order r

fixed element of R(r)

greatest common divisor

symmetric group on n symbols

sign of (J" E Sym(n)
size of a finite set S

Kronecker function

evaluation of a functional A at v
dual of the vector space V

endomorphism algebra of V

ring of Laurent polynomials

universal enveloping algebra

Poincaré-Birkhoff- Witt
symmetric algebra of V

tensor algebra of V

adjoint operator of x E 9

root space of 9

weight space of a module M

space of eigenvectors of eigenvalue ).. for TJ E End V

basis elements of sl(2)

positive root of sl(2)
1

2

91
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u loop algebra associated to aLie algebra a

loop module associated to M

1

4M

:F

:F'
E
deg sp

EXP(À)

CP>..

c<p

vector space of all functions 'fi : Z ----+ Ik

set of 'fi E :F such that H('fi) is irreducible and not one-dimensional
vector space of exponential-polynornial functions

degree of ip E :F'
exponential map Exp(>.)(m) = >.m
coefficient of EXP(>.) in the expression of 'fi E E
characteristic polynomial of 'fi E E

2

2

3,74
2

3

3
3,74

Õ
H(cp)
N(cp)

Chari's category Õ

Z-graded 6-module defined by 'fi E :F
irreducible Z-graded g-module defined by 'fi E :F'

2

2
3

V(cp)
L( cp)
g( cp)

universal g-module defined by 'fi E :F' (not graded)

irreducible g-module defined by 'fi E :F' (not graded)

truncation of the loop algebra g

3, 77
3,77

4

V(À) imaginary Verma module of highest-weight >. 7
M(O) quotient of the imaginary Verma module V(O) 7
M(n) weight space of M(O) 8, 18
x(k) x@tk 17
An ring of symmetric Laurent polynomials in n variables 8
fi elementary symmetric function 19
p(k) sum of k-powers of the indeterminants 19
mb) spanning set element of An 19
Dn discriminant function 8
w(x) singular vector 9,23
Y(r) universal g-module generated by the 6-module r 29
~(r) final g-module generated by the 6-module r 29
E(-) negative, even sums of exponential functions 9
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all tp E E( -) such that coefficients sum to - 2n 27

~o diagonal subalgebra of g 31
w involution on g 31

m(A) Verma module of highest-weight A E fJ 36
Ai component of a functional A E 6' 11,44
F Shapovalov form 37, 44
q projection defining Shapovalov form 37
C set that parameterises a root basis of g 38, 43
P set of partitions in C or ê 38,43
\>.\ length of À E P 38
6.(>.) weight of À E P 38,43
x(>.), y(>.) PBW monomials defined by À E P 32,38

9
N

ê
>.*
B
L-
(-\ . )ü
h(a)

char N(cp)
N(CP)k,n
8'Jr

8.À,k

cd(n)
<P
u

&v
11""

Tlrp

truncated current Lie algebra

nilpotency index of fi
C x {O, ... , N}

dual of À E P
modified Shapovalov form

set of multiplicity arrays

non-degenerate bilinear form on gÜ X g-a

element of fJ given by non-degenerate pairing

9

9

43
47
47
49

11,59

11,59

formal character of an exponential-polynomial module

homogeneous component an exponential-polynomial module

function with constant value r on its support rZ

elementary exponential-polynomial function

Ramanujan sum

Euler's totient function
Mõbius function
Poincaré series of a Z+-graded vector space V

cyclic automorphism of L(tp)

cyclic automorphism the g-module L(tp)

13

13
13

75
13,73

73
73
80
77
78
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