O Teorema de Efimov para dimensão maior que dois

Juan Fernando Zapata Zapata

Dissertação apresentada AO Instituto de Matemática e Estatística DA Universidade de São Paulo PARA OBTENÇÃO DO TÍTULO DE Mestre em Ciências

Programa: Matemática Orientador: Prof. Dr. Antonio Carlos Asperti

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da CNPq

São Paulo, 29 de junho de 2009

O Teorema de Efimov para dimensão maior que dois

Este exemplar corresponde à redação final da dissertação/tese devidamente corrigida e defendida por Juan Fernando Zapata Zapata e aprovada pela Comissão Julgadora.

Banca Examinadora:

- Prof. Dr. Antonio Carlos Asperti (orientador) IME-USP.
- Prof. Dra. Barbara Corominas Valerio IME-USP.
- Prof. Dr. Armando Caputi UFABC.

n i ka libarah mundir da masa sa Kalimpi badan

A control of the contro

A Andres y Simón, en compensación por el tiempo que he faltado.

	72			91	
Δα	rad	ACI	me	nta	20
Λu	ıau		1110	/I I U	-

Agradeço ao professor Asperti pela sua paciência e bons conselhos durante o desenvolvimento do trabalho. À fortaleza de toda minha familia, em especial da minha irmã Bibiana. A "mi niña"Elizabeth por ter ficado do meu lado além das dificuldades. A Pricila e sua mãe Lucia por ter me tratado como um mais de sua familia, e me mostrar o melhor deste lindo pais. A Simón e suas orações cada vez que olhava a luz de uma vela.

Resumo

Neste trabalho apresentaremos uma demonstração, para n=3, da generalização do teorema de Efimov proposta por Gromov, a saber, "Não existem hipersuperfícies completas em \mathbb{R}^{n+1} , com curvatura de Ricci satisfazendo Ric $(\cdot) \leq \delta < 0$, com δ constante." Para $n \geq 4$ o resultado é válido com a hipótese adicional que o ínfimo das curvaturas seccionais de M é maior que $-\infty$. Os resultados acima mencionados são consequências do Teorema das Curvaturas Principais demonstrado por Smyth e Xavier em [S-X]. Como outra aplicação deste teorema, apresentamos a clasificassão das hipersuperfícies completas de \mathbb{R}^{n+1} com curvatura média constante, não nula , e curvatura de Ricci negativa, como sendo cilindros sobre círculos. Os argumentos usados são os de [S-X]

Na demonstração do Teorema das Curvaturas Principais é usada uma caracterização das imersões com a propriedade do fecho convexo dada por Osserman em [O]. Na parte final fazemos um apanhado dos teoremas tipo Efimov para hipersuperfícies da esfera.

Abstract

In this work we present a complete proof, for n=3, of the following generalization of Efimov's theorem as proposed by M. Gromov: "There are no complete hypersurfaces in \mathbb{R}^{n+1} with Ricci curvature satisfying $Ric(\cdot) \leq \delta < 0$, where δ is constant." For $n \geq 4$ the result is valid with the aditional hypothesis that the infimum of the sectional curvatures of M is greater then $-\infty$. These results are consequences of the Principal Curvature Theorem of Smyth e Xavier [S-X]. As a further application of this theorem, we present the classification of complete hypersurfaces of \mathbb{R}^{n+1} with constant non zero mean curvature and non negative Ricci curvature: these are cylinder over circles.

In the proof of the Principal Curvature Theorem is used the caracterization of immersions in \mathbb{R}^{n+1} with the convex hull property given by Osserman in [O]. We also make some comments on theorems of Efimov type for hypersurfaces of the sphere.

Índice

l.	Preliminares.				
	1.1. Fatos básicos da Geometria Riemanniana	5			
	1.2. Variedades Riemannianas Completas	8			
	1.3. Imersões Isométricas	10			
	1.4. Equações Fundamentais das Imersões Isométricas	11			
	1.5. Máximos e Mínimos de Funções Reais	16			
2.	Hipersuperfícies Euclidianas Convexas .	19			
3.	. Propriedade do Fecho Convexo para Variedades Imersas				
4.	O Teorema das Curvaturas Principais e Aplicações	31			
	4.1. O Teorema das Curvaturas Principais	31			
	4.2. Hipersuperfícies Completas com Curvatura de Ricci não-positiva	38			
5	Conclusões e Observações Finais.	43			
Э.		43			
	5.1. Conjectura de Milnor				
	5.2. Teorema das Curvaturas Principais em Codimensão > 1	44			
	5.3. Teorema tipo Efimov para Hipersuperfícies na Esfera				

Introdução

No estudo das imersões isométricas nas formas espaciais um problema é de particular interesse, a saber, quando uma variedade riemanniana pode ou não ser imersa em uma forma espacial Q_c^m . Entre os resultados mais conhecidos está o teorema de Nash [N], que diz que toda variedade riemanniana pode ser imersa isometricamente em algum espaço euclidiano \mathbb{R}^m , embora m pode ser muito grande comparado com n.

O clássico Teorema de Hilbert [H] afirma que o plano hiperbólico não pode ser imerso isometricamente no espaço euclidiano, \mathbb{R}^3 . E. Cartan Demonstra em [C] que n-1 é a mínima codimensão onde \mathbb{H}^n poderia ser imersa num espaço euclidiano. A existência de uma imersão isométrica "global"do espaço hiperbólico em \mathbb{R}^{2n-1} ainda permanece em aberto para $n \geq 3$, mas localmente tais imersões existem, como mostra o seguinte exemplo.

Sejam $a_i \in \mathbb{R}$, $1 \le i \le n-1$, tais que $\sum a_i^2 = 1$ e defina a imersão de $D = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n < 0\}$ em \mathbb{R}^{2n-1} pelas equações

$$y_{2i-1} = a_i e^{x_n} \cos\left(\frac{x_i}{a_i}\right),$$

$$y_{2i} = a_i e^{x_n} \sin\left(\frac{x_i}{a_i}\right),$$

$$y_{2n-1} = \int_0^{x_n} (1 - e^{2u})^{\frac{1}{2}} du.$$

Pode-se demonstrar que a métrica induzida torna D uma variedade riemanniana com curvatura

seccional constante negativa, mas não completa. Cartan demonstrou que uma imersão com essas características, tem fibrado normal plano, ou seja, $R^{\perp} \equiv 0$.

O teorema de Hilbert foi generalizado em 1966 por Efimov [E], que demonstrou que não existem superfícies completas em \mathbb{R}^3 com curvatura de Gauss $K \leq \delta < 0$ com δ constante. Na tentativa de generalizar o teorema de Efimov para dimensões maiores, surge a seguinte pergunta: que invariante geométrico deve ser colocado no lugar da curvatura Gaussiana para que o resultado seja válido? Como estimativa inicial poderia se pensar na curvatura de Gauss-Kronecker, mas esta não é invariante por isometrias locais, pois em dimensão ímpar muda de sinal quando trocamos de orientação. Maria Fernanda Elbert demonstrou em [El] que não existem gráficos completos em \mathbb{R}^{n+1} com curvatura escalar $\tau \leq \delta < 0$ com uma hipótese adicional sobre a segunda forma fundamental. Em [G] Gromov propõe o seguinte "teorema de Efimov em dimensão n": Não existem hipersuperfícies completas em \mathbb{R}^{n+1} com curvatura de Ricci satisfazendo Ric $(\cdot) \leq \delta < 0$, δ constante. Smyth e Xavier demonstraram que isto é verdade para n=3, e para $n\geq 4$ com a hipótese adicional das curvaturas seccionais serem limitadas inferiormente por uma constante. O objetivo principal do nosso trabalho é apresentar uma demonstração dos resultados anteriores seguindo as idéias de [S-X]. Em particular, damos a demonstração do teorema das Curvaturas Principais, fonte dos resultados obtidos em [S-X].

No primeiro capítulo, com o objetivo de estabelecer a notação e mencionar alguns resultados que serão utilizados ao longo do texto, apresentaremos alguns conceitos básicos da geometria riemanniana e imersões isométricas.

A demonstração do Teorema das Curvaturas Principais está baseado principalmente em dois conceitos, a saber, as hipersuperfícies convexas euclidianas e a propriedade do fecho convexo para variedades imersas no espaço euclidiano. Por isso os capítulos segundo e terceiro estão dedicados a explorar estes tópicos. No segundo capítulo apresentamos sem demonstrações, fatos gerais da teoria das hipersuperfícies euclidianas com curvatura seccional não negativa e sua relação com a convexidade. No terceiro capítulo estudamos o conceito do fecho convexo para variedades imersas no espaço euclidiano introduzido por Osserman em [O]. Além disso demonstramos o teorema 3.1, resultado principal deste capítulo que dá uma caracterização geométrica das imersões com esta propriedade.

O quarto capítulo é dedicado ao desenvolvimento da demonstração do teorema das Curvaturas Principais, e como aplicação obtemos uma classificação das hipersuperfícies completas com curvatura média constante (não nula) cuja curvatura de Ricci não muda de sinal. Além disso,

demonstramos os resultados obtidos em [S-X] com respeito à generalização proposta por Gromov para o teorema de Efimov.

Finalmente, no quinto capítulo , damos algumas conclusões importantes com respeito a os resultados obtidos por Smyth e Xavier. Em particular é apresentada uma "generalização" da conjectura de Milnor para superfícies em \mathbb{R}^3 . Também apresentamos sem demonstração o respectivo teorema de Efimov para hipersuperfícies na esfera.

CAPÍTULO 1

Preliminares.

Neste capítulo reuniremos algumas definições e resultados básicos da geometria Riemanniana, deduzimos as equações fundamentais das imersões isométricas. A idéia principal é apresentar resultados conhecidos que serão utilizados ao longo do texto, além de fixar a notação. Portanto poucas demonstrações serão dadas.

1.1. Fatos básicos da Geometria Riemanniana.

Seja M^n uma variedade diferenciável de dimensão n, conexa e orientável 1 , Dizemos que $\pi: E \to M$ é um k-fibrado vetorial sobre M se E é uma n+k variedade, π é uma aplicação diferenciável sobrejetora, e para todo $p \in M$

- i. $\pi^{-1}(p) = E_p$ é um k-espaço vetorial,
- ii. Existe uma vizinhança aberta V de $p \in M$ e um difeomorfismo local $\varphi_V : \pi^{-1}(V) \to V \times \mathbb{R}^k$, tal que $\varphi_V |_{E_y} : E_y \to y \times \mathbb{R}^k$ é um isomorfismo linear para todo $y \in V$.

Uma seção local de um fibrado vetorial $\pi: E \to M$ é uma função diferenciável $\eta: U \subset M \to E$ definida num aberto U de M tal que $\pi \circ \eta = Id_U$. Se U = M diremos que η é uma seção do fibrado.

¹Ao longo deste trabalho, variedade vai significar variedade diferenciável, conexa e orientável

Denotaremos por $\Gamma(E)$ o conjunto de todas as seções do fibrado E. O fibrado tangente de uma variedade $M \in \pi: TM \to M$, onde $TM = \{(p,v): p \in M, v \in T_pM\}$ e $\pi(p,v) = p$. Por abuso de linguagem denotaremos $\Gamma(TM)$ por $\Gamma(M)$, e chamaremos as seções de TM campos vetoriais.

Denote com $\mathcal{D}(M)$ o conjunto das funções reais de classe C^{∞} definidas sobre M. Uma *métrica* num fibrado vetorial $\pi: E \to M$ é uma aplicação \mathbb{R} -bilinear, simétrica e definida positiva

$$\langle \cdot, \cdot \rangle : \Gamma(E) \times \Gamma(E) \to \mathcal{D}(M).$$

Em outras palavras, para todo $p \in M \langle \cdot, \cdot \rangle_p : E_p \times E_p \to \mathbb{R}$ é um produto interno que varia diferenciavelmente com p no seguinte sentido: se $\xi, \eta \in \Gamma(E)$ então a função $p \mapsto \langle \xi_p, \eta_p \rangle_p$ é C^{∞} .

Uma *conexão linear* sobre um fibrado vetorial $\pi: E \to M$ é uma função \mathbb{R} -bilinear

$$\begin{array}{cccc} \nabla & : & \Gamma(M) \times \Gamma(E) & \longrightarrow & \Gamma(E) \\ & (X, \xi) & \longmapsto & \nabla_X \xi \end{array}$$

tal que para todo $f \in \mathcal{D}(M)$, $X \in \Gamma(M)$ e $\xi \in \Gamma(E)$ verificam-se as seguintes propriedades:

i)
$$\nabla_{fX}\xi = f\nabla_X\xi$$
,

ii)
$$\nabla_X f \xi = X(f)\xi + f \nabla_X \xi$$
.

Uma conexão linear ∇ é dita compatível com a métrica $\langle \cdot, \cdot \rangle$ se

$$X\langle \xi, \eta \rangle = \langle \nabla_X \xi, \eta \rangle + \langle \xi, \nabla_X \eta \rangle.$$

O tensor curvatura R de um fibrado vetorial $\pi: E \to M$ com conexão linear ∇ é a função \mathbb{R} -trilinear

$$R: \Gamma(M) \times \Gamma(M) \times \Gamma(E) \rightarrow \Gamma(E)$$

definido por

$$R(X,Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X,Y]} \xi, \tag{1.1}$$

onde $[\cdot, \cdot]$ representa o colchete de Lie de M.

Uma *variedade riemanniana* é um par $(M^n, \langle \cdot, \cdot \rangle)$, onde M é uma variedade e $\langle \cdot, \cdot \rangle$ é uma métrica definida sobre o fibrado tangente TM. Um fato conhecido é que dada uma variedade riemanniana existe uma única conexão linear ∇ , que chamaremos de *conexão riemanniana*, definida sobre TM tal que:

- i. ∇ é simétrica, ou seja, $\nabla_X Y \nabla_Y X = [X, Y]$ para todo $X, Y \in \Gamma(M)$,
- ii. ∇ é compatível com a métrica.

