REPRESENTAÇÕES DE ÁLGEBRAS
TENSORIAIS ESPECIAIS

Maria Rita Moreira Pinto

DISSERTAÇÃO APRESENTADA

ΑO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DA

UNIVERSIDADE DE SÃO PAULO
PARA OBTENÇÃO DO GRAU DE MESTRE

EM

MATEMÁTICA

ÁREA DE CONCENTRAÇÃO: ÁLGEBRA

ORIENTADOR: PROF. DR. HECTOR A. MERKLEN

- São Paulo, 1987 -

SUMÁRIO

		página
1 -	INTRODUÇÃO	. 1
2 -	ALGEBRAS TENSORIAIS ESPECIAIS E K-ESPÉCIES	- 4
2.1	- Problema	- 4
2.2	- Grafo Associado a uma K-espécie	- 11
2.3	- Os anéis Λ_{n} e Γ_{n}	13
3 -	MATRIZ ASSOCIADA A UM GRAFO	20
3.1	- Matriz Associada a um Grafo	20
3.2	- Métrica sobre um Grafo	24
3.3	- Matriz Reduzida	30
4 -	O TEOREMA E EXEMPLOS	45
5 –	REFERÊNCIAS BIBLIOGRÁFICAS	50

1 - INTRODUÇÃO

O texto, (1), em que foi baseada esta dissertação es tuda um caso particular da questão de encontrar condições ne cessárias e suficientes sobre um anel R para que ele tenha Tipo de Representação Finito (abreviadamente T.R.F.). Lembramos que um anel R tem T.R.F., ou é do tipo finito, (à esquerda) se existe apenas um número finito de módulos finitamente gerados sobre R (à esquerda) não isomorfos.

Algumas convenções: todos os anéis aqui considerados têm unidade; um R-módulo é um módulo à esquerda sobre R; Mod(R) denota a categoria dos R-módulos e mod(R) a categoria do R-módulos finitamente gerados.

Definição: Um anel R é artiniano à esquerda (respectivamente, à direita) se toda cadeia descendente de ideais de R à esquerda (respectivamente, à direita) é estacionária. Um anel é artiniano se é artiniano à esquerda e à direita.

O teorema de Krull - Schmidt nos garante que se R é um anel artiniano então todo R-módulo finitamente gerado se decompõe de forma única, a menos de isomorfismos, em uma soma di reta de R-módulos indecomponíveis. Neste caso, podemos afirmar que R tem T.R.F. se, e somente se, o número de R-módulos indecomponíveis finitamente gerados é finito.

Os anéis que estudaremos são quocientes de álgebras tensoriais especiais, T_R(M). Estas álgebras serão definidas na seção 2, onde damos alguns resultados sobre elas que serão úteis no desenvolvimento do texto.

Seguem algumas observações, definições e propriedades que deverão ser necessárias mais tarde.

Definição: Sejam R um anel, M um R-modulo à direita e

N um R - módulo à esquerda e S um grupo abeliano. Uma apl \underline{i} caçao f: MxN ----> S \in R - balanceada se satisfaz:

- i) f(m + m', n) = f(m,n) + f(m', n)
 f(m, n+n') = f(m,n) + f(m,n'), para todos m,m' \(\infty \) m
 n, n' \(\infty \) N;
- ii) f(mr,n) = f(m,rn), para todos $(m,n) \in MxN$ e $r \in \mathbb{R}$.

 Propriedade Universal do Produto Tensorial

Dados R, M e N como na definição anterior, seja $\phi: MxN \longrightarrow M \ @_RN$ a aplicação canônica, isto é $\phi(m,n)=m@n$. A aplicação ϕ é R - balanceada e para todo grupo abeliano S e toda aplicação R - balanceada $f:MxN \longrightarrow S$ existe um uni co homomorfismo $f: M@_RN \longrightarrow S$ tal que $f=f_0\phi$

Proposição: Se M é um R - bimódulo, então M \mathbf{Q}_{R} R é isomorfo a M como R - módulo.

Num anel graduado R, $A_{\rm o}$ é um subanel e cada $A_{\rm n}$ é um $A_{\rm o}$ - bimódulo.

Exemplo: $R = K(x_1, ..., x_r)$, K corpo $A_n = \text{conjunto dos polinômios homogêneos de grau n.}$

Se R é um anel graduado, um R - módulo graduado é um R - módulo M junto com uma família $(M_n)n \ge 0$ de subgrupos de M tais que $M= \bigoplus_{n=0}^\infty M_n$ e $A_m M_n \subseteq M_{m+n}$ para todos $m,n \ge 0$.

Se M e N são R - módulos graduados, um homomorfismo de R - módulos f: M \longrightarrow N é dito de grau zero se $f(M_n) \subseteq N_n$, para todo $n \ge 0$. Veremos que as álgebras tensoriais especiais são anéis graduados.

Definição: Uma algebra A é dita hereditaria se todo ideal à esquerda de A é um A - módulo projetivo.

Proposição: Se A é uma algebra artiniana, então as seguintes condições são equivalentes:

- 1) A é hereditária;
- 2) Todo submódulo de um A módulo projetivo é projetivo;
- 3) rad(A) é projetivo. (ver (4)).

Seja M um A - módulo, a dimensão homológica de M é o menor inteiro n (se existe) tal que M tem uma resolução projetiva.

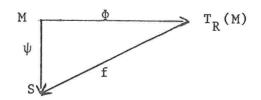
$$0 \longrightarrow C_{n} \longrightarrow \ldots \longrightarrow C_{o} \longrightarrow M \longrightarrow 0$$

A dimensão global de A é o máximo (se existe) do conjunto formado pelas dimensões homológicas dos A - módulos. Pela proposição anterior, vemos que uma álgebra artiniana A é hereditária se, e somente se, dimensão global de $A \leq 1$.

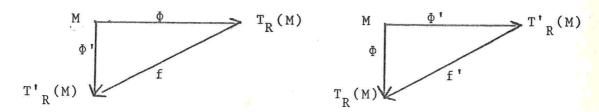
2 - ALGEBRAS TENSORIAIS ESPECIAIS E K-ESPÉCIES

2.1 - Problema

Sejam R um anel e M um R-bimódulo, queremos determinar um R-bimódulo $T_R(M)$, com estrutura de anel, com multiplicação R-balanceada e uma aplicação R-linear (à esquerda e à direita) $\Phi: M \longrightarrow T_R(M)$ tais que para todo R-bimódulo S possuindo estrutura de anel, com multiplicação R-balanceada e toda aplicação R-linear (à esquerda e à direita) $\Psi: M \longrightarrow S$ exista um único homomorfismo de anéis $f:T_R(M) \longrightarrow S$ tal que $fo\Phi=\Psi$, isto é, f torna comutativo o diagrama abaixo:



Unicidade: Suponhamos que $T_R(M), T_R(M), \Phi:M \longrightarrow T_R(M)$ e $\Phi': M \longrightarrow T_R(M)$ tenham a propriedade acima



Então, existem dois únicos homomorfismos de anéis $f:T_R(M) \longrightarrow T_R(M)$ e $f':T'_R(M) \longrightarrow T_R(M)$ que tornam comutativos os diagramas acima, isto é, tais que

$$fo\Phi = \Phi' e f'o \Phi' = \Phi$$

Logo, f'o fo Φ = f'o Φ ' = Φ

fo f'o Φ' = fo Φ = Φ' . Mas a aplicação identidade

I: $T_R(M) \longrightarrow T_R(M)$ é o único homomorfismo de anéis que torna comutativo o diagrama $M \longrightarrow T_R(M)$.

Portanto, f'of = I. Analogamente, deduzimos que fof' = I.Logo f é um isomorfismo.

Existência: Para cada número inteiro $n \ge 0$, indicare mos por $M^{(n)}$ o produto tensorial, sobre R, de M por $M^{(n)}$ zes

$$M^{(n)} = M \otimes_{R} M \otimes_{R} \dots \otimes_{R} M$$

$$e$$

$$M^{(o)} = R$$

e tomamos $T_R(M) = R \oplus M \oplus M^{(2)} \oplus \dots \oplus M^{(m)} \oplus \dots$

Para cada $n \in \mathbb{N}$, $M^{(n)}$ é um R-bimódulo e, portanto, $T_R^{(M)}$ é um R-bimódulo. Definimos em $T_R^{(M)}$ a multiplicação induzida pelo isomorfismo canônico

$$M^{(n)} \otimes_{\mathbb{R}} M^{(m)} \xrightarrow{} M^{(n+m)}$$
isto é, se $x = x_1 \otimes x_2 \otimes \dots \otimes x_n \in M^{(n)}$ e
$$y = y_1 \otimes y_2 \otimes \dots \otimes y_m \in M^{(m)}, \text{ então definimos}$$

$$xy = x_1 \otimes x_2 \otimes \dots \otimes x_n \otimes y_1 \otimes \dots \otimes y_m \in M^{(n+m)}$$

e estendemos, por linearidade, esta multiplicação a todos os elementos de $T_R(M)$.

Esta operação é associativa sobre $T_R(M)$ e tem unidade igual a $1_R+0+0+\dots$, onde 1_R é a unidade de R. Logo $T_R(M)$ é um R-bimódulo com estrutura de anel.

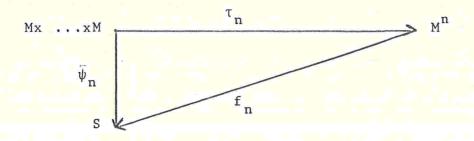
Seja $\Phi:M \longrightarrow T_R(M)$ a aplicação inclusão:

$$\Phi(m) = 0 + m + 0 + 0 + \dots, m \in M$$

Se S e um R-bimodulo com estrutura de anel e multipl<u>i</u> cação R-balanceada e ψ: M——>S e uma aplicação R-linear (à esquerda e à direita), então para n≥l a aplicação

$$\psi_n: \underbrace{M \times M \times \dots \times M}_{n-\text{vezes}}$$
 ->definida por

 $\psi_n(x_1, x_2, \dots, x_n) = \prod^n \psi(x_i)$ é R-balanceada generalizada



Pela propriedade universal do produto tensorial, existe um único homomorfismo de grupos $f_n \colon M^{(n)} \longrightarrow S$ que torna o diagrama acima comutativo, onde $\tau_n(x_1, x_2, \dots, x_n) = x_1 @ x_2 @ \dots @ x_n$ Seja $f \colon T_R(M) \longrightarrow S$ o homomorfismo de grupos que

Seja f: $T_R(M) \longrightarrow S$ o homomorfismo de grupos que estende todas as f_n , isto \tilde{e} , se $m = \sum_{i \in N} m_i$, onde $m_i \in M^{(i)}$, entino $f(m) = \sum_{i \in N} f_i(m_i)$ (se $r \in R$, $f(r) = f_o(r) = r.l_s$)

Para mostrar que f e um homomorfismo de aneis basta provar que se $x \in M^{(n)}$ e $y \in M^{(m)}$, então f(xy) = f(x)f(y)

Para se deduzir a unicidade de f basta ver que imagem de Φ gera $T_p(M)$

Exemplo 1: Se R = K x K x K, onde K é um corpo,

$$M = \begin{pmatrix} 0 & K & 0 \\ 0 & 0 & K \\ 0 & 0 & 0 \end{pmatrix}$$
 e a ação de R sobre M à esquerda

(respectivamente à direita) é dada pela multiplicação de ma-

trizes linha (respectivamente coluna). Então
$$M^{(2)} = \begin{pmatrix} 0 & 0 & K \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

e $M^{(n)} = 0$ para todo $n \ge 3$. Portanto $T_R(M) = R \oplus M \oplus M^{(2)}$.

