• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2011.tde-20220712-130428
Document
Auteur
Nom complet
Faber Alberto Gómez González
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2011
Directeur
Titre en portugais
O teorema principal de Wedderburn em superálgebras de Jordan
Mots-clés en portugais
Álgebras De Jordan
Resumé en portugais
Dada uma algebra associativa J de dimensão finita, com radical nilpotente N, existe uma sub álgebra S J tal que S = J=N e J = S N. Este resultado e conhecido como o Teorema Principal de Wedderburn, (PW-Teorema) e foi provado inicialmente por T. Mollien para o caso de álgebras associativas de dimensão finita sobre o corpo dos complexos e estendido posteriormente para o caso de álgebras associativas sobre corpos arbitrários por J. Wedderburn. No caso de algebras não associativas de dimensão finita, um resultado análogo ao Teorema Principal de Wedderburn tem validade, em particular, para o caso de álgebras alternativas este foi provado por R.D. Schafer e para o caso de álgebras de Jordan foi provado por Albert, Penico, Askinuze, Ta . E natural pretender estender estos resultados para o caso de superálgebras, e foi Pisarenko [Pis], quem provou um Teorema análogo ao PW-Teorema para o caso das superálgebras alternativas. No presente trabalho, provamos a validade de um Teorema análogo ao PW-Teorema para o caso das superálgebras de Jordan de dimensão finita sobre corpos de característica zero.
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-07-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.