Assim, dada uma variedade riemanniana M^n com conexão riemanniana ∇ , definimos a curvatura R de M como o tensor curvatura do fibrado TM dado pela equação 1.1. É importante notar que o valor de R(X,Y)Z só depende do valor dos campos no ponto p. Isto permite definir a aplicação trilinear

$$R_p: T_pM \times T_pM \times T_pM \to T_pM$$
,

dada pela equação

$$R_p(X_p,Y_p)Z_p = \nabla_{X_p}\nabla_{Y_p}Z_p - \nabla_{Y_p}\nabla_{X_p}Z_p - \nabla_{[X_p,Y_p]}Z_p,$$

chamada de *curvatura* de M no ponto p. No caso $M = \mathbb{R}^n$ se $Z = (z_1, \dots, z_n)$ são as componentes do campo Z, então:

$$\nabla_X Z = (Xz_1, \dots, Xz_n)$$
 e $\nabla_X \nabla_Y Z = (X(Yz_1), \dots, X(Yz_n)).$

Logo R(X, Y)Z = X(Y(Z)) - Y(X(Z)) - [X, Y]Z = 0.

Agora, dado $p \in M$ e $\sigma \subset T_pM$ um 2-plano, definimos a curvatura seccional de σ em p como

$$K(\sigma) = K(X, Y) = \frac{\langle R_p(X, Y)Y, X \rangle}{\|X\|^2 \|Y\|^2 - \langle X, Y \rangle},\tag{1.2}$$

onde $\{X,Y\}$ é uma base de σ . O valor de $K(\sigma)$ não depende da base escolhida para σ . É importante notar que o conhecimento de $K(\sigma)$ para todo 2-plano $\sigma \subset T_pM$ determina o tensor R_p . Lembramos que uma variedade riemanniana tem curvatura seccional constante c se $K(\sigma) = c$ para todo $p \in M$ e todo 2 plano $\sigma \subset T_pM$, e pode-se mostrar que M tem curvatura seccional constante c se, e somente se, para todo X, $Y \in \Gamma(M)$

$$R(X,Y) = -c(X \wedge Y), \tag{1.3}$$

onde $(X \wedge Y)Z = \langle Y, Z \rangle X - \langle X, Z \rangle Y$ para todo $Z \in \Gamma(M)$. Além disso, um fato conhecido é que se uma variedade riemanniana M tem curvatura seccional constante c, então o recobrimento universal com a métrica do recobrimento é isométrico a Q_c^{n+p} , onde Q_c^{n+p} denota a variedade riemanniana completa e simplesmente conexa com curvatura seccional constante c, ou seja, uma esfera \mathbb{S}_c^{n+p} se

c>0, o espaço euclidiano \mathbb{R}^{n+p} se c=0, e um espaço hiperbólico \mathbb{H}^{n+p}_c se c<0. Estes espaços são de muita importância no estudo das imersões isométricas e são chamados de *formas espaciais*.

O tensor de Ricci de uma variedade riemanniana M é definido por

$$Ric_p(X, Y) = \sum_{i=1}^n \langle R(e_i, Y)X, e_i \rangle,$$

onde $X,Y\in T_pM$ e $\{e_i\}_{i=1}^n$ é uma base ortonormal de T_pM . A curvatura de Ricci em p na direção unitária $X\in T_pM$ e a curvatura escalar τ de M em p são dadas respectivamente por

$$Ric_p(X) = \langle QX, X \rangle$$
 e $\tau = traçoQ$,

onde $Q: T_pM \to T_pM$ é definido por

$$\langle QX, Y \rangle = Ric_p(X, Y),$$
 (1.4)

para todo $X, Y \in T_pM$.

1.2. Variedades Riemannianas Completas.

Uma variedade riemanniana pode ser dotada com uma estrutura métrica como segue: se $\alpha:[a,b]\to\mathbb{R}$ é um segmento de curva, definimos o comprimento de α como sendo

$$l(\alpha) = \int_a^b |\alpha'(t)| dt.$$

Agora, se $p,q \in M$, definimos d(p,q) como sendo o ínfimo dos comprimentos de todas as curvas diferenciáveis por partes ligando p a q. Assim (M,d) tem estrutura de espaço métrico, e a topologia induzida pela métrica d em M coincide com a topologia de M como variedade diferenciável. Dizemos que uma variedade riemanniana M é completa se (M,d) é completa como espaço métrico. Uma variedade riemanniana é dita geodesicamente completa, se para todo $p \in M$, a aplicação exponencial $exp_p: T_pM \to M$, está definida para todo $v \in T_pM$ ou de maneira equivalente, as geodesicas $\alpha(t): [0,\infty) \to M$ que partem de p, estão definidas para todo valor do parâmetro $t \in \mathbb{R}$. O seguinte teorema, devido a Hopf e Rinow relaciona os dois conceitos acima dados.

Teorema 1.1 (Hopf-Rinow) Em uma variedade riemanniana M, as seguintes afirmações são equivalentes:

- i. Para algum $p \in M$, exp_p está definida para todo $v \in T_pM$.
- ii. Os subconjuntos limitados e fechados de M são compactos.
- iii. Mé completa.
- iv. M é geodesicamente completa.
- v. Existe uma sequência de compactos $K_n \subset M$, $K_n \subset intK_{n+1}$ $e \cup K_n = M$, tais que se $q_n \notin K_n$ então $d(p,q_n) \to \infty$ para $p \in M$ fixo.

E cada uma das afirmações acima implica que para todo $q \in M$ existe uma geodésica γ ligando p a q, com $l(\gamma) = d(p,q)$.

Uma curva divergente em uma variedade riemanniana M é uma aplicação diferenciável $\alpha:[0,\infty)\to M$ tal que para todo compacto $K\subset M$ existe $t_0\in(0,\infty)$ com $\alpha(t)\notin K$ para todo $t>t_0$ (isto é $\alpha([0,\infty))$) sai de qualquer compacto). Define-se o comprimento de uma curva divergente como sendo

 $\lim_{t\to\infty} \int_0^t |\alpha'(s)| ds.$

Teorema 1.2 Uma variedade riemanniana é completa se, e somente se, o comprimento de qualquer curva divergente é ilimitado.

Demonstração: (\Rightarrow) Sejam M uma variedade riemanniana completa e $\alpha:[0,\infty)\to M$ uma curva divergente. Então pelo teorema de Hopf-Rinow para $p\in M$ fixo existe uma sequência de compactos $K_n\subset M$, $K_n\subset intK_{n+1}$ e $\cup K_n=M$. Se $\{t_n\}$ é uma sequência em $[0,\infty)$ tal que $\alpha(t_n)=q_n\notin K_n$, então $d(p,q_n)\to\infty$. Além disso como

 $d(p,q_n) \leq \int_0^{t_n} |\alpha'(s)| ds,$

então tomando limite obtemos $\lim_{t\to\infty}\int_0^t |\alpha'(s)|ds=\infty$, ou seja, o comprimento de α é ilimitado.

(\Leftarrow) Suponha que o comprimento de qualquer curva divergente é ilimitado e que M não é completa. Então M não é geodesicamente completa, ou seja, existe uma geodésica $\gamma:[0,a)\to M$ que está definida para t< a mas não para a e $l(\gamma)=a$. Considere $\alpha(s)=\gamma(\frac{a^2s}{as+1})$, vejamos que α é divergente. Como as imagens de α e γ são as mesmas, basta mostrar que γ sai de qualquer

compacto. Com efeito, caso contrário existiria $t_0 \in \mathbb{R}$ e um compacto $K \subset M$ tal que para todo $t > t_0$, $\gamma(t) \in K$, logo existe uma subsequência t_{n_k} tal que $\gamma(t_{n_k}) \to p_0$ e $p_0 \in K$. Seja V_δ uma vizinhança totalmente normal de p_0 e escolha $N \in \mathbb{N}$ tal que se n, m > N então $|t_m - t_n| < \delta$ e $\gamma(t_n), \gamma(t_m) \in V_\delta$. Assim temos uma única geodésica ρ ligando $\gamma(t_n)$ a $\gamma(t_m)$ e $l(\gamma) < \delta$, além disso ρ coincide com γ nos pontos onde γ está definida. Como $\exp_{\gamma(t_n)} : B_\delta(0) \to V_\delta$ é um difeomorfismo, então ρ estende γ além de p_0 , o que é absurdo. Logo α é uma curva divergente com $l(\alpha) = l(\gamma) = a$ o que é absurdo.

1.3. Imersões Isométricas.

Dadas duas variedades M^n e \widetilde{M}^m , dizemos que uma função diferenciável $f:M^n \to \widetilde{M}^m$ é uma imersão, se para todo $p \in M$ $df_p: T_pM \to T_{f(p)}\widetilde{M}^m$ é injetora. O número m-n é chamado de codimensão de f. Agora uma imersão entre duas variedades riemannianas $(M,\langle\cdot,\cdot\rangle_M)$ e $(\widetilde{M},\langle\cdot,\cdot\rangle_{\widetilde{M}})$ é dita imersão isométrica se $\langle\cdot,\cdot\rangle_M=f^*\langle\cdot,\cdot\rangle_{\widetilde{M}}$ onde $f^*\langle\cdot,\cdot\rangle_{\widetilde{M}}$ representa o pullback de $\langle\cdot,\cdot\rangle_{\widetilde{M}}$ pela função f, ou seja, para todo $p\in M$ e todo $X,Y\in T_pM$,

$$\langle X, Y \rangle_p = \langle df_p X, df_p Y \rangle_{f(p)}.$$
 (1.5)

É importante ressaltar que dada uma imersão $f: M \to (\widetilde{M}, \langle \cdot, \cdot \rangle)$ a equação (1.5) define uma métrica riemanniana em M que torna f uma imersão isométrica.

Se $f: M^n \to \widetilde{M}^m$ é uma imersão, então da forma local das imersões temos que para cada $p \in M$ existe uma vizinhança aberta V de p tal que $f|_V$ é um mergulho sobre f(V). Assim pode-se identificar V com f(V).

Considere o fibrado tangente $\widetilde{\pi}: T\widetilde{M} \to \widetilde{M}$ e sejam

$$E = T\widetilde{M} \left|_{f(M)} \right. = \left\{ X \in T\widetilde{M} : \pi(X) \in f(M) \right\} \quad \text{e} \quad \varphi = \widetilde{\pi} \mid_{E}.$$

Então $\varphi: E \to f(M)$ define um fibrado vetorial sobre f(M), normalmente denotado por $T\widetilde{M}|_{M}$, e tem-se a seguinte decomposição:

$$T\widetilde{M}|_{M} = TM \oplus TM^{\perp},$$

onde TM^{\perp} é o fibrado vetorial chamado de *fibrado normal*, cujas fibras são o complemento ortogonal das fibras de M. Assim dada uma seção $W \in \Gamma(E)$, W^{\top} e W^{\perp} serão as projeções tangencial e normal induzidas pela métrica em \widetilde{M} sobre $\Gamma(TM)$ e $\Gamma(TM^{\perp})$ respectivamente.

Sejam $\widetilde{\nabla}$ a conexão riemanniana de \widetilde{M} , $X \in \Gamma(M)$ e $W \in \Gamma(E)$. Então podemos estender X e W a campos de \widetilde{X} , \widetilde{W} de $T\widetilde{M}$, e a equação

 $\widetilde{\nabla}_X W := \widetilde{\nabla}_{\widetilde{X}} \widetilde{W}$

que não depende da extensão dos campos X e W, define uma conexão sobre E tal que

$$X\langle V, W \rangle = \langle \widetilde{\nabla}_X V, W \rangle + \langle V, \widetilde{\nabla}_X W \rangle, \tag{1.6}$$

$$\widetilde{\nabla}_X Y - \widetilde{\nabla}_Y X = [X,Y],$$

para todo $X,Y\in\Gamma(M)$ e $V,W\in\Gamma(E)$. Assim da equação (1.1), o tensor curvatura para E é definido por

 $\widetilde{R}(X,Y)W = \widetilde{\nabla}_X\widetilde{\nabla}_YW - \widetilde{\nabla}_Y\widetilde{\nabla}_XW - \widetilde{\nabla}_{[X,Y]}W.$

1.4. Equações Fundamentais das Imersões Isométricas.

Considere \widetilde{M}^m e M^n como sendo variedades riemannianas com conexões $\widetilde{\nabla}$ e ∇ respectivamente. Seja $f:M^n\to \widetilde{M}^m$ uma imersão isométrica. Se $X,Y\in \Gamma(M)$ então pelo dito acima temos que

$$\widetilde{\nabla}_X Y = \left(\widetilde{\nabla}_X Y\right)^{\mathsf{T}} + \left(\widetilde{\nabla}_X Y\right)^{\mathsf{L}}. \tag{1.7}$$

Além disso $(\widetilde{\nabla}_X Y)^T$ define uma conexão sobre TM simétrica e compatível com a métrica induzida pela função f. Portanto, pela unicidade da conexão riemanniana temos a seguinte equação, conhecida como *fórmula de Gauss*

$$\widetilde{\nabla}_X Y = \nabla_X Y + \alpha(X, Y), \tag{1.8}$$

onde $\alpha: \Gamma(M) \times \Gamma(M) \to \Gamma(TM^{\perp})$ é uma forma \mathbb{R} -bilinear, simétrica chamada de segunda forma fundamental da imersão f, e é definida por

$$\alpha(X,Y) := (\widetilde{\nabla}_X Y)^{\perp}.$$

Agora, dados $X \in \Gamma(M)$ e $\xi \in \Gamma(TM^{\perp})$ tem-se a decomposição

$$\widetilde{\nabla}_{X}\xi = \left(\widetilde{\nabla}_{X}\xi\right)^{\mathsf{T}} + \left(\widetilde{\nabla}_{X}\xi\right)^{\mathsf{L}}.\tag{1.9}$$

Denotaremos com $A_{\xi}X$ a componente tangencial de $\widetilde{\nabla}_{X}\xi$, isto é,

$$A_{\xi}X = \left(\widetilde{\nabla}_X \xi\right)^{\mathsf{T}}.$$

Da equação (1.6) obtemos

$$\langle \widetilde{\nabla}_X Y, \xi \rangle = X \langle Y, \xi \rangle - \langle Y, \widetilde{\nabla}_X \xi \rangle = -\langle Y, \widetilde{\nabla}_X \xi \rangle,$$

o que junto com a fórmula de Gauss nos dá que

$$\langle \alpha(X,Y), \xi \rangle = \langle A_{\xi}, Y \rangle.$$
 (1.10)

Logo

$$\begin{array}{cccc} A & : & \Gamma(M) \times \Gamma(TM^{\perp}) & \longrightarrow & \Gamma(M) \\ & & (X, \xi) & \longmapsto & A_{\xi}X \end{array}$$

é uma forma \mathbb{R} -bilinear, tal que para todo $p \in M$ e todo $\xi \in T_pM^\perp$, o operador $A_\xi : T_pM \to T_pM$, chamado de *operador de forma* ou segunda forma fundamental em p na direção de ξ , é auto-adjunto. Portanto para cada $p \in M$ e toda direção normal $\xi \in T_pM^\perp$ obtemos uma base ortonormal $\{v_1, \ldots, v_n\}$ de T_pM que diagonaliza A_ξ , e os respectivos auto-valores k_1, \cdots, k_n são chamados de *curvaturas principais*. O seguinte teorema, demonstrado em [R], garante a existência e a continuidade das funções curvaturas principais.