Exemplo 2: Seja R um anel comutativo e M=R então $T_R(M) = R \oplus R \oplus R \oplus \ldots = R[x]$ (anel dos polinômios com coeficientes em R) pois $R \otimes_R R = R$.

Observação: Sendo R em geral não comutativo, não podemos dizer que $T_R(M)$ é uma álgebra sobre R, mas tem propriedades muito próximas disto.

De fato, sendo R' um subanel de R, então $T_R(M)$ é uma R'-álgebra se, e somente se, R' está contido no centro de R.

Temos, ainda, que $T_R(M)$ é um anel graduado pelos subgrupos G_i = $M^{(i)}$, $i \ge 0$.

 \mathcal{D} efinição: $T_{R}(M)$ é a álgebra tensorial associada ao R-bimódulo M.

Suponhamos que R é o produto direto de uma família finita de anéis R = $\prod_{i \in I} F_i$. Então, cada R-bimódulo M pode ser escrito de maneira única como uma soma direta

$$M = \prod_{i,j \in I} M_{ij}$$

onde cada i M. é um Fi - F. bimodulo.

Exemplo 3. Se $R = F_1 \times F_2$, onde $F_1 \in F_2$ são anéis com divisão, e'₁ e e'₂ são as unidades de F_1 e F_2 respectivamente, então a unidade de R é e= (e'₁, e'₂) = (e'₁, 0) + (0, e'₂) = e₁ + e₂. Para todo R-bimódulo M, temos

$$M = e_1 M \oplus e_2 M = e_1 M e_1 \oplus e_1 M e_2 \oplus e_2 M e_1 \oplus e_2 M e_2$$

De maneira geral, $M = i, j \in I$ $i^{M}j$, onde $i^{M}j = i^{M}ej$ sendo e_i a unidade de F_i .

Para cada $i \in I$ a projeção $\Pi_i:R \longrightarrow F_i$, $\Pi_i(x_1, \ldots, x_n) = x_i$, é um epimorfismo de anéis, logo cada i^M_j pode também ser considerado como um R-bimódulo.

- (1) cada F e uma algebra com divisão, central e de dimensão finita sobre um corpo K;
- (2) para cada par (i,j), K age centralmente sobre

 iMj, isto €, xm = mx para todos x ∈ K e m € iMj
 - (3) dim_K(iM;) é finita.

Definindo a ação de K sobre R como

$$xr = (xr_1, xr_2, \dots, xr_n),$$

onde $x \in K$ e $r = (r_1, r_2, ..., r_n) \in R$, teremos que R e $T_R(M)$ são álgebras sobre K e $\dim_K R$ é finita. Ainda, $\dim_K T_R(M)$ é finita se, e somente se, $M^{(n)} = 0$ para algum n > 0.

Definição. Seja K um corpo. Uma K-espēcie $S = (F_i \cdot i_j^M)$ é formada por uma família $(F_i)_{i \in I}$, de álgebras com divisão, centrais e de dimensão finita sobre K e por outra família, $(i_j^M)_{i'j \in I}$, de $F_i^{-F}_j$ bimódulos tais que K age centralmente sobre i_j^M e d_i^M e d_i^M e finita.

Se $R = \prod_{i \neq j} F_i$ e $M = \prod_{i,j \in I} M_j$, então M é um R-bimódulo pois cada M_i é um R-bimódulo. A cada espécie $S = (F_i, M_j)_{i,j \in I}$ associamos uma álgebra tensorial T(S) que é por definição a álgebra tensorial associada ao R-bimódulo M.

 $T(S) = R \oplus M \oplus M^{(2)} \oplus \ldots \oplus M^{(n)} + \ldots, \text{ onde } M^{(n)} = \Theta_R^n M,$ $T(S) \in \text{uma } K \text{-} \text{\'algebra}. \text{ As } K \text{-} \text{\'algebra} \text{ desta forma s\~ao denomina-}$ das 'algebra s tensoriais especiais.

Exemplo 4: No exemplo 1, $T_R(M)$ é uma álgebra tensorial especial sobre K e, ainda, $\dim_K T_R(M)$ é finita.

A K-espécie associada a $T_R(M)$ é $S=(F_i, i^M j)i, j \in \{1, 2, 3\}$ onde cada $F_i = K, 1^M 1 = 1^M 3 = 2^M 1 = 2^M 2 = 3^M 1 = 3^M 2 = 3^M 3 = 0$ e $1^M 2 = 2^M 3 = K, 10go$ $M = 1^M 2^{\Theta} 2^M 3$

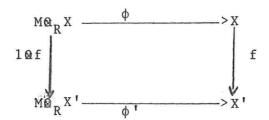
 $M \otimes_{R} M = (1^{M} 2^{Q}_{R} 1^{M} 2) \oplus (1^{M} 2^{Q}_{R} 2^{M} 3) \oplus (2^{M} 3^{Q}_{R} 1^{M} 2) \oplus (2^{M} 3^{Q}_{R} 2^{M} 3) =$

1 M 2 R 2 M 3 ·

Observação: Se $S = (F_i, M_j)$ é uma K-espécie e $R = \prod_{i \in I} F_i$, então, obviamente, $i^M j \otimes_{R} M_\ell = 0$ se $j \neq k$.

Sejam R um anel e M um R-bimodulo. Dados um R-modulo X e uma aplicação R-linear $\mu\colon M\Omega_R$ X ——> X, podemos definir em X uma estrutura de $T_R(M)$ -modulo da seguinte maneira: se m,m' \in M e x \in X, então

$$mx = \mu(m@x) e (m@m')x = m(m'x)$$



então, D \tilde{e} equivalente à categoria $Mod(T_R(M))$. No caso de uma K-espécie, isto \tilde{e} , quando $T_R(M)$ \tilde{e} uma \tilde{a} lgebra tensorial especial, esta equivalência de categorias adota uma forma bem mais explícita.

Uma aplicação R-linear ϕ : M $@_R X$ ——>X induz as aplicações F_i -lineares $i^{\phi}j$: $i^{M}j$ $@_F_j$ X_j ——> X_i

Reciprocamente, dadas as famílias $(X_i)_i \in I$ e $(i^{\phi}_j)_i, j \in I$, onde cada X_i é um F_i -módulo e $i^{\phi}_j: i^{M}_j \otimes_{F_j} X_j \longrightarrow X_i$ é um F_i -morfismo, obtemos um $X_i \in I$ $X_i \in I$ e um $X_i \in I$ $X_$

ite diagrama:
$$j^{M_{i}} \bigvee_{j^{F_{i}}}^{F_{i}} V_{i} \xrightarrow{j^{\psi_{i}}}^{\phi_{i}} \xrightarrow{\gamma_{j}}^{V_{j}} V_{j}$$

$$\downarrow^{1 \otimes \alpha_{i}} \bigvee_{j^{M_{i}}}^{F_{i}} V_{i} \xrightarrow{j^{\psi_{i}}}^{\phi_{i}} \xrightarrow{\gamma_{j}}^{V_{j}} V_{j}$$

De acordo com o que foi dito anteriormente, temos o seguinte:

Teorema 1 Seja $S = (F_i, i^M_j)_{i,j \in I}$ uma K-especie. A categoria das S-representações é equivalente à categoria Mod (T(S)).

De acordo com isto, se $V=(V_i,j^{\Phi_i})$ e $W=(W_i,j^{\psi_i})$ são representações de uma K-espécie $S=(F_i,i^{M_j})$, definimos a soma direta $V\Phi W$ da maneira natural

$$V \oplus W = (V_i \oplus W_i, \mu_i), \text{ onde}$$

 $j^{\mu}i^{=}j^{\Phi}i^{\oplus}j^{\psi}i^{:}j^{M}i^{\boxtimes}F_{i}^{(V_{i}\oplus W_{i})}$ ——> $V_{j}\oplus W_{j}$ e temos, portanto, o conceito de S-representação indecompon<u>í</u> vel.

Dizemos que S $\tilde{\mathbf{e}}$ do t \dot{i} po f \dot{i} n \dot{i} to se, salvo isomorfismo, existe apenas um numero finito S-representações indecompo-

níveis (V_i, j^{Φ_i}) tais que $\dim_K(\coprod_{i \in I} V_i)$ é finita. Vale o seguinte teorema:

Teorema 2: Seja S uma K-espécie, a álgebra tensorial especial T(S) tem tipo de representação finito se, e somente se, S é do tipo finito.

Observação: Dada $S = (F_i, M_j)$, uma K-espécie, T(S) é artiniana se, e somente se, $M^{(n)} = 0$ para algum $n \ge 1$ e, neste caso, T(S) é uma álgebra de Artin (ver (4)).

2.2 - Grafo associado a uma K-espēcie

Afim de caracterizar as K-espécies $S = (F_i, i^M_j)^i$, $j \in I$ com tipo de representação finito associamos a S um grafo Q(S). Esta idéia e o resultado aludido são devidos a P. Gabriel no caso em que cada $F_i = K$ e foram generalizados por Dlab e Ringel(5).

Supondo I finito, sejam S = (Fi,i^Mj)i,j**E**I uma K-espécie e

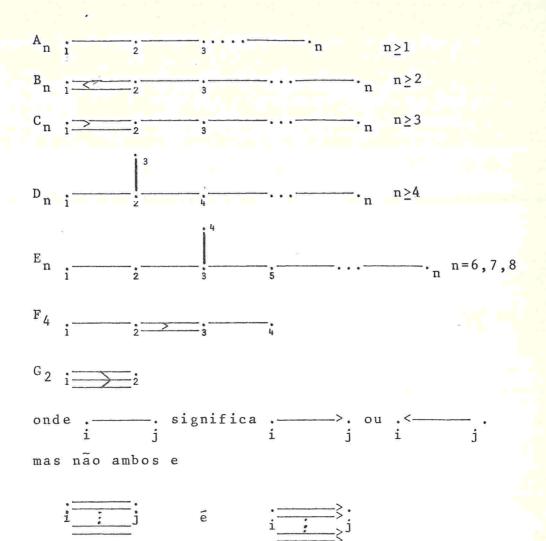
$$n_{ij} = dim_{F_i}(i^{M_j}) \times dim(i^{M_j})_{F_j}$$

Por definição, os vértices do grafo associado a S, Q(S), são os elementos de I e n_i é o número de flechas de j a i.