Teorema 1.3 Seja A um tensor simétrico de tipo (1,1) definido sobre uma variedade riemanniana M^n . Então existem n funções contínuas $\lambda_1 \geq \ldots \geq \lambda_n$ tais que para cada $p \in M$, $\{\lambda_i(p)\}_{i=1}^n$ são os auto-valores de A_p .

Agora a equação $(\widetilde{\nabla}_X \xi)^{\perp}$ define uma conexão linear sobre TM^{\perp} que chamaremos de conexão normal e denotaremos por ∇^{\perp} , e assim da decomposição (1.9) obtemos a *fórmula de Weingarten*

$$\widetilde{\nabla}_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi. \tag{1.11}$$

Será de especial interesse o estudo das imersões isométricas de codimensão 1, que chamaremos de hipersuperfícies. Neste caso para cada $p \in M$, $\dim(T_pM^\perp) = 1$, e assim, escolhida uma orientação de M, definimos a aplicação de Gauss $\xi: M \to S^n$, onde para todo $p \in M$ $\xi(p)$ é o transporte paralelo do vetor normal unitário em p até a origem. Além disso para cada ponto $p \in M$ definimos a curvatura de Gauss-Kronecker em p como sendo $K(p) = k_1k_2 \dots k_n$, e a informação da segunda forma

fundamental fica concentrada no operador de forma na direção ξ , pois

$$\alpha(X,Y)=\langle A_{\xi}X,Y\rangle\xi.$$

Por isso, neste caso dizemos que A é a segunda forma fundamental da imersão. Além disso para todo $\xi \in \Gamma(TM^{\perp})$ com $\langle \xi, \xi \rangle = 1$, temos $\langle \nabla_X^{\perp} \xi, \xi \rangle = 0$, logo as fórmulas de Gauss e Weingarten para hipersuperfícies na direção unitária ξ estão dadas respectivamente por

$$\widetilde{\nabla}_X Y = \nabla_X Y + \langle A_{\xi} X, Y \rangle \xi, \tag{1.12}$$

$$\widetilde{\nabla}_X \xi = -A_{\xi} X. \tag{1.13}$$

Usando as fórmulas de Gauss e Weingarten obtemos a seguinte expressão para a curvatura R de M em termos de \widetilde{R} :

$$\widetilde{R}(X,Y)Z = R(X,Y)Z - A_{\alpha(Y,Z)}X + A_{\alpha(X,Z)}Y + \left(\nabla_X^{\perp}\alpha\right)(Y,Z) - \left(\nabla_Y^{\perp}\alpha\right)(X,Z), \tag{1.14}$$

onde

$$\left(\nabla_X^\perp\alpha\right)(Y,Z)=\nabla_X^\perp\alpha(Y,Z)-\alpha(\nabla_XY,Z)-\alpha(Y,\nabla_XZ).$$

Tomando a parte tangencial da equação (1.14) obtemos a equação de Gauss:

$$\langle R(X,Y)Z,W\rangle = \langle \widetilde{R}(X,Y)Z,W\rangle + \langle \alpha(X,W),\alpha(Y,Z)\rangle - \langle \alpha(X,Z),\alpha(Y,W)\rangle.$$

Agora, se X, Y são vetores ortonormais de T_pM , então da equação (1.2) e da equação de Gauss obtemos a seguinte relação entre as curvaturas seccionais de M e \widetilde{M} :

$$K(X,Y) = \widetilde{K}(X,Y) + \langle \alpha(X,X), \alpha(Y,Y) \rangle - ||\alpha(X,Y)||^2.$$

Em particular, se $\{e_1, \ldots, e_n\}$ é um referencial ortonormal que diagonaliza A_{ξ} com auto-valores associados $\{k_1, \ldots, k_n\}$, e $\widetilde{M} = Q_c^m$ então:

$$K(e_i, e_j) = c + k_i k_j. \tag{1.15}$$

Da parte normal da equação (1.14) obtemos a equação de Codazzi:

$$(\widetilde{R}(X,Y)Z)^{\perp} = \left(\nabla_X^{\perp}\alpha\right)(Y,Z) - \left(\nabla_Y^{\perp}\alpha\right)(X,Z).$$

Seja R^{\perp} o tensor curvatura do fibrado normal TM^{\perp} com conexão normal ∇^{\perp} ,

$$R^{\perp}(X,Y)\xi = \nabla_X^{\perp}\nabla_Y^{\perp}\xi - \nabla_Y^{\perp}\nabla_X^{\perp}\xi - \nabla_{[X,Y]}^{\perp}\xi.$$

Substituindo as equações de Gauss e Codazzi na parte normal da última equação obtemos a equação de Ricci

$$\langle \widetilde{R}(X,Y)\xi,\eta\rangle = \langle R^\perp(X,Y)\xi,\eta\rangle - \langle [A_\xi,A_\eta]X,Y\rangle,$$

onde $[A_{\xi}, A_{\eta}] = A_{\xi}A_{\eta} - A_{\eta}A_{\xi}$.

Agora se $\widetilde{M}^m=Q^m_c$ então as equações de Gauss, Codazzi e Ricci estão dadas respectivamente por

$$\begin{split} \langle R(X,Y)Z,W\rangle &= c\langle (X\wedge Y)Z,W\rangle + \langle \alpha(X,W),\alpha(Y,Z)\rangle - \langle \alpha(X,Z),\alpha(Y,W)\rangle,\\ \\ &\left(\nabla_X^\perp\alpha\right)(Y,Z) = \left(\nabla_Y^\perp\alpha\right)(X,Z),\\ \\ &\langle R^\perp(X,Y)\xi,\eta\rangle = \langle [A_\xi,A_\eta]X,Y\rangle. \end{split}$$

Em particular se M é uma hipersuperfície de uma forma espacial, as equações de Gauss e Codazzi são:

$$R(X,Y) = c(X \wedge Y) + A_{\xi}X \wedge A_{\xi}Y,$$

$$(\nabla_X A_{\xi})Y = (\nabla_Y A_{\xi})X,$$

respectivamente, onde $\nabla_X A_\xi$ é a derivada covariante do tensor A_ξ , em relação ao campo X, isto é,

$$(\nabla_X A)(Y,\xi) = \nabla_Y A_\xi X - A_\xi \nabla_Y X - \nabla_{\nabla_Y^\perp \xi} X.$$

A seguir, como aplicação da equação de Gauss, vamos obter algumas expressões para a curvatura de Ricci de uma variedade imersa em uma forma espacial. Seja $f: M^n \to Q_c^{n+m}$ uma imersão isométrica e $\{\xi_1, \ldots, \xi_m\}$ uma base ortonormal de T_pM^\perp . O vetor *curvatura média* no ponto $p \in M$,

 $\overrightarrow{H}(p)$, e sua norma H são definidos por:

$$\overrightarrow{H} = \frac{1}{n} \sum_{i=1}^{m} (traço A_{\xi_i}) \xi_i, \quad e \quad H = ||\overrightarrow{H}||.$$

O quadrado da norma da segunda forma fundamental de f no ponto p é definido por

$$||A||^2 = \sum_{i=1}^m traço A_{\xi_i}^2.$$

Lema 1.1 Sejam $f: M^n \to Q_c^{n+m}$ uma imersão isométrica e $\{\xi_\beta\}_{\beta=1}^m$ uma base ortonormal de T_pM^\perp . Então

$$Q = \sum_{\beta=1}^{m} (traçoA_{\xi_{\beta}})A_{\xi_{\beta}} - \sum_{\beta=1}^{m} A_{\xi_{\beta}}^{2} + (n-1)cI.$$

Em particular $||A||^2 = -\tau + n^2H^2 + n(n-1)c$.

Demonstração: Consiste em fazer cálculos diretos das expressões conhecidas para Q. Seja $\{x_1, \ldots, x_n\}$ uma base ortonormal de T_pM . Então para todo $v \in T_pM$ temos:

$$Q(v) = \sum_{i=1}^{n} \langle Q(v), x_i \rangle x_i$$

$$= \sum_{i=1}^{n} Ric(v, x_i) x_i$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \langle R(x_j, v) x_i, x_j \rangle \right) x_i$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} -\langle R(x_j, v) x_j, x_i \rangle x_i$$

$$= \sum_{j=1}^{n} -R(x_j, v) x_j.$$

(1.16)

Da equação de Gauss obtemos então que

$$Q(v) = -\sum_{j=1}^{n} c\left(\langle v, x_{j}\rangle x_{j} - \langle x_{j}, x_{j}\rangle v\right) + A_{\alpha(v,x_{j})}x_{j} - A_{\alpha(x_{j},x_{j})}v$$

$$= -\sum_{j=1}^{n} c\left(\langle v, x_{j}\rangle x_{j} - v\right) + A_{\alpha(v,x_{j})}x_{j} - A_{\alpha(x_{j},x_{j})}v$$

$$= c(n-1)v - \sum_{j=1}^{n} \sum_{\beta=1}^{m} \left(A_{\langle \alpha(v,x_{j}),\xi_{\beta}\rangle \xi_{\beta}}x_{j} - A_{\langle \alpha(x_{j},x_{j}),\xi_{\beta}\rangle \xi_{\beta}}v\right)$$

$$= c(n-1)v - \sum_{j=1}^{n} \sum_{\beta=1}^{m} A_{\xi_{\beta}}\langle A_{\xi_{\beta}}v, x_{j}\rangle x_{j} - \langle A_{\xi_{\beta}}x_{j}, x_{j}\rangle A_{\xi_{\beta}}v$$

$$= c(n-1)v - \sum_{\beta=1}^{m} A_{\xi_{\beta}} \circ A_{\xi_{\beta}}v + \sum_{\beta=1}^{m} (tracoA_{\xi_{\beta}})A_{\xi_{\beta}}v.$$

Agora tomando $\tau = traçoQ$ e $n^2H^2 = \sum_{\beta}(traçoA_{\xi_{\beta}})$, obtemos $||A||^2 = -\tau + n^2H^2 + n(n-1)c$.

1.5. Máximos e Mínimos de Funções Reais

A idéia chave no estudo da convexidade de uma variedade M imersa em \mathbb{R}^{n+1} é observar que M é convexa num ponto p se, e somente se a *função altura* em relação ao vetor normal unitário ξ_p , $h_{\xi_p}: M \to \mathbb{R}$, definida por $h_{\xi_p}(q) = \langle p-q, \xi_p \rangle$, atinge um máximo ou mínimo em p. Para desenvolver esta idéia, precisamos definir alguns conceitos, a saber, o gradiente e o Hessiano de uma função real diferenciável definida sobre uma variedade riemanniana.

Se M é uma variedade riemanniana e $h: M \to \mathbb{R}$ é uma função diferenciável, definimos o campo *gradiente* de h, denotado por gradh, como sendo o campo dual da 1-forma dh, isto é

$$\langle \operatorname{grad} h_p, X \rangle = dh_p X,$$

para todo ponto $p \in M$ e todo $X \in T_pM$. Dado $p \in M$ definimos o *Hessiano* de h no ponto $p \in M$, denotado por $Hess_h(p)$, como sendo a forma bilinear simétrica

$$\operatorname{Hess}_h(p)(X,Y) := \langle \nabla_X \operatorname{grad} h_p, Y \rangle = (XY - \nabla_X Y)h.$$

Uma função real h definida sobre M é dita convexa (respectivamente estritamente convexa), se Hess $_h(p)$ é semi-definido positivo (respectivante definido positivo) para todo $p \in M$.

Teorema 1.4 Sejam $f: M^n \to \widetilde{M}^m$ uma imersão isométrica e $\widetilde{h}: \widetilde{M} \to \mathbb{R}$ uma função diferenciável. Se $h = \widetilde{h} \circ f$, então

 $Hess_h = Hess_{\widetilde{h}} + \langle grad\widetilde{h}, \alpha(\cdot, \cdot) \rangle.$

Demonstração: Sejam $p \in M$, $X \in T_pM$ e $\widetilde{X} = df_pX$. Temos

$$\langle \operatorname{grad} \widetilde{h}_{f(p)}, \widetilde{X} \rangle = d\widetilde{h}_{f(p)}(df_p X)$$

$$= dh_p X$$

$$= \langle \operatorname{grad} h_p, X \rangle$$

$$= \langle df_p(\operatorname{grad} h_p), df_p X \rangle$$

$$= \langle \operatorname{grad} h_p, \widetilde{X} \rangle.$$

Logo grad $h = \operatorname{grad} \widetilde{h}^{\mathsf{T}}$. Agora, se $X, Y \in T_pM$ então

$$\begin{split} \operatorname{Hess}_h(X,Y) &= \langle \nabla_X \operatorname{grad} h, Y \rangle \\ &= \langle \widetilde{\nabla}_X \operatorname{grad} h, Y \rangle \\ &= X \langle \operatorname{grad} h, Y \rangle - \langle \operatorname{grad} h, \widetilde{\nabla}_X Y \rangle \\ &= X \langle \operatorname{grad} \widetilde{h} - \operatorname{grad} \widetilde{h}^{\perp}, Y \rangle - \langle \operatorname{grad} \widetilde{h} - \operatorname{grad} \widetilde{h}^{\perp}, \widetilde{\nabla}_X Y \rangle \\ &= \langle \widetilde{\nabla}_X \operatorname{grad} \widetilde{h}, Y \rangle + \langle \operatorname{grad} \widetilde{h}, \nabla_X Y \rangle - \langle \operatorname{grad} \widetilde{h}, \widetilde{\nabla}_X Y \rangle + \langle \operatorname{grad} \widetilde{h}^{\perp}, \widetilde{\nabla}_X Y \rangle \\ &= \operatorname{Hess}_{\widetilde{h}} + \langle \operatorname{grad} \widetilde{h}, \alpha(X, Y) \rangle. \end{split}$$

Lembramos que um ponto $p \in M$ é ponto crítico da função $h: M \to \mathbb{R}$ se grad $h_p = 0$. Os pontos críticos de uma função real podem ser de três tipos: máximo local, mínimo local ou ponto de sela, definidos da seguinte maneira. Seja p um ponto crítico de $h: M \to \mathbb{R}$. Dizemos que h tem um mínimo local em p (respectivamente máximo local) se existe uma vizinhança aberta V de p, tal que $h(q) \geq h(p)$ (respectivamente $h(q) \leq h(p)$) para todo $q \in V$. Um ponto crítico $p \in M$ é dito ponto de sela se não é mínimo local nem máximo local. Se nos casos anteriores as desigualdades são estritas, ou seja, h(q) > h(p) (respectivamente h(q) < h(p)) para todo $q \in V$, então dizemos que p é um ponto de máximo local estrito (respectivamente mínimo local estrito).

O seguinte teorema dá condições necessárias e suficientes para que um ponto crítico de uma função real seja um ponto de máximo ou mínimo local.

Teorema 1.5 (Teste "da segunda derivada" para máximos e mínimos) Sejam M^n uma hipersuperfície em \mathbb{R}^{n+1} , $h: M \to \mathbb{R}$ uma função diferenciável e $p \in M$ um ponto crítico de h. Então

- i. p é um ponto de mínimo local (mínimo local estrito) se, e somente se $Hess_h(p)$ é semi-definido positivo (definido positivo);
- ii. p é um ponto de máximo local (máximo local estrito) se, e somente se $Hess_h(p)$ é semi-definido negativo (definido negativo).

CAPÍTULO 2

Hipersuperfícies Euclidianas Convexas.

Este capítulo tem um papel fundamental no desenvolvimento do nosso objetivo principal, a saber a demonstração do Teorema das Curvaturas Principais. Embora este teorema forneça resultados globais sobre todas as hipersuperfícies completas e orientáveis do espaço euclidiano, a demonstração está baseada no caso particular das hipersuperfícies euclidianas convexas. Appresentaremos, sem demonstração o Teorema de Sacksteder Van-Heijenoort [S] e o Teorema de Wu[Wu], que juntos generalizam resultados prévios de Hadamard [Ha], Stocker[St], Chern e Lanshof [Ch-L], que relacionam as superfícies convexas com as de curvatura seccional não-negativa.

Dada uma imersão isométrica $f: M^n \to \mathbb{R}^{n+1}$, de uma variedade M orientada pela aplicação de Gauss $\xi: M^n \to S^n$, dizemos que M é *localmente convexa* no ponto $p \in M$, se existe uma vizinhança aberta V de p tal que f(V) está contido num dos semi-espaços:

$$H_p^+=\{q\in\mathbb{R}^{n+1}:\langle q-f(p),\xi_p\rangle\geq 0\},$$

$$H_p^-=\{q\in\mathbb{R}^{n+1}:\langle q-f(p),\xi_p\rangle\leq 0\}.$$

Diremos que M é localmente estritamente convexa em $p \in M$ se $f(V) \cap f_*(T_pM) = \{f(p)\}$. Ao longo deste capítulo daremos alguns resultados que relacionam curvatura seccional com convexidade.

Para fixar a notação diremos que a segunda forma fundamental de uma imersão $f:M^n \to \mathbb{R}^{n+1}$

é definida (respectivamente semi-definida) se ela é definida positiva ou negativa (respectivamente semi-definida positiva ou negativa).

Teorema 2.1 Se $f: M^n \to \mathbb{R}^{n+1}$ é uma hipersuperfície localmente convexa (localmente estritamente convexa) em p, então a segunda forma fundamental em p é semi-definida (definida).

É importante notar que em nosso caso, tomando um referencial ortonormal $\{e_1, \ldots, e_n\}$ que diagonaliza a segunda forma fundamental num ponto, temos da equação (1.15) que $K(\sigma) = k_i k_j$ onde σ é o 2-plano gerado pelos vetores e_i, e_j e k_i, k_j são as curvaturas principais nas direções e_i, e_j respectivamente. Assim, se a segunda forma fundamental é semi-definida (definida), então as curvaturas seccionais são não-negativas (positivas).

A recíproca do teorema anterior não é verdadeira. Considerando a superfície gráfico de $z=x^3(1+y^2)$, definida na vizinhança $y^2<\frac{1}{2}$ de (0,0), pode-se ver que a curvatura é não-negativa nesta vizinhança, e a superfície não é localmente convexa em (0,0), mas é importante notar que esta superfície não é completa. Pode-se demonstrar o seguinte teorema:

Teorema 2.2 Se $f: M^n \to \mathbb{R}^{n+1}$ é uma hipersuperfície com segunda forma fundamental definida num ponto $p \in M$, então M é localmente estritamente convexa em p.

No caso M compacta, pode-se demonstrar que existe um ponto $p \in M$ tal que a segunda forma fundamental é definida em p. Assim, nesse caso sempre pode-se garantir a existência de um ponto onde M é localmente estritamente convexa.

De agora em diante, um corpo convexo será entendido como um subconjunto aberto $B \subset \mathbb{R}^{n+1}$, tal que dados dois pontos $p,q \in B$, o segmento que une p e q está contido em B.

Definição 2.1 (hipersuperfície convexa)

Diremos que um mergulho $f: M^n \to \mathbb{R}^{n+1}$ é uma hipersuperfície convexa se f(M) é o bordo de um corpo convexo.

O seguinte teorema é um resultado de Hadamard [Ha], e mostra que a segunda forma fundamental e a curvatura de Gauss-Kronecker estão relacionadas no caso de hipersuperfícies compactas.

Teorema 2.3 (Hadamard)

Seja $f:M^n\to\mathbb{R}^{n+1}$ uma hipersuperfície compacta. As seguintes afirmações são equivalentes:

i. A segunda forma fundamental é definida em todo ponto.

- ii. A aplicação de Gauss é um difeomorfismo.
- iii. A curvatura de Gauss-Kronecker é não nula em todo ponto.

Além disso, qualquer uma das condições anteriores implicam que a hipersuperfície é convexa.

Em 1958, Chern e Lashof [Ch-L] demonstraram, no caso n=2, que o resultado de Hadamard é válido se a hipótese de curvatura seccional positiva é substituída por não-negativa. Posteriormente, Stocker em [St] estendeu o teorema de Hadamard para o caso não compacto de superfícies em \mathbb{R}^3 , trocando a hipótese de compacidade por completude. Além disso, mostrou que com estas hipóteses, superfícies em \mathbb{R}^3 são homeomorfas à esferas, no caso compacto, e ao plano no caso não compacto.

Numa tentativa de generalizar estes resultados para dimensão maior, Heijenoort [He] Demonstrou que se uma imersão isométrica $f:M^n\to\mathbb{R}^{n+1}$ é estritamente localmente convexa num ponto e localmente convexa em todo ponto, então f(M) é o bordo de um corpo convexo, e, como corolário, M é limitada e homeomorfa a \mathbb{S}^n ou não limitada e homeomorfa a \mathbb{R}^n .

Pelo exemplo dado após o teorema 1.1, o fato de ser localmente convexa não implica que a segunda forma fundamental seja semi-definida. Sacksteder demonstrou em [S] que este tipo de exemplo não pode existir no caso completo, ou seja, se M^n é uma hipersuperfície completa e localmente convexa em p, então a segunda forma fundamental é semi-definida em p e portanto as curvaturas seccionais são não-negativas. Assim, juntando os resultados obtidos por Van-Heijenoort e Sacksteder obtém-se o seguinte teorema:

Teorema 2.4 (Sacksteder, Van-Heijenoort)

Seja $f: M^n \to \mathbb{R}^{n+1}$ imersão isométrica de uma variedade completa e orientável M^n , de curvatura seccional não-negativa (não identicamente nula). Então

- i. f é um mergulho e f(M) é uma hipersuperfície convexa;
- ii. Se A é a segunda forma fundamental da imersão f e $2 \le r = max\{postoA\}$ então \mathbb{R}^{n+1} pode ser decomposto numa soma direta ortogonal $\mathbb{R}^{n+1} = \mathbb{R}^{r+1} \times \mathbb{R}^{n-r}$, e as projeções de \mathbb{R}^{n+1} nos dois fatores levam a uma isometria $f(M) \approx M_1^r \times \mathbb{R}^{n-r}$, onde M_1^r é uma hipersuperfície convexa mergulhada em \mathbb{R}^{r+1} com segunda forma fundamental de posto r em algum ponto.
- iii. Se adicionalmente num ponto todas as curvaturas seccionais são positivas, então M é homeomorfa a \mathbb{R}^n ou a \mathbb{S}^n .

Com o intuito de generalizar os resultados de Stocker, H. Wu [Wu] obteve o resultado que descreveremos a seguir. Antes disso, precisamos dar a definição de pseudo-gráfico.

Definição 2.2 Dizemos que uma hipersuperfície convexa M^n em \mathbb{R}^{n+1} forma um pseudo-gráfico sobre um de seus planos tangentes T_pM se satisfaz as seguintes condições:

- i. M está contida em algum dos semi-espaços determinados por T_pM , a saber H_p^+ ou H_p^- ;
- ii. Se $\pi: \mathbb{R}^{n+1} \to T_pM$ é a projeção ortogonal sobre T_pM e $A=\pi(M)$, então sobre int(A) (interior relativo a T_pM) M é o gráfico de uma função C^{∞} ;
- iii. Para todo a \notin int(A), M ∩ π^{-1} (a) \acute{e} uma linha fechada semi-infinita;
- iv. Todo hiperplano paralelo a T_pM que intercepta M, define uma subvariedade de dimensão n-1, difeomorfa a \mathbb{S}^{n-1} .

Teorema 2.5 (Wu) Seja M uma hipersuperfície convexa e orientável em \mathbb{R}^{n+1} homeomorfa a \mathbb{R}^n . Se $\xi: M^n \to \mathbb{S}^n$ é a aplicação de Gauss, e $\xi(M)$ tem interior não vazio (relativo a \mathbb{S}^n), então pode-se escolher cartas locais para M, tais que f(M) é o pseudo-gráfico sobre o hiperplano $\{x_{n+1} = 0\}$ de uma função não-negativa e convexa (o Hessiano é não-negativo em todo ponto).

No teorema anterior, se temos que M é localmente estritamente convexa num ponto, então a aplicação de Gauss é um difeomorfismo local, e portanto $\xi(M)$ tem interior relativo a \mathbb{S}^n não vazio.

CAPÍTULO 3

Propriedade do Fecho Convexo para Variedades Imersas

O objetivo principal deste capítulo é dar uma caracterização geométrica das imersões que tem a propriedade do fecho convexo. Esta caracterização será fundamental na demonstração do Teorema das Curvaturas Principais.

Definição 3.1 (conjunto convexo)

 $Um\ conjunto\ A\subset\mathbb{R}^n\ diz\ se\ convexo\ se\ para\ todo\ x,y\in A\ o\ segmento\ \overline{xy}=\{\lambda x+(1-\lambda)y:\lambda\in[0,1]\}\subset A.$

Como exemplos de conjuntos convexos que serão importantes ao longo deste capítulo estão os semi-espaços, H_p^+, H_p^- no caso de hipersuperfícies convexas e $H(v, a) = \{x \in \mathbb{R}^n : \langle x, v \rangle \leq a, a \in \mathbb{R}, v \in \mathbb{R}^n\}$.

Definição 3.2 (fecho convexo)

Dado $B \subset \mathbb{R}^n$, definimos o fecho convexo de B, que denotaremos por conv(B), como sendo a intersecção de todos os semi-espaços que contêm B.

É importante notar que conv(B) é o menor conjunto convexo (no sentido de inclusão) que contém B. Dizemos que um subconjunto D de uma variedade M é um domínio, se D é conexo com fecho compacto e tem interior não-vazio.