Exemplos 5: Seja $T_R(M)$ como no exemplo 1, então

$$S = (F_i, i^M_j)_{i,j \in \{1,2,3\}}, M = {}_{1}^{M} {}_{2}^{\theta} {}_{2}^{M}_{3},$$

Teorema 3. Uma K-espécie S tem tipo finito se e somente se, seu grafo Q(S) é união disjunta de diagramas de Dynkin, isto é, Q(S) é composto dos seguintes tipos de grafos.



Observação: Se o grafo Q é composto de diagramas de Dynkin disjuntos dos tipos A_n , D_n , E_6 , E_7 ou E_8 dizemos que é um grafo de Gabriel.

Se ζ_1 , ζ_2 ,... ζ_r são os componentes disjuntas do grafo associado a uma álgebra tensorial especial $T_R(M)$, então $T_R(M)$ se decompõe em um produto de álgebras tensoriais especiais in decomponíveis $T_{R_1}(M_1) \times \dots \times T_{R_r}(M_r)$, onde $R^-R_1 \times \dots \times R_r$ como K-álgebra e, reordenando se necessário, ζ_i é o grafo associa do a $T_{R_i}(M_i)$ para $i=1,\dots,r$. Assim, a categoria $\operatorname{mod}(T_R(M))$ é equivalente ao produto cartesiano das categorias $\operatorname{mod}(T_{R_i}(M_i))$, $i=1,\dots,r$.

Exemplo 6: Se na K-espécie $S=(F_i, i^M_j)$, $F_i=K$ para todo i, então $\dim_{F_i}(i^M_j)=\dim(i^M_j)_{F_j}$ e i^M_j está determinado pelo número n_{ij} (isto é, pelo número de flechas de j a i em Q(S)).

Assim, sendo Q(S) o grafo abaixo, temos que:

$$\frac{\dim_{K} 1^{M} 2}{\dim_{K} 2^{M} 3} = \dim_{K} 3^{M} 1 = 0$$

$$\dim_{K} i^{M} i = 0, \quad i=1,2,3$$

$$\dim_{K} 2^{M} 1 = \dim_{K} 3^{M} 2 = \dim_{K} 1^{M} 3 = 1$$

$$R = K \times K \times K$$

$$M = \begin{pmatrix} 0 & 0 & K \\ K & 0 & 0 \\ 0 & K & 0 \end{pmatrix}$$

e $T_R(M)$ não tem tipo de representação finito pois, qualquer que seja n, 2^M1 $\frac{M}{1}$ $\frac{M}{3}$ $\frac{M}{3}$ $\frac{M}{2}$... $\neq 0$ e portanto $M^{(n)} \neq 0$.

2.3 - Os Anéis
$$\Lambda_{\rm n}$$
 e $\Gamma_{\rm n}$

Dada uma álgebra tensorial especial $T_R(M)$, indicamos por Λ_n o anel $T_R(M)/J^n$ onde $n \in N$ e $J = M + M^{(2)} + M^{(3)} + \dots$ Desde que $\dim_K(\Lambda_n) < \infty$, Λ_n é uma K-álgebra de Artin graduada.

O nosso objetivo é determinar condições necessárias e suficientes sobre $T_R(M)$ para que Λ_n tenha T.R.F., para todo $n\ge 1$. Afim de obter estas condições, consideremos, para cada $n\ge 1$, o anel

$$\Gamma_{n} = \begin{bmatrix} R \\ M & R \\ M^{(2)} & M & R \\ \vdots & \vdots & \ddots & \vdots \\ M^{(n-1)}M^{(n-2)} & R \end{bmatrix}$$

com a adição e multiplicação dadas pelas regras de operações com matrizes. Então valem as propriedades abaixo, provadas em (7).

1) Existe um monomorfismo de anéis $f_n:\Lambda_n$ ——> Γ_n , para $n\ge 1$, tal que Γ_n tem dimensão global relativa zero sobre Λ_n A aplicação é definida por

$$f_{n} (r + x_{1} + ... + x_{n-1}) = \begin{bmatrix} r \\ x_{1} & r \\ x_{2} & x_{1} & r \\ \vdots & \vdots & \vdots \\ x_{n-1} & x_{n-2} & x_{1} & r \end{bmatrix}$$

onde $r \in \mathbb{R}$ e $x_i \in M^{(i)}$ para i = 1, 2, ..., n-1

- 2) Para cada $n \ge 1$, se Λ_n tem T.R.F. então Γ_n tem T.R.F.
- 3) Seja $G_n(\Lambda_n)$ a categoria cujos objetos são os Λ_n -môdulos graduados $X=X_0+X_1+X_2+\ldots$ tais que $X_{n+s}=0$ para $s\geq 0$, e cujos morfismos são as aplicações de grau zero. Então as categorias $G_n(\Lambda_n)$ e $\operatorname{Mod}(\Gamma_n)$ são equivalentes.

Agora, mostraremos que para cada $n \ge 1$ Γ_n é uma álgebra tensorial especial. Dado $n \ge 1$, consideremos o anel $R' = \prod_{i=1}^n R$. Des de que R é um produto de anéis com divisão, centrais e de dimensão finita sobre K, o mesmo ocorre com R'. Seja $e_i \in R'$ a identidade R no i-ésimo fator de R', isto é,

$$e_i = (0, ..., 0, 1, 0, ..., 0)$$
 $\downarrow_{i-\hat{e} \text{ sima posição}}$.

Os e's são idempotentes centrais e ortogonais de R' tais que $\sum_{i=1}^{n} e_{i} = 1.$

Seja R' = e_i Re , R' i e um anel quociente de R' isomor fo a R como K- \tilde{a} lgebra.

Se X é um R-bimódulo e $i^Xj = Ri R X R Rj$, então i^Xj é um R'-bimódulo isomorfo a X como grupo abeliano. O R-bimódulo X pode ser considerado como um R'-bimódulo definido

 $\sigma.x = \sigma_i x$ e $x.\sigma = x\sigma_j$, onde $x \in X$ e $\sigma = (\sigma_1, \dots, \sigma_n) \in R'$ Desta forma, X é isomorfo a $i^X j$ como R'-bimódulo. O resultado abaixo é facilmente verificado:

Lema: Se X e Y são R-bimódulos, então

$$(_{i}X_{j}) \otimes_{R}, (_{r}Y_{s}) = \begin{cases} 0 & \text{se } j \neq r \\ \\ i(X \otimes_{R}Y)_{s} & \text{se } j = r \end{cases}$$

Dada uma álgebra tensorial especial, $T_R(M)$, e um número $n \in N$, seja $M' = \coprod_{i=1}^{n-1} (_{i+1}M'_{i})$

onde $_{i+1}^{M'}_{i} = R_{i+1}^{M}_{R}^{M}_{R}^{M}_{R}^{R}_{i}$. Temos que:

(1)
$$R' = \prod_{i=1}^{n} R_i$$
 e $R = \prod_{j=1}^{m} F_j$

- (2) $M = \prod_{r,s=1}^{m} r^{M}_{s}$, onde cada r^{M}_{s} é um $F_{r} F_{s} bimodulo$
- (3) Se indicarmos por F_j o j-ésimo fator de R_i, isto é F_j = e_iF_je_i

então,
$$R' = \prod_{i=1}^{n} \prod_{j=1}^{m} F_{ji}$$
 e

$$i+1^{M'}i = \prod_{r,s=1}^{m} r_{i+1}^{M} s_i$$
, onde

$$r_{i+1}$$
 = r_{i+1} r_{i} r_{i+1} r_{i+1} r_{i+1} r_{i+1} r_{i+1} r_{i+1} r_{i+1} r_{i+1}

É fácil ver daí que $T_{R'}(M')$ é um K-álgebra tensorial especial e, utilizando o lema acima, vê-se que $\Omega_{R'}^n, M' = 0$ (cf teorema 4 abaixo).

Exemplo 7: Se $R=K_1 \times K_2$, com $K_1=K_2=K$, $1^{M_1}=2^{M_2}=0 \quad e \quad 1^{M_2}=2^{M_1}=K$

O conjunto dos vértices do grafo associado a $T_R(M)$ é I = {1,2} e o grafo é:

Para n=2, $R'=R_1 \times R_2 = K_1 \times K_2 \times K_1 \times K_2 \times K_2$, o conjunto de vértices é

$$I' = \{1_1, 2_1, 1_2, 2_2\}$$
 e $M' = 2^{M_1}$

12 21 0 grafo associado a TR'(M') e

No exemplo acima, observamos que $T_R(M)$ não tem T.R.F. mas $T_{R'}(M')$ tem.

Teorema 4: Para cada $n \ge 1$, $\Gamma_n = T_R(M')$ como K-álgebras.

Demonstração: Sejam $e_i = (0, ..., 0, 1, 0, ... 0) \in R'$, $S = T_R'(M')$ e $P_{ij} = e_i S e_j$. Então, $S = \prod_{i=1}^n P_{ij}$ (decomposição de Pierce

da \tilde{a} lgebra S). Com esta decomposiç \tilde{a} o, a soma e o produto dos elementos de S correspondem a soma e o produto usuais de matrizes do tipo

$$a = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

onde $a_{ij} \in P_{ij}$. Assim,

$$S = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix}$$

mas,

Se j = R' j + j+1M' j + j+2(M
$$\otimes_R$$
M) j + ...+_n(\bigotimes_R M) j

$$P_{ij} = \begin{cases} 0 & \text{se} & i < j \\ R'_{j} & \text{se} & i = j \\ i (\stackrel{i}{\boxtimes}_{R}^{-j} M)_{j} \text{se} & i > j \end{cases}$$

$$S = \begin{bmatrix} R'_{1} & & & & & \\ 2^{M'_{1}} & R'_{2} & & & & \\ 3^{(M@M)}_{1} & 3^{M'_{2}} & & R'_{3} & & \\ & \vdots & & \vdots & & \\ n^{(\frac{n-1}{2}M)}_{1} & (\frac{n}{n} \bar{Q}_{R}^{2} M)_{2} & \cdots & n^{M'_{n-1}} R'_{n} \end{bmatrix}$$

Definição: Um anel A, artiniano à esquerda e à direi ta, é um anel de Nakayama se, para cada idempotente primitivo e EA, eA e Ae têm uma única série de composição.

Se A é um anel artiniano, à esquerda e à direita, e r = rad(A), então as seguintes propriedades são verdadeiras (ver (8), (9), (10)):

- 1) A é um anel de Nahayama se, e somente se, A/r² é um anel de Nakayama.
- 2) Se r²=0, então A é um anel de Nakayama se, e somente se, para cada idempotente principal e A, er (respectivamente, re) é um A-módulo à direita (respectivamente, esquerda) simples.

Definição: Um grafo C é um ciclo se tem uma das seguintes formas:

Exemplo 8:

Para os grafos abaixo, temos:

Note-se que o número |G| independe da orientação fixa

C3

da para o ciclo C.