Definição 3.3 (propriedade do fecho convexo)

Uma imersão $f: M^m \to \mathbb{R}^n$ tem a propriedade do fecho convexo, se para todo domínio $D \subset M$ tal que f(D) é limitado, tem-se $f(D) \subset conv(\partial f(D))$.

Diz-se que uma variedade M^m imersa no \mathbb{R}^n tem a propriedade do fecho convexo se a imersão que a define cumpre a propriedade dita acima.

As demonstrações apresentadas só usam conceitos locais, portanto dada uma imersão isométrica $f:M^m\to\mathbb{R}^n$ identificaremos M com f(M), pois localmente f é uma inclusão.

Lema 3.1 Sejam M^m uma variedade imersa no \mathbb{R}^n , $p \in M$, ξ_p um vetor normal unitário no ponto p e $k_1(p) \ge k_2(p) \ge \ldots \ge k_m(p)$ as curvaturas principais de M no ponto p e na direção ξ_p . Dado R > 0 considere B_R como sendo a bola aberta de raio R e centro $C = p + R\xi_p$. Então

- a. Se existe uma vizinhança aberta de p contida em $\overline{B_R}$, então $k_m(p) \geq \frac{1}{R}$.
- b. Se $k_m(p) > \frac{1}{R}$, então existe uma vizinhança aberta de p contida em $\overline{B_R}$.
- c. Se $k_1(p) > \frac{1}{R} > k_m(p)$ então toda vizinhança aberta de p contém pontos de $\overline{B_R}$ e exteriores de $\overline{B_R}$.
- d. Se $k_1(p) < \frac{1}{R}$ então existe uma vizinhança aberta de p contida no exterior de $\overline{B_R}$.

Demonstração: Sejam M uma variedade imersa no \mathbb{R}^n definida pela imersão $f: M^m \to \mathbb{R}^n$, $p \in M$, ξ_p vetor normal de M no ponto p, R > 0, e B_R a bola aberta de raio R e centro $c = p + R\xi_p$. Consideremos a função distância ao ponto fixo c

$$\widetilde{h} : \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x \longmapsto ||x - c||^2,$$

$$d\widetilde{h}_p X = \langle \operatorname{grad} \widetilde{h}_p, X \rangle = 2\langle X, p - c \rangle = 2\langle X, -R\xi_p \rangle. \tag{3.1}$$

Seja $\gamma:(-\epsilon,\epsilon)\to M$ uma curva suave, tal que $\gamma(0)=p$ e $\gamma'(0)=X$, e seja $\beta(t)=\widetilde{h}\circ\gamma(t)$. Então:

$$\begin{split} \operatorname{Hess} &\widetilde{h}_{p}(X) &= \beta''(0) \\ &= \frac{d^{2}}{dt^{2}} \bigg|_{t=0} \widetilde{h} \circ \gamma(t) \\ &= 2 \frac{d}{dt} \bigg|_{t=0} \langle \gamma'(t), \gamma(t) - c \rangle \\ &= 2 [\langle \nabla_{\gamma'(t)} \gamma'(t), \gamma(t) - c \rangle + \langle \gamma'(t), \gamma'(t) \rangle] \bigg|_{t=0} \\ &= 2 [\langle \nabla_{X} X, R \xi_{p} \rangle + \langle X, X \rangle] \\ &= 2 \langle X, X \rangle, \end{split}$$

onde na última equação $\langle \nabla_X X, R\xi_p \rangle = 0$ pois $\nabla_X X \in T_p M$.

Agora seja

$$\begin{array}{ccc} h & : & M & \longrightarrow & \mathbb{R} \\ & q & \longmapsto & ||f(q) - c||^2. \end{array}$$

Então:

$$\begin{split} \operatorname{Hess} h_{q_o} X &= \operatorname{Hess} \widetilde{h}_p X + \langle \operatorname{grad} \widetilde{h}_p, \alpha_p(X, X) \rangle \\ &= 2 \langle X, X \rangle + 2 \langle \alpha_p(X, X), -R \xi_p \rangle \\ &= 2 [\langle X, X \rangle - 2R \langle X, A_{\xi_p} X \rangle] \\ &= \langle X, 2 (I - R A_{\xi_p}) X \rangle. \end{split}$$

Se λ é um auto-valor de $2(I-RA_{\xi_p})$, ou seja, existe $v\neq 0$ tal que $2(I-RA_{\xi_p})v=\lambda v$, ou de forma equivalente $A_{\xi_p}v=\frac{2-\lambda}{2R}v$, então para algum $i\in\{1,\ldots,m\}, \quad k_i(p)=\frac{2-\lambda}{2R}$ ou $\lambda=2(1-Rk_i(p))$. Assim:

- i. Hess h_{q_0} é definido positivo $\iff \lambda > 0 \iff k_i(p) \le k_1(p) < \frac{1}{R}$;
- ii. Hess h_{q_0} é definido negativo $\iff \lambda < 0 \iff k_i(p) \ge k_m(p) > \frac{1}{R}$;
- iii. Hess h_{q_0} é semi-definido negativo $\iff \lambda \leq 0 \iff k_i(p) \geq k_m(p) \geq \frac{1}{R}$.

Logo se existe uma vizinhança de p contida em $\overline{B_R}$, então a função distância ao ponto c atinge um máximo local no ponto p, ou seja, $\operatorname{Hess} h_{q_0}$ é semi-definido negativo, então $k_m(p) \geq \frac{1}{R}$, obtendo assim a demonstração do item a.

Se $k_m(p) > \frac{1}{R}$, então Hess h_{q_0} é definido negativo, e daí p é um máximo local da função distância, donde existe uma vizinhança de p tal que $||x-c||^2 < ||p-c||^2 = R^2$ para todo x nessa vizinhança, ou seja, existe uma vizinhança de p contida em $\overline{B_R}$.

Os itens c e d são demonstrados da mesma forma usando o fato que p é um ponto de mínimo local no caso $k_1(p) < \frac{1}{R}$, e um ponto de sela quando $k_1(p) > \frac{1}{R} > k_m(p)$.

O seguinte teorema dá uma caracterização geométrica das imersões com a propriedade do fecho convexo.

Teorema 3.1 Se $f: M^m \to \mathbb{R}^n$ é uma imersão isométrica, então M tem a propriedade do fecho convexo se, e somente se em cada ponto de M não existe nenhuma direção normal tal que todas as curvaturas normais nessa direção sejam positivas.

Demonstração: (\Rightarrow) Suponha que existe $p \in M$ e ξ_p vetor normal no ponto p, tal que todas as curvaturas normais na direção ξ_p sejam positivas, ou seja, $k_1(p) \ge k_2(p) \ge ... \ge k_m(p) > 0$. Seja $R > \frac{1}{k_m(p)}$, e considere $B_R(c)$ como sendo a bola aberta de raio R e centro $c = p + R\xi_p$. Pelo lema anterior, existe uma vizinhança D de q_0 tal que $f(D) \subset \overline{B_R(c)}$ e como f é uma imersão, então diminuindo D se for preciso, podemos supor que f é 1-1 em \overline{D} , e além disso $E = \partial f(D) \subset \overline{B_R(c)} - \{p\}$ é um conjunto compacto.

Considere a função altura com respeito à direção normal ξ_p

$$\begin{array}{cccc} h_{\xi_p} & : & M & \longrightarrow & \mathbb{R} \\ & & x & \longmapsto & \langle x-p, \xi_p \rangle. \end{array}$$

Esta função restrita ao conjunto *E* tem as seguintes propriedades:

- i. Para todo $x \in E$, $h_{\xi_p}(x) > 0$, pois como $E \subset B_R \{p\}$ então $h_{\xi_p}(x) \ge 0$. Se $h_{\xi_p}(x) = 0$, então p e x estão no mesmo conjunto de nível, logo $x \in T_pM$ e isso não pode acontecer pois $x \in B_R(c)$.
- ii. A função $h_{\xi_p}|_E$ atinge um mínimo no compacto E, ou seja existe $x_0 \in E$ tal que para todo $x \in E$ $\langle x-p, \xi_p \rangle \ge \langle x_0-p, \xi_p \rangle = \eta > 0$, e assim $E = \partial f(D) \subset H(\xi_p, \eta)$. Mas $p = f(q_0) \notin H(\xi_p, \eta)$ pois $\langle f(q_0) p, \xi_p \rangle = 0$. Logo $f(D) \not\subseteq conv(\partial f(D))$, ou seja M não tem a propriedade do fecho convexo.
- (⇐) Suponha agora que M não possui a propriedade do fecho convexo. Vamos encontrar um ponto $p \in f(D)$, uma direção normal ξ_p e uma vizinhança V_p desse ponto tal que $V_p \subset \overline{B_R}$ para

algum R > 0, daí pelo item a. do lema anterior teremos que $k_1(p) \ge k_2(p) \ge ... \ge k_m(p) \ge \frac{1}{R} > 0$, ou seja todas as curvaturas normais no ponto p, na direção ξ_p são positivas.

De fato, se M não possui a propriedade do fecho convexo, então existe um domínio $D \subset M_0$ com f(D) limitado e tal que $f(D) \nsubseteq conv(\partial f(D))$, ou seja, existem $v \in \mathbb{R}^n$ vetor unitário , $a \in \mathbb{R}$ e $p \in M$ tais que $\partial f(D) \subset H(v,a)$ e $p \notin H(v,a)$. Assim $\langle p,v \rangle = b > a$ e para todo $x \in \partial f(D)$ $\langle x,v \rangle \leq a$. Seja $c_r \in \mathbb{R}^n$ tal que $\langle c_r,v \rangle = a$. Como f(D) é limitada, existe r > 0 tal que $\overline{f(D)} \subset B_r(c_r)$. Agora, para cada t > r seja $B_t(c_t)$ a bola aberta de raio t e centro $c_t = c_r - \sqrt{t^2 - r^2}v$. Esta familia de bolas tem as seguintes propriedades:

Afirmação 3.1 Para cada t > r, $\partial f(D) \subset B_t(c_t)$.

De fato, dado $x \in \partial f(D)$ tem-se

$$||x - c_t||^2 = ||x - c_r + \sqrt{t^2 - r^2}v||^2$$

$$= ||x - c_r||^2 + 2[\langle x - c_r, \sqrt{t^2 - r^2}v \rangle] + (t^2 - r^2)||v||^2$$

$$= ||x - c_r||^2 + 2\sqrt{t^2 - r^2}[\langle x, v \rangle - \langle c_r, v \rangle] + (t^2 - r^2).$$

Como $x \in \partial f(D) \subset H(v, a)$ $e \langle c_r, v \rangle = a$ então $\langle x, v \rangle - \langle c_r, v \rangle \leq 0$. Assim:

$$||x - c_t||^2 \le ||x - c_r||^2 + t^2 - r^2 < t^2.$$

Ou seja, para todo t > r $\partial f(D) \subset B_t(c_t)$.

Afirmação 3.2 Para t suficientemente grande, $p \notin \overline{B_t(c_t)}$.

Para ver isto, suponha que para todo $t > r \quad ||p - c_t||^2 \le t^2$. Então

$$||p - c_r||^2 + 2\sqrt{t^2 - r^2}[\langle p, v \rangle - \langle c_r, v \rangle] + (t^2 - r^2) \le t^2,$$

$$||p - c_r||^2 + 2\sqrt{t^2 - r^2}[b - a] - r^2 \le 0.$$

Assim para todo t > r, tomando w = b - a > 0, temos:

$$2\sqrt{t^2-r^2}w-r^2<||p-c_r||^2+2\sqrt{t^2-r^2}w-r^2\leq 0$$

ou seja para todo t > r

$$0<2w<\frac{r^2}{\sqrt{t^2-r^2}},$$

o que contradiz o fato de $\lim_{t\to\infty}\frac{r^2}{\sqrt{t^2-r^2}}=0$. Então $p\notin\overline{B_t(c_t)}$ para t suficientemente grande.

Afirmação 3.3 Existem $R > r e p \in f(D)$ tais que $f(D) \subset \overline{B_R(c_R)} e p \in \partial B_R(c_R)$.

Com efeito, suponha por absurdo que para todo t > r acontece $f(D) \nsubseteq \overline{B_R(c_R)}$ ou para todo $p \in f(D)$, $p \notin \partial B_t(c_t)$. A primeira afirmação não acontece, pois sabemos que para t = r, $f(D) \subset \overline{B_r(c_r)}$. Então se para todo $p \in f(D)$, $p \notin \partial B_t(c_t)$, considere os seguintes conjuntos:

$$M_1=\{p\in \overline{f(D)}: p\notin \overline{B_s(c_s)}\},$$

$$M_2 = \{ p \in \overline{f(D)} : p \in \overline{B_s(c_s)} \},$$

onde s > r é tal que $f(q_0) \notin \overline{B_s(c_s)}$, (s existe pela afirmação anterior). Assim pelas afirmações anteriores ambos conjuntos são não vazios. Além disso como para todo $p \in f(D)$, $p \notin \partial B_s(c_s)$, então M_1 e M_2 são abertos e $\overline{f(D)} = M_1 \cup M_2$, mas pela conexidade de $\overline{f(D)}$ isso não pode acontecer.

Das afirmações anteriores temos que o espaço tangente a M no ponto p é um subespaço do espaço tangente a $\partial B_R(c_R)$. Considerando ξ_p como sendo o normal interior da esfera $\partial B_R(c_R)$, temos que ξ_p é normal a T_pM e está dirigido na direção de p a c_R . Assim pelo lema 3.1 todas as curvaturas principais em p na direção ξ_p são positivas.

Corolário 3.1 Seja $f: M^n \to \mathbb{R}^{n+1}$ uma imersão isométrica de uma variedade M^n orientada pela aplicação de Gauss $\xi: M^n \to \mathbb{S}^n$. Então f tem a propriedade do fecho convexo se e somente se, em cada ponto a segunda forma fundamental não é definida positiva nem definida negativa.

O corolário anterior fornece um importante exemplo de hipersuperfícies com a propriedade do fecho convexo, a saber, as hipersuperfícies mínimas.

Dizemos que uma imersão $f: M^n \to \mathbb{R}^{n+p}$ é mínima se o vetor curvatura média é nulo. Assim para o caso de hipersuperfícies mínimas no espaço euclidiano (que não são hiperplanos), tomando um referencial ortonormal que diagonaliza A temos:

$$k_1 + \cdots + k_n = 0$$

logo a segunda forma fundamental não é definida positiva nem negativa. Portanto, do corolário anterior, toda hipersuperfície mínima tem a propriedade do fecho convexo.

CAPÍTULO 4

O Teorema das Curvaturas Principais e Aplicações

4.1. O Teorema das Curvaturas Principais

Ao longo deste capítulo $f:M^n\to\mathbb{R}^{n+1}$ denotará uma imersão isométrica, A a segunda forma fundamental da imersão f com respeito ao campo normal unitário $\xi:M\to S^n$. Denotaremos com Λ o conjunto de valores não nulos atingidos pelos auto-valores de A e $\Lambda^\pm=\Lambda\cap\mathbb{R}^\pm$.

Lema 4.1 Seja $f: M^n \to \mathbb{R}^{n+1}$ uma imersão isométrica de uma variedade M conexa, completa e orientável. Se Λ^+ e Λ^- são não vazios e inf $\Lambda^+ > 0$, então A não é definida positiva nem definida negativa. Em particular f tem a propriedade do fecho convexo.

Demonstração: Considere o conjunto

$$\mathscr{C} = \{ p \in M : A_{\xi_p} \text{ \'e definida positiva} \}.$$

Como $\Lambda^- \neq \emptyset$, temos $\mathscr{C} \neq M$. Para demonstrar que A não é definida positiva temos que provar que \mathscr{C} é aberto e fechado, daí pela conexidade de M teremos $\mathscr{C} = \emptyset$.

Em efeito, $\mathscr C$ é aberto pois se existe um ponto $p\in M$ tal que para todo $i=1,\ldots,n,$ $k_i>0$ então, como as funções curvaturas principais são contínuas, existe uma vizinhança V_p de p tal que para

todo $q \in V_p$ $k_i(q) > 0$, logo nessa vizinhança A é definida positiva. Para ver que $\mathscr C$ é fechado, considere uma sequência $\{p_m\} \subset \mathscr C$, tal que $p_m \to p$. Então para cada $i=1,\ldots,n$, $k_i(p_m) > 0$. Logo $\lim_{m \to \infty} k_i(p_m) \ge 0$, mas $\lim_{m \to \infty} k_i(p_m) \ne 0$ (pois $\inf \Lambda^+ > 0$) assim

$$\lim_{m\to\infty} k_i(p_m) = k_i(p) > 0$$

ou seja, A_{ξ_p} é definida positiva.

Agora para demonstrar que A não é definida negativa, basta ver que em cada ponto p de M, A_{ξ_p} tem um auto-valor positivo. Para isso considere o conjunto

$$\mathscr{A} = \{ p \in M : A_{\xi_p} \text{ tem auto-valor positivo} \}.$$

 \mathscr{A} é não vazio pois $\Lambda^+ \neq \emptyset$. \mathscr{A} é aberto, pois se A_{ξ_p} tem um auto-valor positivo k_i , então pela continuidade das funções curvaturas principais, existe uma vizinhança de p onde k_i é positiva e nessa vizinhança A tem só auto-valores positivos. \mathscr{A} é fechado, pois se $\{p_m\} \subset \mathscr{A}$ é uma sequência tal que $p_m \to p$, então para cada p_m existe um j tal que $k_j(p_m) \geq 2c > 0$. Se $p \notin \mathscr{A}$ então todo auto-valor de A_{ξ_p} é não positivo. Em particular $k_j(p) \leq 0$ e como k_j é uma função contínua, então pelo teorema do valor médio existe $q \in M$ tal que $k_j(q) = c$ o que contradiz o fato de inf $\Lambda^+ = 2c$. Assim, pela conexidade de M, $\mathscr{A} = M$, ou seja, para todo $p \in M$, A_{ξ_p} tem auto-valor positivo. \clubsuit

*O*bservação: Da afirmação anterior e do fato de $\Lambda^- \neq \emptyset$ segue-se que existe um ponto $p \in M$ tal que A_{ξ_p} tem um auto-valor positivo e outro negativo, ou seja, $max\{postoA\} \geq 2$.

Lema 4.2 Seja M uma hipersuperfície completa, orientável e imersa no \mathbb{R}^{n+1} que não e um hiperplano. Se Λ^+ e Λ^- são não vazios, in f Λ^+ > 0 (ou sup Λ^- < 0) e $r=max\{postoA\} \ge 2$, então, M e isométrica a $M_1^r \times \mathbb{R}^{n-r}$ onde M_1^r e uma hipersuperfície completa, convexa e mergulhada no \mathbb{R}^{r+1} com segunda forma fundamental de posto r em algum ponto, e a imersão induzida por f no primeiro fator tem o mesmo conjunto f que f f0.

Demonstração: A idéia fundamental da demonstração é criar uma imersão $f_0: M^n \to \mathbb{R}^{n+1}$ cumprindo as hipóteses do teorema de Sackesteder, e daí concluir o resultado.

Seja $f: M^n \to \mathbb{R}^{n+1}$ a imersão, e denotemos por $\langle \cdot, \cdot \rangle$ a métrica induzida em M pela imersão f. Das equações fundamentais das imersões temos que A é dada pela expressão $D_X \xi = -f_*(AX)$, onde D_X denota a derivada covariante no \mathbb{R}^{n+1} em relação ao campo X tangente a M.

Suponha que inf $\Lambda^+ = 2c > 0$, e seja $t_0 = \frac{1}{c} > 0$. Considere a função

$$f_0: M^n \longrightarrow \mathbb{R}^{n+1}$$
 $p \longmapsto f(p) + t_0 \xi_p.$

 f_0 é uma imersão isométrica que induz sobre M uma métrica riemanniana completa, cuja segunda forma fundamental é semi-definida negativa e de posto ≥ 2 . Assim da equação (1.15) com c=0, temos que as curvaturas seccionais de M com esta métrica são não-negativas, logo pelo teorema de Sacksteder Van-Heijenoort $f_0(M)$ é isométrica a $M_1^r \times \mathbb{R}^{n-r}$, onde M_1^r é uma hipersuperfície convexa mergulhada em \mathbb{R}^{r+1} , logo f deixa $M^n=M_1^r \times \mathbb{R}^{n-r}$ (= a menos de isometrias) imersa em $\mathbb{R}^{r+1} \times \mathbb{R}^{n-r}$ como um produto, e a imersão induzida pela f em M_1^r tem o mesmo conjunto Λ que f sobre M.

Na continuação, daremos uma sequência de afirmações cujo objetivo é demonstrar que f_0 tem todas as propriedades ditas no parágrafo anterior.

Afirmação 4.1 f_0 é uma imersão cuja métrica induzida $\langle \cdot, \cdot \rangle_0$ é dada por

$$\langle X, Y \rangle_0 = \langle (I - t_0 A)^2 X, Y \rangle,$$

para todo $X, Y \in \Gamma(M)$.

De fato, para cada $p \in M$ e $v \in T_pM$ $df_{0p}v = df_pv - t_0df_p(A_{\xi_p}v)$, logo df_{0p} é injetora, pois se existisse $v \neq 0$ tal que $df_{0p}v = 0$ então $A_{\xi_p}v = cv$, o que contradiz o fato de $\inf \Lambda^+ = 2c > c$. É importante notar do anterior, que nestas condições o operador $I - t_0A$ não tem auto-valores nulos.

A métrica induzida pela imersão f_0 em M é dada por $\langle \cdot, \cdot \rangle_0 = f_0^* \langle \cdot, \cdot \rangle$, então para todo $X, Y \in \Gamma(M)$

$$\langle X, Y \rangle_0 = \langle f_* X + t_0 D_X \xi, f_* Y + t_0 D_Y \xi \rangle$$

$$= \langle f_* (X - t_0 A X), f_* (Y - t_0 A Y) \rangle$$

$$= \langle X - t_0 A X, Y - t_0 A Y \rangle$$

$$= \langle (I - t_0 A)^2 X, Y \rangle.$$

Afirmação 4.2 Para todo autovalor λ de $I - t_0 A$, temos $|\lambda| \ge 1$.

Pois se $p \in M$ e λ é um auto-valor de $I - t_0 A_{\xi_p}$, então existe $v \in T_p M$, $v \neq 0$ tal que $v - t_0 A_{\xi_p} v = \lambda v$ ou equivalentemente $(1 - \lambda)c$ é auto-valor de A_{ξ_p} . Logo se $(1 - \lambda)c > 0$ então $(1 - \lambda)c > 2c$, ou seja, $\lambda \leq -1$. Se $(1 - \lambda)c \leq 0$ então como c > 0 seque-se $\lambda \geq 1$. Em qualquer caso $|\lambda| \geq 1$.

Afirmação 4.3 $(M, \langle \cdot, \cdot \rangle_0)$ é uma variedade riemanniana completa.

Para ver isto, seja $\alpha:[0,\infty)\to M$ uma curva divergente, e denote com T o operador auto-adjunto $I-t_0A$. Se $\{v_1,\ldots,v_n\}$ é uma base ortonormal que diagonaliza T e $\{\lambda_1,\ldots\lambda_n\}$ são os auto-valores associados, então para cada $t\in[0,\infty)$, $\alpha'(t)=\sum_{i=1}^n a_i(t)v_i(t)$ e assim:

$$|\alpha'(t)|_{0}^{2} = \langle \alpha'(t), \alpha'(t) \rangle_{0}$$

$$= \langle T\alpha'(t), T\alpha'(t) \rangle$$

$$= \langle \sum_{i=1}^{n} a_{i}(t) T v_{i}(t), \sum_{j=1}^{n} a_{j}(t) T v_{j}(t) \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}(t) a_{j}(t) \lambda_{i}(t) \lambda_{j}(t) \delta_{ij}$$

$$= \sum_{j=1}^{n} a_{j}(t)^{2} \lambda_{j}(t)^{2}$$

$$\geq \sum_{j=1}^{n} a_{j}(t)^{2}$$

$$= |\alpha'(t)|^{2}, \qquad (4.1)$$

onde na equação (4.1) foi utilizado o fato que $|\lambda_i| \ge 1$. Agora como $(M, \langle \cdot, \cdot \rangle)$ é completa então o comprimento da curva α com a métrica $\langle \cdot, \cdot \rangle$ é ilimitado. Assim da desigualdade

$$\lim_{t\to\infty}\int_0^t |\alpha'(t)|_0 \ge \lim_{t\to\infty}\int_0^t |\alpha'(t)|$$

segue-se que o comprimento de α com a métrica $\langle \cdot, \cdot \rangle_0$ é ilimitado, logo do Teorema 1.2 obtemos que $(M, \langle \cdot, \cdot \rangle_0)$ é uma variedade riemanniana completa.

Afirmação 4.4 A imersão f_0 tem segunda forma fundamental com respeito ao campo normal unitário ξ , dada por

$$A_0 = (I - t_0 A)^{-1} A. (4.2)$$

Com efeito, das equações fundamentais das imersões tem-se, para todo $X \in \Gamma(M)$,

$$-f_{0*}(A_0X) = D_X\xi = -f_*(AX).$$

Então

$$f_*(A_0X) + t_0 D_{A_0X} \xi = f_*(AX),$$

$$f_*(A_0X) - t_0 f_*(A(A_0X)) = f_*(AX),$$

$$A_0X - t_0 A(A_0X) = AX,$$

$$(I - t_0 A) A_0 = A.$$

Afirmação 4.5 Ao é semi-definida negativa.

De fato se $p \in M$ e $\lambda \neq 0$ é auto-valor de $A_{0\xi_p}$, então existe $v \in T_pM$, $v \neq 0$, tal que

$$(I - t_0 A)^{-1} A v = \lambda v,$$

ou de maneira equivalente

$$Av = \left(\frac{\lambda}{1 + t_0 \lambda}\right) v.$$

Logo $\lambda < 0$, pois se $\lambda > 0$ então $\left(\frac{\lambda}{1+t_0\lambda}\right) > 0$ e do fato que inf $\Lambda^+ = 2c > 0$ segue-se $\lambda \ge 2c + 2\lambda$ ou $\lambda \le -2c < 0$, o que seria absurdo.

Afirmação 4.6 $postoA = postoA_0$

Da demonstração da Afirmação 4.5 tem-se que se $\lambda \neq 0$ é um auto-valor de $A_{0\xi_p}$ então $\left(\frac{\lambda}{1+t_0\lambda}\right)$ é um auto-valor não nulo de A_{ξ_p} , assim ao resolver a equação $\mu = \frac{x}{1+t_0x}$ para um μ dado tem-se $x = \frac{\mu}{1-t_0\mu}$, ou seja se $\mu \neq 0$ é auto-valor de A então $x = \frac{\mu}{1-t_0\mu}$ é um auto-valor não nulo de A_0 . Obtém-se assim uma correspondência biunívoca entre os auto-valores não nulos de A_{ξ_p} e $A_{0\xi_p}$ ou de maneira equivalente $postoA = postoA_0$.

Da observação posterior ao Lema 4.1 e a afirmação anterior segue-se que $2 \ge r = \max\{postoA_0\}$.

Lema 4.3 Se $f: M^n \to \mathbb{R}^{n+1}$ é uma imersão isométrica tal que $\Lambda^- = \emptyset$ e $\overline{\Lambda}$ não é um intervalo, então existe $t_0 \in \mathbb{R}$ tal que a função $f_0 = f + t_0 \xi$ é uma imersão que induz em M^n uma métrica completa, com segunda forma fundamental $A_0 = (I - t_0 A)^{-1} A$ tal que em cada ponto, A_0 tem um auto-valor positivo e um negativo.