Definição: Um ciclo C é do tipo Z_m se C vértices e | C | =

Proposiç \tilde{a} ol:Se o grafo associado a $T_R(M)$ \tilde{e} um ciclo do tipo Z_m então, para cada $n \ge 1$, $T_R(M)/J^n$ é um anel Nakayama.

Demonstração: Desde que o grafo associado a $T_{R}(M)$ não contém subgrafos do tipo 👮 , podemos assumir que

$$F_1 = F_2 = \dots = F_m = K$$
.

Temos que:

(1) rad
$$(T_R(M)/J^n) = J/J^n$$

(2)
$$(T_R(M)/J^n)/(J/J^n)^2 = T_R(M)/J^2$$

(3) rad(
$$T_R(M)/J^2$$
) = M

Então, pelas afirmações feitas anteriormente, é suficiente mostrar que, para cada idempotente principal $T_R(M)/J^2$, eM e Me são $T_R(M)/J^2$ módulos simples.

1º caso - 0 grafo associado a T_R(M) é R = K, M = K e o resultado vale.

2º caso - 0 grafo associado a $T_R(M)$ $\in 1$

com n≥2, sendo n o número de vértices.

Então,
$$R = \prod_{i=1}^{n} F_i$$
, os idempotentes principais

 e_1, e_2, \ldots, e_n de $T_R(M)/J^2$ são os elementos que correspon dem aos idempotentes e_i' = (0, ..., 0, 1, 0, ..., 0) $\in \mathbb{R}$ si-ésima posição.

 $M = R_2 @_K R_1 + R_3 @_K R_2 + \dots + R_n @_K R_{n-1} + R_1 @_K R_n$ $R_i = e_i R e_i$. Note que R_i é um R-módulo simples à esquerda à direita.

Logo,

$$\text{Me}_{i} = \begin{cases} R_{i+1} \Omega_{K} & R_{i} \stackrel{\sim}{=} R_{i+1} & \text{como } T_{R}(M)/J^{2} - \text{modulo} \\ & \text{\tilde{a} esquerda para $1 \le i \le n-1$} \\ R_{1} & \Omega_{K} & R_{n} \stackrel{\sim}{=} R_{1} & \text{como } T_{R}(M)/J^{2} - \text{modulo \tilde{a} esquerda para $i = n$} \end{cases}$$

Analogamente,

$$e_{i}M \stackrel{\sim}{=} \begin{cases} R_{i-1} & como \ T_{R}(M)/J^{2} - m \tilde{o} dulo \ \tilde{a} \ direita & para \\ & 2 \leq i \leq n \\ R_{n} & como \ T_{R}(M)/J^{2} - m \tilde{o} dulo \ \tilde{a} \ direita & para \ i=1 \end{cases}$$

Então, $T_R(M)/J^2$ é um anel de Nakayana e, portanto, $T_R(M)/J^n$ é um anel de Nakayama pata todo $n \ge 1$.

Exemplo 9: Suponhamos que o grafo associado a
$$T_R(M)$$
 \in \subset . Então, $R = K$, $M = K$ \in $T_R(M) = K \oplus K \oplus K \oplus \ldots \cong K [X]$ Portanto, $T_R(M)/J^n \cong K[X]/(X^n)$

Observações:

- (1) Suponhamos que o grafo associado a $T_R(M)$ é do tipo Z_n , então $\Omega_R^m M \neq 0$ para todo m. Logo, $T_R(M)$ não é um anel artiniano e, portanto, $T_R(M)$ não é um anel de Nakayama.
- (2) Podemos reconhecer as álgebras tensoriais especiais que são anéis de Nakayama através da proposição abaixo.

Proposição 2: Uma algebra tensorial especial $T_R(M)$ é um anel de Nakayama se, e somente se, o grafo associado a $T_R(M)$ é composto de grafos disjuntos do tipo.

(ver (8), (10))

Corolario: Seja $T_R(M)$ uma algebra tensorial especial e seja $J = M+M^{(2)}+\ldots$ Então, cada anel quociente $T_R(M)/J^r$ é um anel de Nakayama para $r\ge 1$ se, e somente se, o grafo associado a $T_R(M)$ é composto de grafos disjuntos dos tipos Z_n e

$$1$$
 2 3 $m \ge 1$

3 - MATRIZ ASSOCIADA A UM GRAFO

Vimos que se Γ_n não tem T.R.F. então Λ_n também não tem T.R.F.. Afim de obter condições necessárias e suficientes sobre $T_R(M)$ para que Γ_n tenha T.R.F., para todo n ≥ 1 , descrevemos, neste capítulo, o grafo associado a Γ_n em função do grafo de $T_R(M)$.

3.1 - Matriz associada a um grafo.

Sejam Q um grafo, com um número finito de vértices, $V = \{v_1, \ldots, v_n\}$ o conjunto de vértices de Q e n_{ij} o número de flechas de v_j a v_i . A Q associamos a matriz $n \times n$ com coeficientes inteiros positivos $N = (n_{ij})$ e reciprocamente. Esta associação induz uma correspondência biunívoca entre as classes de isomorfismo de grafos e as classes de equivalência de matrizes cujos termos são inteiros não negativos.

Observação: Entendemos que duas matrizes de mesma ordem A e B são equivalentes se uma pode ser obtida da outra através de uma permutação da base. Isto é, se existe uma matriz de permutação U, com o mesmo tamanho que A, tal que UAU-1 = B.

Exemplo 1: Se Q é o grafo:

Então, a matriz associada a Q é:

$$N = \left[\begin{array}{ccccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

Sendo Q_1 o grafo: Q_1 Q_2 Q_3

temos que $arrho_1$ e arrho são isomorfos e a matriz associada a $arrho_1$ $ilde{ ilde{ ext{e}}}$

$$\mathbf{N}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $e U N U = N_1$ onde

$$U = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Seja N = (n_{ij}) uma m x m matriz com coeficientes in teiros não negativos e seja Q o grafo associado a N. Notemos que I = $\{1, \ldots, m\}$ é, também, o conjunto de vértices de Q. Para cada $(i, j) \in IxI$, seja $q_{ij} = n_{ij} + n_{ji}$. Pretendemos encontrar condições necessárias e suficientes sobre N para que Q seja um grafo de Gabriel. (ver página 12).

Suponhamos que Q contém um ciclo, isto é, Q tem um subgrafo C de um dos tipos: 1 ou roca i 3

Se I' \in o conjunto dos vértices de C, então \sum $q_{ij} \geq 2$ para $j \in I'$ todo $i \in I'$. A designaldade ocorre se o número de flechas entre dois vértices de I' \in maior que o da figura.

Reciprocamente, se existe um conjunto I' \subseteq I tal que para todo i \in I' $_{j\in$ I'}, $q_{ij}\geq 2$, então Q contém um ciclo. Pois, se I' tem r elementos então

$$2r = \sum_{i \in I'} 2 \leq \sum_{i \in I'} \sum_{j \in I'} q_{ij} =$$

$$\sum_{i \in I'} \sum_{j \in I'} {\binom{n_{ij} + n_{ji}}{i, j \in I'}} = 2 \sum_{i, j \in I'} {\binom{n_{ij} + n_{ji}}{i, j \in I'}}$$

Isto \acute{e} , o número de flechas entre os elementos de I' \acute{e} maior ou igual ao número de vértices o que significa que \emph{Q} contém

um ciclo.

Definição: Dizemos que a matriz N contém um ciclo se existe um conjunto de Índices I' \subseteq I tal que, para cada $i\in I'$, $j\in I'$ $q_{ij}\geq 2$.

 $Pefinição: I'\subseteq I$ é um ciclo de N se o subgrafo de Q formado por I' e todas as flechas de Q que ligam os vértices de I' for um ciclo.

Pelo que foi dito acima, vale o seguinte:

Phoposição 1: O grafo Q associado à matriz N contém um ciclo se, e somente se, N contém um ciclo.

Proposição 2: Suponhamos que N contém um ciclo e seja $I'\subseteq I$ tal que, para cada $i\in I', \sum_{j\in I'} q_{ij} \ge 2$. Se I' não tem nenhum subconjunto próprio com esta propriedade, então I' tem um ou dois elementos ou I' é um ciclo.

Observação: Consideremos os seguintes grafos:

Nestes dois grafos o conjunto I' formado pelos vértices satisfaz as condições da proposição mas não é um ciclo (o
número de elementos de I' é um ou dois).

Demonstração da proprosição 2:

Suponhamos que I' tem mais de dois elementos. Então q_{ij} =1 ou 0, para todo $(i,j)\in I'$ x I', pois, caso contrário, $I''=\{i,j\}$ seria um subconjunto de I' tal que $\sum_{k\in I'} q_k \ell^{\geq 2}$ para todo $\ell\in I''$. Logo, temos que

(*) dado $v \in I'$ existem elementos distintos v' e $v'' \in I' - \{v\}$ tais que $q_{vv'} = 1 = q_{vv'}$, pois $\sum_{v \in I'} q_{vv} \ge 2$.

Seja $v_1 \in I'$, por (*), existe $v_2 \in I' - \{v_1\}$ tal que $q_{v_1 v_2}^{} = 1$. Ainda por (*), existe $v_3 \in I' - \{v_1, v_2\}$ tal que $q_{v_2 v_3}^{} = 1$.

Suponhamos que $v_1 \dots, v_n \in I'$ foram escolhidos de tal maneira que $q_{v_i v_{i+1}}$ = 1 para i=1,...,n-1.

Então $q_{v_iv_j} = 0$ se $|i-j| \neq 1$ e $|i-j| \neq n-1$ pois, em caso contrário, supondo que $i \leq j$, teríamos $\{v_i, v_{i+1}, \dots, v_j\} \not\subseteq I'$ e $\sum_{s=i}^{j} q_{v_iv_s} \ge 2$. Logo $\sum_{s=i}^{j} q_{v_rv_s} \ge 2$ para todo $r \in \{v_i, \dots, v_j\}$, o que contradiz a hipótese.

Se $\{v_1, \ldots, v_n\} = I'$, então $q_{v_n v_1} = 1$ pois $\sum_{i=1}^n v_i v_n^{\geq 2}$, $q_{v_{n-1}v_n} = 1$ e $q_{v_i v_n} = 0$ para $2 \le i \le n-2$. Portanto, para todo $i \in \{1, \ldots, n\}$, $\sum_{j=1}^n q_{v_i v_j} = 2$ e I' é um ciclo. j = 1 Note que $q_{v_i v_i} = 0$ para todo $v_i \in I'$.

Se $\{v_1, \ldots, v_n\} \neq I'$, então $q_{v_1v_n} = 0$ pois em caso contrário $\{v_1, \ldots, v_n\}$ teria a propriedade $\sum_{i=1}^{n} q_{v_iv_j} \geq 2$, para todo $v_j \in \{v_1, \ldots, v_n\}$. Logo, $q_{v_iv_n} = 0$ para $1 \leq i \leq n-2$ e, por(*), existe $v_{n+1} \in I' = \{v_1, \ldots, v_n\}$ tal que $q_{v_nv_{n+1}} = 1$.