Demonstração: Supondo que $\Lambda^- = \emptyset$ e que $\overline{\Lambda}$ não é um intervalo, então existem números reais c > d > 0 tais que em cada ponto a segunda forma fundamental tem auto-valores $\geq c$ e $\leq d$.

Seja $t_0 = \frac{2}{c+d}$ e considere a função $f_0 = f + t_0 \xi$. Como na demonstração do Lema 4.2, f_0 tem métrica induzida $\langle \cdot, \cdot \rangle_0 = \langle (I - t_0 A)^2, \cdot \rangle$ que torna $(M, \langle \cdot, \cdot \rangle_0)$ uma variedade riemanniana completa, e a imersão f_0 tem segunda forma fundamental $A_0 = (I - t_0 A)^{-1} A$.

Em cada ponto, A_0 tem um auto-valor positivo e um negativo. De fato, se $p \in M$ então da hipótese segue-se que existem $k_i \ge c$ e $k_j \le d$, com $k_i, k_j > 0$ auto-valores de A_{ξ_p} . Defina

$$\lambda_i = \frac{k_i}{1 - t_0 k_i} \quad e \quad \lambda_j = \frac{k_j}{1 - t_0 k_j}.$$

Pela Afirmação 4.5, λ_i e λ_j são auto-valores de A_0 e a escolha de t_0 impede que $1-t_0k_{i,j}=0$, e assim λ_i,λ_j estão bem definidos. Além disso

$$1 - t_0 k_i = \frac{c + d - 2k_i}{c + d} < 0 \quad e \quad 1 - t_0 k_j = \frac{c + d - 2k_j}{c + d} > 0,$$

 $\log \lambda_i < 0 \text{ e } \lambda_j > 0.$

Teorema 4.1 (das Curvaturas Principais) Seja M^n uma hipersuperfície completa, orientável e imersa em \mathbb{R}^{n+1} que não é um hiperplano. Temos que:

- i. Se Λ^+ e Λ^- são ambos não vazios, então inf Λ^+ = $\sup \Lambda^- = 0$.
- ii. Se Λ^+ ou Λ^- são vazios, então $\overline{\Lambda}$ é conexo.

Demonstração: Seja $f:M^n\to\mathbb{R}^{n+1}$ a imersão e A a segunda forma fundamental de f em relação ao campo normal unitário $\xi:M^n\to S^n$.

Começamos demonstrando i. supondo que $inf\Lambda^+=2c>0$. Seja $t_0=\frac{1}{c}$. Da demonstração do Lema 4.2 temos que $f_0=f+t_0\xi$ é uma imersão isométrica, cuja métrica induzida $\langle\cdot,\cdot\rangle_0$ torna $(M,\langle\cdot,\cdot\rangle_0)$ uma variedade riemanniana completa, e a segunda forma fundamental A_0 com respeito ao campo normal unitário ξ é semi-definida negativa. Além disso $r=max\{postoA_0\}\geq 2$. Podemos supor sem perda de generalidade que r=n, pois se $2\leq r< n$, então podemos decompor $\mathbb{R}^n=\mathbb{R}^{r+1}\times\mathbb{R}^{n-r}$ e o lema anterior garante a existência de uma hipersuperfície convexa M_1^r , mergulhada em \mathbb{R}^{r+1} de posto máximo em algum ponto, e $M^n=M_1^r\times\mathbb{R}^{n-r}$ a menos de isometrias. Assim, podemos identificar os pontos de M cuja segunda forma fundamental não é nula com os pontos de M_1^r , ou seja, toda a informação de Λ está concentrada na imersão induzida por f em M_1^r .

Pelo anterior, existe $p \in M$ tal que $postoA_{\xi_p} = postoA_{0,\xi_p} = n$, e como A_0 é semi-definida negativa, então $f_0(M)$ é uma hipersuperfície com curvatura seccional não-negativa e em um ponto é positiva. Logo pelo teorema de Sackesteder Van-Heijenoor, $f_0: M \to \mathbb{R}^{n+1}$ mergulha M como uma hipersuperfície convexa e M é homeomorfa a \mathbb{R}^n ou a S^n .

Pelo Lema 4.1, f tem a propriedade do fecho convexo, e então M não pode ser compacta, pois nesse caso teríamos que $f(M) \subset conv(\partial M) = \emptyset$. Assim M não pode ser homeomorfa a S^n e do parágrafo anterior segue-se que M é homeomorfa a \mathbb{R}^n ; além disso, citando o teorema de Wu, podemos escolher coordenadas sobre M tais que $f_0(M)$ é o pseudo-gráfico sobre o hiperplano $\{x_{n+1}=0\}$ de uma função não-negativa e convexa (o Hessiano é não-negativo em todo ponto). Segue-se que a função $h_0=\pi_{n+1}\circ f_0: M\to \mathbb{R}$ é própria, e da relação entre f e f_0 segue-se que $h=\pi_{n+1}\circ f$ é própria. De fato, se x_k é uma sequência divergente em M então $h_0(x_k)$ é divergente, logo para toda subsequência x_{k_j} , $h(x_{k_j})=h_0(x_{k_j})-t_0\pi_{n+1}(\xi(x_{k_j}))$ é divergente pois $t_0\pi_{n+1}(\xi(x_{k_j}))$ é limitada.

Agora, pelo teorema de Sard aplicado à função $h:M\to\mathbb{R}$, temos que o conjunto de pontos singulares de h tem medida nula em \mathbb{R} . Então podemos escolher $0< c\in\mathbb{R}$ valor regular de h. Assim $h^{-1}(c)$ é uma subvariedade de dimensão n-1 em M, que poderia não ser conexa, mas pelo fato de h ser própria temos que $h^{-1}(c)$ é uma união finita de hipersuperfícies compactas. Como M é homeomorfa a \mathbb{R}^n , uma dessas hipersuperfícies divide M em duas componentes, uma delas, que denotaremos por Ω , com fecho compacto. Dado que f tem a propriedade do fecho convexo, $f(\Omega) \subset conv(\partial f(\Omega))$. Mas $f(\partial\Omega) \subset H = \{x \in \mathbb{R}^{n+1}: h(x) = c\}$ que é um hiperplano, e sobre Ω todas as curvaturas seccionais da f são nulas, o que contradiz o fato de inf $\Lambda^+ > 0$. Um raciocínio análogo é feito supondo que sup $\Lambda^- > 0$, concluindo assim a demonstração de i.

Para demonstrar ii. suponha $\Lambda^- = \emptyset$, e portanto as curvaturas seccionais de f(M) são nãonegativas (o mesmo acontece se $\Lambda^+ = \emptyset$). Se $\max\{postoA\} = 1$, então existe uma única $k_i : M \to \mathbb{R}$ não nula, e como k_i é contínua e M é convexa, $\Lambda = \Lambda^+ = k_i(M)$ é um conjunto convexo, logo $\overline{\Lambda}$ é convexo. Se $r = \max\{postoA\} \ge 2$, aplicando o teorema de Sacksteder Van-Heijenoort à imersão $f: M^n \to \mathbb{R}^{n+1}$ temos que M é uma hipersuperfície convexa e $f(M) = M_1^r \times \mathbb{R}^{n-r}$, onde M_1^r é uma hipersuperfície convexa em \mathbb{R}^{r+1} com segunda forma fundamental de posto r em algum ponto. Assim podemos supor que A tem posto n em algum ponto e concluir que M é compacta ou homeomorfa a \mathbb{R}^n .

Agora suponhamos que $\overline{\Lambda}$ não é um intervalo, ou seja, existem números reais c>d>0 tais que em cada ponto de M existem curvaturas principais $\geq c$ e $\leq d$. Se $t_0=\frac{2}{c+d}$, então pelo lema

4.2, $f = f_0 + t_0 \xi$ é uma imersão isométrica tal que a segunda forma fundamental A_0 tem um autovalor positivo e um negativo em cada ponto, ou equivalentemente f_0 tem a propriedade do fecho convexo. Logo M não pode ser compacta e concluímos que M tem que ser homeomorfa a \mathbb{R}^n .

Fazendo um raciocínio análogo ao feito na demonstração de i. obtemos que a função $\pi_{n+1} \circ f_0$ é própria, e uma componente Ω com fecho compacto é escolhida tal que A_0 é nula sobre Ω , o que contradiz o fato de A_0 ter um auto-valor positivo em cada ponto.

4.2. Hipersuperfícies Completas com Curvatura de Ricci não-positiva

Lema 4.4 Seja M^n , $n \ge 3$, uma hipersuperfície completa em \mathbb{R}^{n+1} com curvatura de Ricci não-positiva e segunda forma fundamental A de sinal $(+1,-1,\ldots,-1)$, ou seja, dada uma orientação determinada pela aplicação de Gauss $\xi: M \to S^n$, A_{ξ_p} tem auto-valores $k_1(p) > 0 > k_2(p) \ge \ldots \ge k_n(p)$ em cada ponto p de M. Então in $f||A|| = \inf ||Ric|| = 0$.

Demonstração: Primeiro veja que se A_{ξ} tem sinal (-1, +1, ..., +1) então escolhendo a orientação oposta $-\xi$, tem-se $A_{-\xi}$ tem sinal (+1, -1, ..., -1), demonstrando assim que o lema também é válido com esta hipótese.

Para cada $p \in M$, seja $\{v_1 \dots v_n\} \subset T_pM$ uma base ortonormal que diagonaliza A_{ξ_p} tal que $k_1(p) > 0 > k_2(p) \ge \dots \ge k_n(p)$, onde $k_i(p)$ são os auto-valores correspondentes. Com estas condições e pelo fato da curvatura de Ricci ser não-positiva, segue-se que para todo $i \in \{1, \dots, n\}$,

$$Ric(v_i) = \langle Q(v_i), v_i \rangle \leq 0.$$

Agora do lema 1.1, com c = 0, $Q = (traço A)A - A^2$. Portanto

$$\langle (traçoA)Av_i - A^2v_i, v_i \rangle \leq 0,$$

$$\langle (k_i(traçoA) - k_i^2)\langle v_i, v_i \rangle \leq 0,$$

$$k_i(traçoA - k_i) \leq 0.$$

$$(4.3)$$

Em particular para i = 2 tem-se ¹

$$k_2(k_1 + \widehat{k_2} + k_3 + \ldots + k_n) \le 0.$$

 $^{{}^{1}\}vec{k_{i}}$ significa que k_{i} não aparece na soma

Mas como $k_2 < 0$ temos

$$k_1+\widehat{k_2}+k_3+\ldots+k_n\geq 0,$$

portanto

$$k_1 \ge \sum_{j=3}^{n} -k_j = \sum_{j=3}^{n} |k_j| > |k_i|$$
 para todo $i > 2$.

Analogamente para i = 3 obtém-se $k_1 > |k_j|$ para todo $j \neq 3$, donde

$$k_1 \ge |k_j| > 0$$
 para todo $j \in \{1, ..., n\}.$ (4.4)

Agora pelo Teorema das Curvaturas Principais, $\inf \Lambda^+ = 0$ e existe uma sequência $\{p_m\} \subset M$ tal que $\lim_{m \to \infty} k_1(p_m) = 0$. Pela desigualdade (4.4), para cada $j \in \{1, ..., n\}$ ao longo desta mesma sequência

$$\lim_{m \to \infty} |k_j(p_m)| = 0 \text{ e daí } \lim_{m \to \infty} k_j(p_m) = 0. \text{ Assim como } ||A||^2 = \sum_{i=1}^n k_i^2 \text{ tem-se que inf } ||A|| = 0.$$

É importante notar que se a curvatura de *Ricci* é negativa, então da equação (4.3), tem-se que todas as curvaturas principais são não nulas.

Corolário 4.1 (Teorema de Efimov para n=3) Se M é uma hipersuperfície completa imersa em \mathbb{R}^4 com curvatura de Ricci negativa, então inf $\|A\|=\inf\|Ric\|=0$.

Demonstração: Dada uma hipersuperfície completa em \mathbb{R}^4 com curvatura de *Ricci* negativa, então para todo k_1, k_2, k_3 auto-valores diferentes de A, temos as desigualdades:

$$k_1(k_2+k_3) < 0,$$

$$k_2(k_1+k_3) < 0,$$

$$k_3(k_2+k_1) < 0.$$

Logo não todos os k_i são positivos, nem negativos, e devemos ter dois auto-valores positivos e um negativo, ou dois negativos e um positivo. Assim a hipótese do sinal no Lema 4.4 é satisfeita, e portanto $\inf ||A|| = \inf ||Ric|| = 0$.

Na versão clássica, o corolário anterior diz que não existe uma imersão $f:M^3\to\mathbb{R}^4$ tal que $Ric(\cdot)\leq \delta$, para alguma constante $\delta<0$.

Teorema 4.2 Seja M uma hipersuperfície completa, orientável e imersa em \mathbb{R}^{n+1} com curvatura de Ricci não-positiva, e H a curvatura média de M. Então:

- i. Somente acontece uma das seguintes: in f|H| = 0 ou M é um cilindro sobre uma curva plana em \mathbb{R}^{n+1} .
- ii. Se $\inf H \neq -\infty$ ou $\sup H \neq +\infty$, então não existe uma constante δ tal que $Ric(\cdot) \leq \delta < 0$.

Demonstração: Seja M uma hipersuperfície, completa, orientável e imersa no \mathbb{R}^{n+1} , e considere Λ^+ e Λ^- como no Teorema das Curvaturas Principais.

Acontece só uma das seguintes situações: algum Λ^+ ou Λ^- é vazio ou ambos Λ^+ e Λ^- são não vazios, no primeiro caso vamos demonstrar que M é um cilindro sobre uma curva plana, e no segundo $\inf |H| = 0$.