Sendo I' um conjunto finito, concluimos que I' é um ciclo.

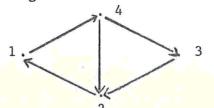
Conolario: Se I' \subseteq I é um ciclo em N com mais de dois elementos, então os índices de I' podem ser ordenados v_1, \ldots, v_n tal que, se $v_1 = v_{n+1}$ então $q_{v_i v_{i+1}} = 1, 1 \le i \le n$.

Exemplo 2:

$$Se N = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} ent\tilde{a}o$$

I = {1,2,3,4} e os subconjuntos de I. $I_1 = \{1\} \text{ e } I_2 = \{2,3,4\} \text{ são ciclos de N.}$ $I_3 = \{1,2,4\} \text{ também tem a propriedade } j \in I_3^{q} i j^{\geq 2}, \text{ para todo}$ $i \in I_3, \text{ mas não é um ciclo.}$

O grafo associado a N é:



3.2 - Metrica sobre um grafo.

Se ja Q um grafo e $N = (n_{ij})$ a matriz associada a Q. Se $I = \{1, ..., m\}$ é o conjunto dos índices de N, $q_{ij} = n_{ij} + n_{ji}$ e Z^+ denota o conjunto dos números inteiros não negativos, para cada $x \in I$, definimos

da seguinte maneira

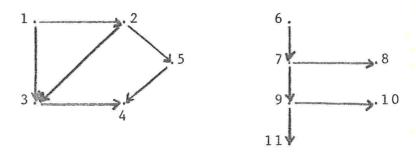
$$d_{x}^{-1}(0) = \{x\}$$
 $d_{x}^{-1}(1) = \{i \in I; i \neq x e q_{xi} \neq 0\}$

se $d_x^{-1}(k)$ está definida para $0 \le k \le n$, então

$$d_{x}^{-1}(n+1) = \{i \in I; i \notin \bigcup_{k=0}^{n} d_{x}^{-1}(k) \in \exists j \in I \quad \text{tal que} d_{x}(j) = n \text{ e } q_{ij} \neq 0\}. \text{ Finalmente, } d_{x}^{-1}(\infty) = I - d_{x}^{-1}(Z^{+}).$$

Isto é, se x,y \in I e $d_x(y) \neq \infty$, então $d_x(y)$ é igual ao menor número de flechas necessárias para se obter um caminho ligando x a y.

Exemplo 3: Suponhamos que Q é o seguinte grafo



$$d_{1}(x) = \begin{cases} 0, & \text{se } x = 1 \\ 1, & \text{se } x = 2 \text{ ou } 3 \\ 2, & \text{se } x = 4 \text{ ou } 5 \\ \infty, & \text{se } x \ge 6 \end{cases}$$

$$d_{7}(x) = \begin{cases} 0, & \text{se } x = 7 \\ 1, & \text{se } x = 6, 8 \text{ ou } 9 \\ 2, & \text{se } x = 10 \text{ ou } 11 \\ \infty, & \text{se } x < 6 \end{cases}$$

Definição: Dizemos que i \in I está ligado a j \in I se $d_i(j) < \infty$.

Propriedades:

- 1) $d_{i}(j) \le d_{i}(k) + d_{k}(j), \forall i, j, k \in I$
- 2) d_i(j) = d_j(i), ∀i,j∈ I
- 3) d \tilde{e} uma métrica em I, onde d(x,y) = $d_x(y)$
- 4) Se $d_{i}(j) < \infty$ e $d_{j}(k) < \infty$, então $d_{i}(k) < \infty$.
- 5) Se existem x_0 , ..., $x_c \in I$ tais que $q_{x_1 x_1 + 1} \neq 0$ para $0 \le i \le c-1$, então $d_{x_0}(x_c) \le c$.
- 6) Se $d_{x_0}(x_c) = c$, então existem $x_1, \dots, x_{c-1} \in I$ distintos tais que $q_{x_i x_{i+1}} \neq 0$, para $0 \le i \le c-1$.

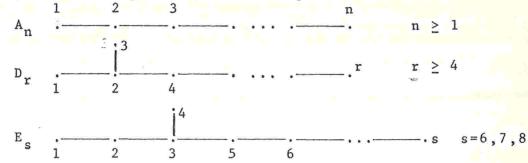
Com as notações introduzidas, um conjunto I' \subseteq I é conexo se para todos x, y \in I'existem $x_1 = x, x_2, ..., x_n = y$ pertencentes a I' tais que $q_{x_i x_{i+1}} \neq 0$, para i = 1, ..., n-1.

Temos que I'CI é conexo se, e somente se, $d_x(y)$ é finito, quaisquer que sejam x, $y \in I'$, ou seja se x e y estão ligados no grafo Q.

Pelas propriedades (1) - (6) acima, vemos que a relação em I definida por i \sim j \longleftrightarrow d $_i(j)<\infty$ é uma relação de equivalência e cada classe de equivalência V_i é um subconjunto conexo de I. Como $I=U_i$, cada V_i é chamada de componente de

N. De fato os Vi's são os subconjuntos conexos maximais de I.

Lembramos que um grafo Q $ilde{ ilde{e}}$ um grafo de Gabrie1 se suas componentes disjuntas s $ilde{a}$ o dos tipos

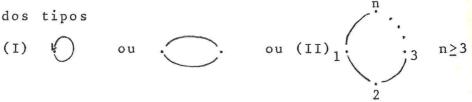


Dividir Q em componentes disjuntas corresponde à participação de I dada pela relação de equivalência acima. Logo, para obtermos condições necessárias e suficientes sobre N para que Q seja um grafo de Gabriel devemos trabalhar com as componentes V_i de I.

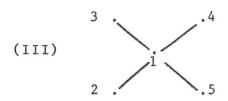
Damos a seguir condições que caracterizam os grafos de Gabriel.

Se Q é um grafo de Gabriel, temos que:

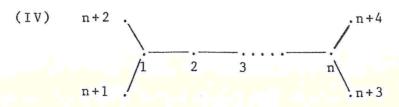
1) Q não contém ciclos, isto é, Q não tem subgrafos dos tipos



2) Q não tem nenhum vértice v com mais de três flechas com um dos extremos em v. Isto é, Q não tem subgrafos do tipo



3) Uma componente de Q tem no máximo um vértice v com três flechas de extremo v. Isto é, Q não tem sub grafos do tipo



4) Uma componente de Q que tem um vértice v com três flechas de extremo v é do tipo D_r ou E_s . Isto é, Q não tem subgrafos dos tipos



Reciprocamente, se um grafo Qnão contém subgrafos dos tipos de (I) a (VI), então Qe um grafo de Gabriel.

Se $x \in I$ e $n \in \mathbb{Z}^+$, definimos $\ell(x,n)$ como sendo o número de elementos $i \in I$ tais que $d_x(i) = n$. Por exemplo, $\ell(x,0) = 1$ e $\ell(x,1)$ é igual ao número de índices $i \in I$ tais que $n_{xi} \neq 0$ ou $n_{ix} \neq 0$.

0 ou
$$n_{ix}$$
 # 0.

Exemplo 4: Seja $N = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

então $\ell(1,1) = 2$, $\ell(1,2) = 1$, $\ell(1,3) = 0$, etc.

Vamos agora traduzir as condições anteriores em propriedades de N para caracterizar os grafos de Gabriel por propriedades da matriz correspondente.

Teorema: Seja N uma matriz mxm com coeficientes inteiros não negativos. O grafo Q associado a N é um grafo de Gabriel se, e somente se, N satisfaz as condições abaixo, onde I = {1, ..., m}.

$$(1) \forall i, j \in I, q_{ij} = 0 \text{ ou } 1,$$

(2) Se v_0 , v_1 , ..., v_n são elementos distintos de I com $q_{v_i v_{i+1}} \neq 0$ para $1 \le i \le n-1$, então $d_{v_0}(v_n) = n$, (3) $\forall i \in I$, $\ell(i,1) \le 3$,

- (4) se v∈I e ℓ(v,1)=3, então ℓ(w,1)<3 para todo w∈I - {v},
- (5) se $v \in I$ e $\ell(v,1) = 3$, então $\ell(v,3) < \ell(v,2) < 3$ se $\ell(v,2) \ge 2$,
- (6) se $v \in I$ e $\ell(v,1)=3$ e $\ell(v,2)=2$, então $\ell(v,n)=0$, para todo $n \ge 5$.

Para provar este teorema mostraremos primeiro o resultado abaixo:

Lema - Q não tem ciclos se, e somente se, satisfaz as condições (1) e (2).

Suponhamos que Q não tem ciclos. Então $q_{ij} = 0$ ou $1,p_{\underline{a}}$ ra todo $(i,j) \in I \times I$, pois Q não contém subgrafos do tipo (I). A condição (1) é satisfeita.

Sejam v_0 , ..., v_n elementos distintos de I com $q_{v_iv_{i+1}} \neq 0$ para $0 \le i \le n-1$.

Queremos mostrar que $d_{v_0}(v_n)=n$ e o faremos util \underline{i} zando indução sobre n.

Para n=0 ou 1 a afirmação é verdadeira.

Suponhamos que $d_{v_0}(v_n) = k < n$, então existem $w_0 = v_0$, w_1 , ..., $w_k = v_n$ elementos distintos de I tais que $q_{w_1w_1+1} \neq 0$, para $0 \le i \le k-1$. Por hipótese de indução, $d_{v_0}(w_1) = i$ e $d_{v_0}(v_1) = j$, para $0 \le i \le k-1$ e $0 \le j \le n-1$. Logo $w_{k-1} \ne v_{n-1}$ e se $w_i = v_j$ então i = j.

 $Seja \ r = max\{i \in \{0, \dots, k-1\}; w_i = v_i\}. \ 0 \qquad conjunto$ $I' = \{v_i, v_{i+1}, \dots, v_n, w_{i+1}, \dots, w_{k-1}\} \qquad tem \ a \quad propriedade$

 Σ $q_{lj} \geq 2$, para todo $j \in I'$. Logo I' \in um ciclo, o $\ell \in I'$ que contradiz a hipótese.

A reciproca é verdadeira pois

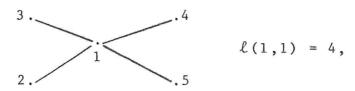
- i) Se Q contém ciclos do tipo (I), a condição (1) não é satisfeita.
- ii) Se Q contém ciclos do tipo II, a condição (2) não é satisfeita.

Demonstração do Teorema:

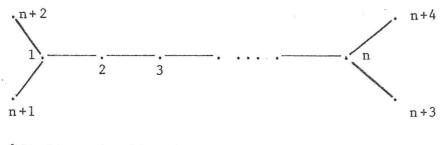
Primeiro suponhamos que Q é um grafo de Gabriel. En tão Q não tem ciclos, e N satisfaz as condições (1) e (2). Temos que Q é formado por componentes disjuntas dos tipos $A_n, n \ge 1$; $D_r, r \ge 4$; $E_s, s = 6,7$ ou 8 e é fácil ver que N satisfaz as condições (3) = (6).

Reciprocamente, suponhamos que Q não é um grafo de Gabriel. Se Q contém um ciclo, então N não satisfaz as condições (1) e (2). Supondo que Q não contém ciclos, então Q tem um subgrafo de um dos tipos III, IV, V ou VI. Se Q tem um subgrafo do tipo:

(III) então N não satisfaz a condição (3):

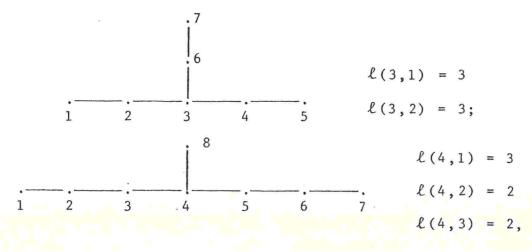


(IV) então N não satisfaz a condição (4):



 $\ell(1,1) = 3 = \ell(n,1)$

(V) então N não satisfaz a condição (5):



(VI) então N não satisfaz a condição (6):

1 2 3 5 6 7 8 9 $\ell(3,3) = 3$ $\ell(3,2) = 2$ $\ell(3,5) = 1$

3.3 - Matriz Reduzida:

Sejam $T_R(M)$ uma álgebra tensorial especial, $N=(N_{ij})$ a matriz m x m associada ao grafo $Q_{T_R(M)}$ e

Já vimos que Γ_n é uma álgebra tensorial especial T_R (M'), onde $R' = \prod_{r=1}^{R} R_r$ e $M' = \prod_{r=1}^{M} \binom{r+1}{r+1} \binom{m}{r}$, cada R_r é uma cópia de R e $\binom{m}{r+1} \binom{m}{r} = \binom{m}{r+1} \binom{m}{r} \binom{m}{r}$

Sendo I = $\{1,\ldots,m\}$ o conjunto de índices de N,então a matriz associada a Γ_n é

$$N_{n}^{\dagger} = (m_{i_{s}^{j}}) \quad 1 \le i, \quad j \le n; \quad 1 \le r, s \le m,$$

de ordem mn, com îndices 1_1 , 2_1 , ..., m_1 , 1_2 , 2_2 , ..., m_2 , ..., 1_n , 2_n , ..., m_n e coeficientes

Logo,

$$N'_{n} = \begin{pmatrix} (0) & & & & \\ N & & (0) & & \\ (0) & N & & (0) \\ \vdots & \vdots & & \ddots \\ (0) & & (0) \dots & & (0) \end{pmatrix}$$

onde (0) é a matriz nula m x m.

Observe que
$$R_r = \prod_{i=1}^{m} F_i$$
 e $r+1 M_r = \prod_{i,j=1}^{m} \prod_{i+1}^{M} j_r$, onde

cada
$$F_{i_r}$$
 é uma cópia de F_i e $i_{r+1}^{M_i}$ = $i_r^{M_i}$.

$$\overline{n}_{ij} = \begin{cases} n_{ij} & \text{se } \dim_{K} F_{i} = \dim_{K} F_{j} \\ 1 & \text{se } \dim_{K} F_{i} \neq \dim_{K} F_{j} = n_{ij} \neq 0, \\ 0 & \text{se } n_{ij} = 0 \end{cases}$$

onde (n_{ij}) é a matriz associada a $Q_{T_R(M)}$ é chamada Matriz reduzida associada a $T_R(M)$.

Propriedades:

1) Se \overline{N} é a matriz reduzida associada à $T_R(M)$, então

$$\overline{N}'_{n} =
\begin{bmatrix}
(0) \\
\overline{N} & (0) \\
\vdots & \vdots \\
(0) & \overline{N} & (0) \\
\vdots & \vdots \\
(0) & (0) & \dots & \overline{N}
\end{bmatrix}$$

 \tilde{e} a matriz reduzida associada \tilde{a} Γ_n .

2) Se $Q_{T_R(M)}$ é composto de diagramas de Dynkin, então o grafo associado à matriz reduzida \overline{N} é um grafo de Gabriel.

O teorema da seção anterior nos dá condições necessárias sobre a matriz reduzida \overline{N}'_n para que Γ_n tenha tipo de representação finito. Estudaremos, agora, estas condições e as relacionaremos com condições sobre \overline{N} , a matriz reduzida associada \overline{a} $T_R(M)$.

Dada a matriz $m \times m = (n_{ij})$, com coeficientes inteiros não negativos, seja N'_n a matriz $nm \times nm$ dada por

Fixemos a seguinte notação para o restante desta seção: $I = \{1, \ldots, m\} \text{ \'e o conjunto de \'indices de N; J} = \{1_1, 2_1, \ldots, m_1, 1_2, \ldots, m_2, \ldots, 1_n, \ldots, m_n\} \text{ \'e o conjunto de \'indices de N'n; } q_{ij} = n_{ij} + n_{ji} \text{ e } q'_{ir}_{js} = m_{ir}_{js} + m_{js}_{ir};$

d é a métrica definida em I e d' a métrica definida em J; para cada $x \in I$, $\ell(x,p)$ é igual ao número de índices $i \in I$ tais que $d_x(i) = p$; para cada $y \in J$, $\ell'(y,p)$ é igual ao número de índices $j \in J$ tais que $d'_y(j) = p$.

Temos que o grafo associado a N'_{n} e um grafo de Gabr \underline{i} el se, e somente se, N'_{n} satisfaz as condições (1) - (6) do teorema da seção 3.2

Para determinar condições necessárias e suficientes sobre N para que N'nsatisfaça as condições (1) - (6), começa mos com resultados que relacionam d e d'e ℓ e ℓ '.

Lema 1: Se $d_i(j) = c$, para i, $j \in I$, então $d'_i(j_s) \ge c$, para i, $s = 1, \ldots, n$.

 em J (com x^0 , x^1 ,..., $x^k \in I$) tais que q' $x^\ell_{r_\ell}$ $x^{\ell+1}_{r_{\ell+1}} \neq 0$, $0 \leq \ell \leq k-1$. Logo $q_x \ell_x \ell + 1 \neq 0$, $0 \leq \ell \leq k-1$ e, portanto, $d_i(j) = d_x o(x^k) \leq k < c$. Contradição.

Corolario: Se $d'_{i_rj_s} = c$, então $d_i(j) \le c$.

Lema 2: Se $d_i(j) = c < \infty$, então, para cada r tal que $n-c \ge r \ge c+1$, existe $s \in \{-c, \ldots, -1, 0, 1, \ldots, c-1, c\}$ tal que $d_{i_r}^*(j_{r+s}) = c$.

Demonstração: Indução sobre c

 $c = 0, \text{ então } i = j \quad e \quad d_{i_r}(j_r) = 0$ $c = 1, \text{ então } q_{ij} \neq 0. \text{ Logo } n_{ij} \neq 0 \quad \text{ ou}$ $n_{ji} \neq 0 \text{ ou ambos. Suponhamos } n_{ij} \neq 0, \text{ então } m_{i_r j_{r-1}} \neq 0 \text{ e,por}$ $tanto, q'_{i_r j_{r-1}} \neq 0. \text{ Assim } d'_{i_r}(j_{r+s}) = 1 \quad \text{para} \quad \text{algum}$ $s \in \{-1, 0, 1\}.$

c > 1, então existe j' \in I tal que d_i(j') = c-1 e d_j(j') = 1. Por indução, existe s' \in {-c+1, -c+2, ..., c-1}tal que d'_{ir}(j'_{r+s'}) = c-1. Por argumento acima, q'_{j'_{r+s'}} + 0 ou q'_{j'_{r+s'}} + 0.

Então, d' $i_r j_{r+s+1} \le c$ ou d' $i_r j_{r+s+1} \le c$, com $s' \pm 1 = s \in \{-c, ..., c\}$. Pelo lema l, a desigualdade implica na igualdade.

Corolārio: $\ell(i,c) < \ell'(i_r,c)$ para c,r satisfazendo $1 + c \le r \le n - c \ .$

Demonstração: $\ell(i,c)$ é igual ao número de elementos $j \in I$ tais que $d_i(j) = c$. Mas para cada um destes j e cada r satisfazendo $1+c \le r \le n-c$, $d_i^i (j_{r+s}) = c$ para algum

 $s \in \{-c, \ldots, -1, 0, 1, \ldots, c\}$, pelo lema 2. Logo $\ell(i,c) \leq \ell(i_r, c)$.

Como consequência do corolário acima temos o seguinte: Teorema: Se N' satisfaz as condições (3) - (6) para todo $n\ge 1$, então N satisfaz as condições (3) - (6).

24

 ${\it Demonstração}$: Desde que as condições (3) - (6) sobre N são dadas através de uma limitação sobre $\ell(x,p)$ em várias circunstâncias, se N não satisfaz (3) - (6), N_n' também não satisfaz as condições (3) - (6) para n suficientemente grande.

Lembremos que um subconjunto I' \subseteq I é um ciclo se Σ $q_{ij} = 2$ para cada $i \in I'$. Ainda, se I' tem $r \ge 3$ elementos, j \in I' podemos ordenar os índices em I', i_1 , i_2 , ..., i_r , de tal maneira que q_{ij} $= 1 = q_i$ para $1 \le j \le r-1$.

Se I' é um ciclo, então

Teorema 2: N_n^t satisfaz as condições (1) - (6) se, e somente se, cada componente de N satisfaz as condições (1)-(6) ou é um ciclo V com $|V|\neq 0$.

A demonstração do Teorema 2 é bastante longa e, por isso, será dividida em três passos.

Seja V = $\{1, \ldots, s\}$ uma componente de N e seja W uma componente de N' contendo 1_r , para um r fixo. Temos que:

a) pelo corolário do lema 1, se $1 \le i \le s$, $d_{i_r}^!(j_t) = \infty$ para todo $j \not\in V$ e todos r e t, pois $d_i(j) = \infty$;

b) se $i_t \in W$, então $i \in V$, pois $d_1(i_t) < \infty \longrightarrow d_1(i) < \infty$.

Nos passos 1 e 2 mostraremos que, se V satisfaz as condições (1) - (6) ou é um ciclo com $|V| \neq 0$, então W satisfaz as condições (1) - (6). Com isto fica provado que se as componentes de N satisfazem as condições (1) - (6) ou são ciclos C com $|C| \neq 0$, então N_n^i satisfaz as condições (1) - (6).

No passo 3 mostraremos que, se N_n^* satisfaz as condições (1)-(6), então as componentes de N satisfazem as condições (1)-(6) ou são ciclos C com $|C| \neq 0$.