Suponha que Λ^+ ou Λ^- é vazio, então pela condição da curvatura de Ricci ser não-positiva tem-se

$$k_i \left(\sum_{j=1}^n k_j - k_i \right) \le 0 \tag{4.5}$$

para toda curvatura principal k_i ($k_i \ge 0$ ou $k_i \le 0$ para todo i). Assim para que a equação (4.5) seja satisfeita, não se pode ter duas k_i , k_j tais que $k_i \ne k_j$, $k_i \ne 0$ e $k_j \ne 0$, pois nesse caso k_i e $\sum_{j=1}^n k_j - k_i$ têm o mesmo sinal. Logo $max\{postoA\} = 0$ ou $max\{postoA\} = 1$. Do primeiro caso segue-se que $A \equiv 0$ e dai M está mergulhada em \mathbb{R}^{n+1} como um hiperplano, ou seja, um cilindro sobre uma reta e $H \equiv 0$. Se $max\{postoA\} = 1$ então da equação (1.15) segue-se que todas as curvaturas seccionais são nulas, logo $R \equiv 0$, onde R denota o tensor curvatura, e pelo teorema de Hartman-Niremberg, M é um cilindro sobre uma curva plana.

Agora no caso em que Λ^+ e Λ^- são não vazios, se $\inf |H| \neq 0$ então para algum $\epsilon > 0$, $H \geq \epsilon > 0$. Assim como a curvatura de Ricci é não-positiva, para toda curvatura principal $k_i > 0$ cumpre-se

$$k_i(traçoA - k_i) = k_i(nH - k_i) \le 0.$$

Daí $nH \le k_i$, e como $inf\Lambda^+ = 0$ então infH = 0. Se $H < \varepsilon < 0$ então para todo $k_j < 0$, $nH \ge k_j$, e como $sup\Lambda^- = 0$, segue-se supH = 0, o que é absurdo. Do anterior segue-se inf|H| = 0.

Como caso particular, se $H \neq 0$ é constante então M é um cilindro sobre um círculo de curvatura constante H.

Para demonstrar ii. vamos supor que existe uma constante $\delta < 0$ tal que $Ric(\cdot) \leq \delta < 0$, ou seja, para cada ponto $p \in M$ e toda curvatura principal k_i ,

$$k_i(nH - k_i) \le \delta < 0.$$

Da equação anterior segue-se que em cada ponto $p \in M$ existem k_i, k_j tais que $k_i > 0$ e $k_j < 0$ numa vizinhança de p, logo Λ^+ e Λ^- são não vazios, e se $\{p_m\} \subset M$ é uma sequência tal que $\lim_{n \to \infty} k_i(p_m) = 0$, tem-se (fazendo $k_i(p_m) = k_m > 0$) que para todo $m \in \mathbb{N}$

$$\begin{array}{rcl} k_m n H & \leq & c + k_m^2, \\ H & \leq & \frac{c}{n k_m} + k_m. \end{array}$$

Mas

$$\lim_{m\to\infty}\frac{c}{nk_m}+k_m=-\infty.$$

Então $\inf H = -\infty$. Analogamente tomando $k_j < 0$ obtem-se uma sequência de termos negativos k_m tal que $\lim_{m \to \infty} k_m = 0$ e

$$H \ge \frac{c}{nk_m} + k_m$$
 e $\lim_{m \to \infty} \frac{c}{nk_m} + k_m = +\infty$,

e portanto $supH = +\infty$.

Lema 4.5 Seja M^n ($n \ge 3$) uma hipersuperfície completa, imersa em \mathbb{R}^{n+1} com curvatura de Ricci negativa e tal que as curvaturas seccionais não atingem todo valor real. Então não existe uma constante $\delta < 0$ tal que $Ric(\cdot) \le \delta < 0$.

Demonstração: No caso que A tem sinal $(+1,-1,\ldots,-1)$, o Lema (4.4) garante que $\inf \|A\| = \inf \|Ric\| = 0$. Para n = 3 o teorema de Efimov dá a resposta.

Se $n \ge 4$ e as curvaturas seccionais estão limitadas por uma constante negativa, ou seja, se existe uma constante δ tal que para todo $p \in M$ e toda curvatura principal k_i, k_j $i \ne j$ $\delta \le k_i k_j$, então da hipótese da curvatura de Ricci ser negativa tem-se

$$\sum_{i \neq j} k_i k_j < 0. \tag{4.6}$$

Logo existe uma constante t>0 tal que $k_ik_j\leq t$ para todo $p\in M$ e $i\neq j$. Concluimos que se as curvaturas seccionais são limitadas inferiormente, então também são limitadas superiormente e pode-se iniciar com esta hipótese.

Suponha $n \ge 4$, e que A não tem sinal $(+1,-1,\ldots,-1)$. Como A não tem auto-valores nulos, A deve ter pelo menos dois auto-valores positivos e dois negativos. Sejam $k_{i_1},k_{i_2}>0$ e $k_{j_1},k_{j_2}<0$. Pela demonstração do teorema anterior obtem-se para r,s=1,2

$$k_{j_s} < nH < k_{i_r}.$$

Deste modo, se H > 0,

$$n^2H^2 < k_{i_1}k_{i_2}$$

para toda dupla de auto-valores positivos $k_{i_1}, k_{i_2} > 0$. Logo da hipótese das curvaturas seccionais tem-se $supH < +\infty$ e o resultado é obtido do teorema 4.2.

CAPÍTULO 5

Conclusões e Observações Finais.

5.1. Conjectura de Milnor

Em dimensão 2 Milnor (veja [Yau], problema 62, pagina 685) propôs a seguinte conjectura: "Se M é uma superfície completa em \mathbb{R}^3 , que não é um plano e cuja curvatura Gaussiana K não muda de sinal então in $f(H^2-K)=0$, onde H denota a curvatura média." Se $K\leq 0$ então $0\leq \|A\|\leq H^2-K$, portanto a validade da conjectura de Milnor implica o teorema de Efimov para dimensão 2.

Xavier e Smyth propõem o análogo da conjectura de Milnor em dimensão n > 2. "Sobre uma hipersuperfície completa em \mathbb{R}^{n+1} com curvatura de Ricci negativa, in f||A|| = 0." O lema 4.1 demonstra que esta afirmação é válida para n = 3. Maria Fernanda Elbert [El] demonstrou, com uma hipótese adicional sobre as curvaturas médias superiores, que esta conjectura é valida para gráficos no espaço euclidiano. Em [H-V1], Hassanis e Vlachos demonstram o seguinte teorema que estende o resultado de [El].

Teorema 5.1 Seja Γ_f o gráfico de uma função $f:D\subset\mathbb{R}^n\to\mathbb{R}$, cuja curvatura não muda de sinal, e $\|A\|$ é limitada. Se D contém bolas de raio arbitrário, então in $f\|A\|=0$.

5.2. Teorema das Curvaturas Principais em Codimensão > 1.

Além do Teorema das Curvaturas Principais para hipersuperfícies no espaço euclidiano, Xavier e Smyth demonstraram o seguinte teorema para imersões isométricas em codimensão > 1.

Teorema 5.2 Seja M^n é uma variedade completa imersa em \mathbb{R}^{n+p} , que não é um subespaço afim. Denote com $\Lambda \subset \mathbb{R}$, o conjunto dos valores não nulos atingidos pelos auto-valores do operador de Weingarten em todas as direções normais, e $\Lambda^{\pm} = \Lambda \cap \mathbb{R}^{\pm}$. Então Λ^+ e Λ^- são não vazios e inf Λ^+ = $\sup \Lambda^- = 0$.

Observação: Se $f:M^n\to\mathbb{R}^{n+p}$ é uma imersão isométrica tal que todas as curvaturas principais são limitadas em valor absoluto por uma constante, ou seja, para cada $p\in M$, toda direção normal $\xi\in T_pM^\perp$, e todo auto-valor k_i de A_ξ , $|k_i(p)|\le \delta$, então do teorema anterior, obtemos uma redução de codimensão substancial, ou seja p=1, e pelo Teorema das Curvaturas Principais $\overline{\Lambda}$ é um intervalo que não contém zero.

Para nosso próximo comentário, precisamos do teorema de Bonnet-Myers:

Teorema 5.3 Se Mⁿ é uma variedade Riemanniana completa tal que

$$-Ric(X,X) \geq \frac{n-1}{r^2}$$

para cada $p \in M$ e todo vetor unitário $X \in T_pM$. Então M é compacta, com diâmetro $< \pi r$ e grupo fundamental finito.

Em particular as hipóteses do teorema 5.3 são satisfeitas se $K(\sigma) \ge \frac{1}{r^2}$ para todo 2-plano σ . Assim da observação anterior, as hipóteses do teorema de Myer são satisfeitas, e portanto M é uma hipersuperfície compacta e estritamente convexa.

5.3. Teorema tipo Efimov para Hipersuperfícies na Esfera.

Para o caso de hipersuperfícies na esfera Smyth [Sm] obteve o seguinte teorema análogo ao teorema de Efimov para hipersuperfícies no espaço euclidiano.

Teorema 5.4 Seja $f: M^n \to S^{n+1}$, $n \ge 3$, uma hipersuperfície completa com curvatura seccional K tal que $supK > -\infty$. Então tem-se somente duas possibilidades:

i. $supRic \ge n - 2$;

- ii. supRic < n 2 e neste caso
 - a. Se M é compacta, então n é impar e o recobrimento universal de M é homeomorfo a S^n .
 - b. Se M não é compacta, então o recobrimento universal de M é homeomorfo a \mathbb{R}^n .

Também foi demonstrado por Smyth [Sm2] que se M^n é compacta e $f: M \to S^{n+1}$ é uma imersão isométrica com curvatura média constante, então $sup \text{Ric} \ge n-2$. Em [H-V2] Hassanis e Vlachos demonstraram o seguinte teorema:

Teorema 5.5 Seja $f: M^n \to S^{n+1}$, $n \ge 3$, uma hipersuperfície mínima, completa e orientada. Então $supRic \ge n-2$. Além disso

- i. Se n é par, então supRic = n-2 se, e somente se f(M) é isométrico ao toro de Clifford $S_2^{\frac{n}{2}} \times S_2^{\frac{n}{2}}$.
- ii. Se n é ímpar e supRic = n 2, então o recobrimento universal de M é homeomorfo a S^n .

Posteriormente Ezio Araujo Costa em [Co] demonstrou que o resultado obtido por Hassanis e Vlachos também é valido mudando a hipótese de mínima por curvatura média constante.

Referências

- [C] Cartan, E. Sur les variétés de courbure constante d'un espace euclidien ou non-euclidien Bull. Soc. Math France 48(1920), 132-208.
- [Ch-L] Chern, S. and Lashof, R. On the total curvature of immersed manifolds. Amer. J. of Math. 79(1957), 306-318.
- [Co] Costa, E.A. A Ricci inequality for hypersurfaces in the sphere. Arch. Math. 85(2005) 183-189.
- [Daj] Dajczer, M. Submanifolds and Isometric Immersions. Publish or perish, 1990.
- [E] Efimov, N. *Hyperbolic problems in the theory of surfaces* Proceedings of International Congress of Mathematics. Moscow (1966); Am. Math.Soc. Translation 70(1968), 26-38.
- [El] Elbert, M. F. *On complete graphs with negative r-mean curvature*. Proc. Amer. Math. Soc. Vol 128. 5(2000), 1443-1450.
- [G] Gromov, M. Partial differential relations. Berlin-Heidelberg-New York-Tokyo. Springer 1986.
- [H] Hilbert, D. On surfaces of constant Gaussian curvature Trans. Am. Mat. Soc. 2(1901).
- [Ha] Hadamard, J. Les surfaces à courbures opposées et leurs lignes géodésiques. J. Math. Pures Appl. 4(1896), 27-73.

- [He] Van-Heijenoort, J. On localy convex manifolds. Communication on Pure and Applied Mathematics. 5(1952), 223-242.
- [H-V1] Hasanis, T. and Vlachos, T. Curvature properties of hypersurfaces. Arch. Math. 82(2004), 570-576.
- [H-V2] Hasanis, T. and Vlachos, T. Ricci curvature and minimal submanifolds. Pacific J. Math. 197(1993), 13-24.
- [N] Nash, J. The imbedding problem for Riemannian manifolds. Ann. of Math. 63(1956), 20-63.
- [O] Osserman, R. The convex hull property of immersed manifolds. J. Diff. Geom. 6(1971), 267-271.
- [R] Patrick J. Ryan. Homogeneity and some curvature conditions for hypersurfaces. Tôhoku Math. Journ. 21(1969), 363-388.
- [S] Sacksteder, R. On hypersurfaces with no-negative sectional curvature. Amer. J. of Math. 82(1960), 609-630.
- [Sm] Smyth, B. Efimov's inequality and other inequalities in a sphere. Geometry and Topology of submanifolds. IV(1991), 76-86.
- [Sm2] Smyth, B. Ricci curvature decay near a real hypersurface singularity. Available on www.nd.edu/smyth/ricci-curv.ps
- [Spi] Spivak, M. A comprehensive introduction to differential geometry. Vol 4 Publish or perish. third edition, 1970.
- [St] Stocker, J.J. Über die Gestalt der positive querümmten offenen flächen. Composito Math. 3(1936), 55-88.
- [S-X] B. Smith and F. Xavier. Efimov's theorem in dimension greater than two. Invent. Math. 90(1987), 443-450.
- [Wu] Wu, H. The spherical images of convex hypersurfaces J. Diff. Geom. 9(1974), 279-290.
- [Yau] Yau, S.T. Seminar on differential geometry. Annals of Mathematics Studies 102. Princeton, N.Y. Princeton Univ. Press 1982.