Passo 1: Supondo que V satisfaz as condições (1) - (6), mostraremos que W também satisfaz as condições (1) - (6).Co meçamos provando o seguinte:

Lema: Se $v_{r_0}^o$, $v_{r_1}^1$, ..., $v_{r_t}^t$ são elementos distintos de W, com $q_{v_{r_i}^i}^i$ v_{i+1}^{i+1} $\neq 0$ para $0 \le i \le t-1$, então $v_{r_i}^o$, v_{i+1}^t

Demonstração: Indução sobre t

são elementos distintos de v.

. .

t = 1. Desde que $q_{vo_{vo_{v1}}}$ v_{v0} v_{v1} \neq 0, $q_{vo_{v1}} \neq 0$.

Então $v^o \neq v^1$ pois: $v^o = v^1 \longrightarrow q_{v^o v^o} \neq 0 \longrightarrow q_{v^o v^o} \geq 2$, o que contradiz a condição (1).

 $t=2. \text{ Pelo caso } t=1, \ v^0 \neq v^1 \ \text{e } v^1 \neq v^2$ Suponhamos que $v^0=v^2$. Sendo $q_{v^0v^1}=1$, então $n_{v^0v^1}=1$ ou $n_{v^1v^0}=1$ mas não ambos. Se $n_{v^0v^1}=1$, então

$$v_{r_0}^{o}$$
 $v_{r_1}^{1}$ $\neq 0$ \implies $r_1 = r_0 - 1$.

Agora, $q_{v_1}^1$ $v_{r_2}^2 \neq 0 \implies r_2 = r_1 + 1$. Logo

 $v_{r_0}^0 = v_{r_2}^2$. O que é uma contradição pois $v_{r_0}^0, v_{r_1}^1, v_{r_2}^2$ são distintos.

$$t \ge 3$$
. Por indução, v^0, \dots, v^{t-1} e

 v^1 , ..., v^t são distintos. Logo v^o , ..., v^t são distintos se $v^o \neq v^t$. Pela condição (2), $d_{v_o}(v^{t-1}) = t - 1 \ge 2$. Mas $d_{v_o}(v^t) = 1$, o que seria uma contradição se $v^o = v^t$.

Logo, se V satisfaz as condições (1) - (6)e $i_t, j_s \in W$, pelo lema anterior,

$$d_{i_{t}}(j_{s}) = c < \infty \implies d_{i}(j) = c$$

$$d_{i_{t}}(i_{t'}) = d_{i}(i) = 0 \Longrightarrow t = t'$$

Logo, se i_t∈ W, t é único.

Agora,

 $\ell'(i_t, p) = n\tilde{u}mero de j_s \in W tais que$ $d_{i_t}(j_s) = p \le (n\tilde{u}mero de j \in V tais que$ $d_{i_t}(j) = p) = \ell(i, p).$

Isto \acute{e} , $\ell'(i_t, p) \leq \ell(i,p)$. Logo, se V satisfaz as condições (3) - (6), W também as satisfaz. Pois estas condições são dadas por $\ell'(i_t,p)$.

Finalmente, se V satisfaz as condições (1) e (2), então

W satisfaz a condição (1), pois $q_{i_r j_s} \le q_{ij} \le 1$ e, pelo lema, W satisfaz a condição (2), desde que, se

 v_{r}^{o} , ..., v_{r}^{p} são elementos distintos de W com

 $q_{v_{i}}^{i}$ $v_{i+1}^{i+1} \neq 0$ para $0 \leq i \leq p-1$, então $d_{v_{i}}^{0}(v_{p}^{p}) = d_{v_{i}}^{0}(v_{p}^{p}) = 0$.

Passo 2: Suponhamos que V é um ciclo com $|V| \neq 0$. (veja exemplo 5 página 41).

a) W satisfaz as condições (3) - (6).

Se provarmos que $\ell'(v_i,1) \le 2$ para todo $v_i \in W$, então W obviamente satisfaz as condições (3) - (6).

 $\begin{array}{l} \ell'(v_{\mathbf{i}},\ 1) \leq \text{ número de } w_{\mathbf{j}} \in \mathbb{W} \text{ tais que } q'_{v_{\mathbf{i}}w_{\mathbf{j}}} \neq 0 \leq (\text{nú-mero de } w \in \mathbb{V} \text{ tais que } n_{vw} \neq 0) + (\text{número de } w \in \mathbb{V} \text{ tais que } n_{wv} \neq 0) \leq \sum\limits_{\mathbf{w'} \in \mathbb{V}} (n_{vw}, + n_{w'v}) = \sum\limits_{\mathbf{w'} \in \mathbb{V}} q_{vw}, & \text{mas, } mas, \\ \sum\limits_{\mathbf{w'} \in \mathbb{V}} q_{vw'} = 2 \text{ pois } \mathbb{V} \text{ \'e um ciclo. Logo } \ell'(v_{\mathbf{i}}, 1) \leq 2 \text{ pa} \\ \mathbf{w'} \in \mathbb{V} \\ \text{ra todo } v_{\mathbf{i}} \in \mathbb{W}. & \text{numero de } w \in \mathbb{V} \end{array}$

b) W satisfaz as condições (1) e (2).

Lembrando que V é conexo, começaremos provando dois le mas:

Lema: $n_{v,w} = 1$ ou 0 para $v,w \in V$.

 $n_{vw} = 1 = n_{wv}$, o que \tilde{e} uma contradição.

Lema: Existe um $v \in V$ tal que $n_{vv} = 1$ se, e somente se, $V = \{v\}$.

Pemonstração: Se V = {v}, então 2 = Σ $q_{vv} = q_{vv} = 2n_{vv}$. Portanto $n_{vv} = 1$.

Se $n_{vv} = 1$, então $q_{vv} = 2$ e $q_{vw} = 0$ para todo $w \neq v$, pois $2 = \sum_{v \in V} q_{vw}$. Sendo V conexo, $V = \{v\}$.

Caso 1: Se $V = \{v\}$, então |V| = 1. Seja $\{v_{i_1}, \dots, v_{i_r}\}$ um conjunto de vértices em W.Então, supondo que $i_1 < i_j$ para $2 \le j \le r$, $\sum_{j=1}^{r} q'v_{i_1}v_{i_j} \le 1$. Logo $\{v_{i_1}, \dots, v_{i_r}\}$ não é um ciclo e, portanto, W não contém ciclos.

 $Caso 2: V = \{v,w\} com v \neq w . Como |V| = 1, temos que$ $n_{vw} = 1 = n_{wv}. Então q'_{vivj} = 0 = q'_{wiwj} para todos i e j e$

$$q'_{v_i^w_j} = \begin{cases} 1 & \text{se } |i-j| = 1 \\ 0 & \text{se } |i-j| \neq 1 \end{cases}$$

Seja $\{x_{i_1}, \dots, x_{i_r}\}$ um conjunto de vértices em W. Podemos supor que $i_1 \leq i_j$, para $2 \leq j \leq r$ e que $x_{i_1} = v_{i_1}$. Então $\sum_{j=1}^{r} q'_{x_{i_1}} \leq 1$. Logo, W não contém ciclos.

Seja f: $V - \longrightarrow Z$ definida por:

$$f(v^{1}) = \begin{cases} 1, & \text{se } n_{v^{2}v^{1}} = 1 \\ -1, & \text{se } n_{v^{1}v^{2}} = 1 \end{cases}$$

para
$$2 \le i \le r-1$$
,

$$f(v^{i}) = \begin{cases} f(v^{i-1}) + 1, & \text{se } n_v^{i+1}v^{i} = 1 \\ f(v^{i-1}) - 1, & \text{se } n_v^{i}v^{i+1} = 1 \end{cases}$$

$$f(v^{r}) = \begin{cases} f(v^{r-1}) + 1, & \text{se } n_{v} 1_{v} r = 1 \\ f(v^{r-1}) - 1, & \text{se } n_{v} r_{v} 1 = 1 \end{cases}$$

Temos que $|f(v^r)| = |V| \neq 0$

Suponhamos que $x_{k_1}^1$, $x_{k_2}^2$, ..., $x_{k_s}^s \in W$ são tais que

$$q_{\mathbf{x}_{i}}^{i}$$
 $\mathbf{x}_{k_{i+1}}^{i+1} \neq 0$ para $1 \leq i \leq s-1$.

Devemos mostrar que $\{x_{k_1}^1,\ldots,x_k^s\}$ não é um ciclo. Re numerando os vⁱ's, se necessário, podemos supor que $x^1=v^1$. Então

$$q'v_{k_1}^1w_j \neq 0$$
 \Rightarrow $(w_j = v_j^2 \text{ ou } w_j = v_j^r)$ $(j = k_1 + 1 \text{ ou } k_1 - 1)$

Suponhamos que $w_i = v_j^2$, então

$$q_{x_{k_1}^1, v_{j}^2} = m_{x_{k_1}^1, v_{j}^2} + m_{v_{j}^2, x_{k_1}^1} \neq 0 < \longrightarrow m_{x_{k_1}^1, v_{j}^2} \neq 0$$

ou $m_{v_{j}^{2} x_{k_{1}}^{1}} \neq 0$.

$$m_{x_{k_1}^1, v_j^2 \neq 0} \implies j = k_1 - 1 \text{ e f}(v^1) = -1 \implies j = k_1 + f(v^1)$$

Analogamente, se $w_j = v_j^r$ então $j = k_1 + f(v^{r-1}) - f(v^r)$ Logo

$$q_{x_{k_1}^1 w_j} \neq 0 < \Longrightarrow w_j = v_{k_1 + f(v^1)}^1$$
 ou
 $w_j = v_{k_1 + f(v^{r-1}) - f(v^r)}^1$

Invertendo, se necessário, a ordem dos v^i 's, podemos supor que

$$x_{k_{2}}^{2} = v_{k_{1}}^{2} + f(v^{1})$$
 $q_{x_{k_{2}}}^{1} = v_{k_{1}}^{1} + f(v^{1})$
 $q_{x_{k_{2}}}^{2} = v_{k_{1}}^{2} + f(v^{1})$
 $x_{k_{2}}^{3} = v_{k_{1}}^{3} + f(v^{2})$
 $x_{k_{3}}^{3} = v_{k_{1}+f(v^{2})}^{3}$

Continuando, encontraremos que

$$x_{k_{i}}^{t} = v_{k_{1}}^{i} + \ell_{f}(v^{r}) + f(v^{i-1})$$
 se

 $t = \ell.r+i, \quad 1 \le i \le r. \quad (\text{se } i = 1, \text{ faça } f(v^{0}) = 0)$
 $se \quad x_{k_{s}}^{s} = v_{k_{s}}^{i} \quad com \quad 1 \le i < r, \quad ent\tilde{a}o$
 $x_{k_{s-1}}^{s-1} = v_{k_{s}+f}^{i-1}(v^{i-2}) - f(v^{i-1}). \quad como \quad x_{k_{s}}^{s} \ne x_{k_{s}}^{t}$

para 1 < t < s,

$$q'_{x_{k_s}^{s_w}} \neq 0 \iff w_j = x_{k_{s-1}}^{s-1}$$

Neste caso, $\{x_{k_1}^1, \ldots, x_{k_s}^s\}$ não é um ciclo, pois

$$x_{k_{s-1}}^{s-1} \neq x_{k_{1}}^{1}$$

Suponhamos, agora, que $x_k^s = v_k^r$

Neste caso, $k_s = k_1 + \ell f(v^r) + f(v^{r-1})$ onde $s = \ell \cdot r + r \cdot E\underline{n}$ $t = k_s + f(v^r) - f(v^{r-1}) = k_1 + (\ell + 1) f(v^r)$.

Mas $k_1 \neq k_1 + (\ell+1)$ $f(v^r)$, pois $f(v^r) = |v| \neq 0$.

Logo $q_{x_1, x_s}^{\dagger} \neq 0$, o que completa a demonstração do passo 2.

Passo 3: N_n^r satisfaz as condições (1) - (6) para todo $n \ge 1$. Queremos mostrar que cada componente de N satisfaz as condições (1) - (6) ou é um ciclo C, com $|C| \ne 0$.

Seja V uma componente de N. Desde que N_n' satisfaz as condições (3) - (6) para todo $n \ge 1$, pelo Teorema 1 des a seção V satisfaz as condições (3) - (6). Agora, supondo que V não satisfaz as condições (1) - (2), mostraremos que V é um ciclo com $|V| \ne 0$.

Pelo lema da seção 3.2, V contém um ciclo. Então existe um subconjunto minimal V' C V tal que

 Σ $q_{vw} \ge 2$, para cada $v \in V'$.

Pela proposição 2 da seção 3.1, V' tem um ou dois elementos

ou V' é um ciclo.

Notemos que n_{VW} = 1 ou 0 pois N_n^{\dagger} satisfaz a condição (1), $q_{V_2W_1}$ = 1 ou 0 $\longrightarrow m_{V_2W_1} \le 1$ $\longrightarrow m_{V_2W_1} \le 1$.

Caso 1: Suponhamos que V' = $\{v\}$. Então n_{vv} = 1 pois $q_{vv} \ge 2$ e $n_{vv} \le 1$.

Se V' = V, então V é um ciclo com $|V| = 1 \neq 0$.

Suponhamos que V' \neq V, então existe $w \in V - V'$ tal que $q_{vw} \neq 0$. Em N_n' , $q'_{v_1v_2} \neq 0 \neq q'_{v_2v_3}$ e, ainda, $q'_{v_2w_1} \neq 0$ ou $q'_{w_3v_2} \neq 0$, pois $n_{vw} \neq 0$ ou $n_{wv} \neq 0$. Logo $\ell'(v_2,1) \geq 3$. Analogamente $\ell'(v_3,1) \geq 3$. Mas $d'_{v_2}(v_3) = 1$, isto \tilde{e} , $v_2 \in v_3$ pertencem a uma mesma componente de N_n' , e portanto N_n' não satisfaz a condição (4). Contradição.

Caso 2: Suponhamos que V' = {v,w} Então

Se V' \neq V, então existe $x \in V - V'$ tal que $q_{vx} \neq 0$ ou $q_{wx} \neq 0$. Suponhamos $q_{vx} \neq 0$. Então $\ell'(v_2, 1) \geq 3$, pois $d'v_2(w_1) = 1 = d'v_2(w_3)$ e $(d'v_2(x_1) = 1)$ ou $d'v_2(x_3) = 1$

Analogamente, $\ell'(v_4,1) \ge 1$. Mas $d_{v_2}'(v_4) \le 2$, pois $d_{v_2}'(w_3) = 1 = d_{v_4}'(w_3)$. Logo N_n' não satisfaz a condição (4), para n suficientemente grande. Isto é uma contradição e, portanto, V = V'.

Caso 3. Suponhamos que V' tem três ou mais elementos. Então V' é um ciclo.

(a)
$$|V'| \neq 0$$

Pelo corolário da proposição 2, seção 3.1, os elementos de V' podem ser ordenados, v^1 , ..., v^r de tal maneira que $q_v^iv^{i+1}=1=q_v^1v^r$, para $1\leq i\leq r-1$.

Logo $n_{vi_vi+1} = 1$ ou $n_{vi+1_vi} = 1$, mas não ambos, e $n_{v^1v^1} = 1$ ou $n_{v^1v^1} = 1$, mas não ambos.

Consideremos a função, já definida, f:V' ----> Z (ver pág. 37). Temos que

$$v_{s+f(v^{i-1})}^{i} v_{s+f(v^{i})}^{i+1} = 1 = q_{v_{1}}^{i} v_{s+f(v^{r})}^{r} v_{s+f(v^{r-1})}^{r}$$

Se $|v'| = 0$, então $f(v^{r}) = 0$ e, portanto,

 $v_{s+f(v^{r-1})}^{r} v_{s+f(v^{r-1})}^{r} = 1$

Daí, temos que $\{v_s^1, v_{s+f}^2(v^2), \dots, v_{s+f}^r(v^{r-1})\}$ e um ciclo em N_n' , para $s \ge r+1$ e $n \ge r+s$. Isto é uma contradição pois N_n' não contém ciclos. Logo $|V'| \ne 0$.

(b)
$$V = V'$$

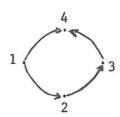
Se V \neq V', então existe $w \in V-V'$ tal que $q_{vw} \neq 0$, para algum $v \in V'$. Podemos supor que $q_{v1_w} \neq 0$.

De acordo com o que foi mostrado nos casos 1 e 2, $\ell'(v_s, 1) \ge 3$ para 1 < s < n. Mas $d_{v_s^1}(v_{s+f(v^r)}^1) < \infty$. Logo para $s \ge r+1$ e $n \ge r+s+1$, N'_n não satisfaz a condição (4). Contradição.

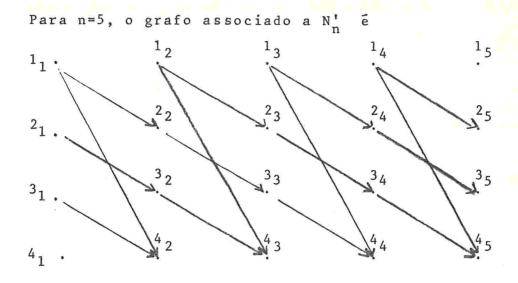
Isto completa a demonstração do teorema.

Exemplo 5:

o grafo associado a N é



e N tem apenas uma componente $V = \{1, 2, 3, 4\}$. V é um ciclo e |V| = 2.



 $W = \{3_1, 4_2, 1_1, 2_2, 3_3, 4_4, 1_3, 2_4, 3_5\}$. Renumerando os elementos de V, podemos fazer $v^1 = 3$, $V = \{v^1, v^2, v^3, v^4\}$ onde $v^2 = 4$, $v^3 = 1$ e $v^4 = 2$.

$$f(v^1) = 1$$
; $f(v^2) = 0$; $f(v^3) = 1$; $f(v^4) = 2$

W tem a propriedade $q_{k_{i}}^{i}$ $x_{k_{i+1}}^{i+1} \neq 0$ $1 \leq i \leq 8$, (s=9).

Temos ainda,

$$k_1 = 1$$
; $k_2 = 2 = k_1 + f(v^1)$; $k_3 = 1 = k_1 + f(v^2)$;
 $k_4 = 2 = k_1 + f(v^3)$; $k_5 = 3 = k_1 + f(v^4)$; $k_6 = 4 = k_1 + f(v^4) + f(v^1)$
 $k_7 = 3 = k_1 + f(v^4) + f(v^2)$; $k_8 = 4 = k_1 + f(v^4) + f(v^3)$;
 $k_9 = 5 = k_1 + 2f(v^r)$

Teorema 3: $\Gamma_{\rm n}$ tem tipo de representação finito para todo n ≥ 1 se, e somente se, o grafo associado a $T_{\rm R}({\rm M})$ é composto por diagramas de Dynkin e ciclos C tais que $|{\rm C}| \neq 0$.

 ${\it Demonstração:} \ \, {\it Podemos} \ \, {\it supor} \ \, {\it que} \ \, o \ \, {\it grafo} \ \, Q_{\rm T_R}({\it M}) \quad associado \ \, \tilde{\it a} \ \, T_{\rm R}(M) \ \, tem \ \, apenas \ \, uma \ \, componente.$

Se $Q_{T_R(M)}$ é um diagrama de Dynkin, então $T_R(M)$ tem tipo de representação finito. Portanto $\Lambda_n = T_R(M)/J^n$ tem tipo de representação finito para todo $n \ge 1$. Logo Γ_n tem tipo de representação finito.

Se $Q_{T_R(M)}$ \in um ciclo com $|Q_{T_R(M)}| \neq 0$, então, pelo teo

rema 2, o grafo associado a $\Gamma_{\rm n}$ satisfaz as condições (1)-(6). Logo o grafo associado a $\Gamma_{\rm n}$ é um grafo de Gabriel e, portanto, $\Gamma_{\rm n}$ tem tipo de representação finito.

Agora, suponhamos que Γ_n tem tipo de representação finito para todo $n \ge 1$. Então a matriz reduzida \overline{N}_n' associada a Γ_n satisfaz as condições (1)-(6). Pelo teorema 2, a matriz reduzida \overline{N} associada a $T_R(M)$ satisfaz as condições (1)-(6) ou é um ciclo V com $|V| \ne 0$:

- (a) $\overline{\mathbb{N}}$ é um ciclo \mathbb{V} com $|\mathbb{V}|\neq 0$. Então $\overline{\mathbb{N}}=\mathbb{N}$, isto é, a matriz associada a $T_R(\mathbb{M})$ é igual a sua matriz reduzida. Pois se isto não ocorresse, existiriam índices i e j de \mathbb{N} tais que $\dim_{\mathbb{K}} F_i \neq \dim_{\mathbb{K}} F_j = \dim_{\mathbb{F}_i} (i^{\mathbb{M}}_j) \times \dim(i^{\mathbb{M}}_j)_{F_j} \neq 0$, onde $\mathbb{N} = \prod_i F_i = \mathbb{N} = \prod_i M_j$. Pelo que foi feito na demonstração do passo 2 do teorema anterior, para n suficientemente grande, existe $\mathbb{N} = \mathbb{N}$ tal que $\dim_{\mathbb{K}} F_i = \mathbb{N}$ as, $\dim_{\mathbb{K}} F_i = \mathbb{N}$ as $\dim_{\mathbb{K}} F_i = \mathbb{N}$ and $\dim_{\mathbb{K}} F_i = \mathbb{N}$ as $\dim_$
- (b) \overline{N} é um grafo de Gabriel. Então N não contém ciclos. Mostraremos que as componentes do grafo associado a Γ_n são subgrafos do grafo associado a $T_R(M)$. Seja $V=\{v^1,\ldots,v^s\}$ o conjunto de vértices de N e W uma componente de N_R^t .
- i) Suponhamos que v_i^1 , v_j^1 pertençam a W, então $d_{v_j^1}(v_i^1) = c < \infty$ e, portanto, existem elementos distintos $x_{k_1}^1 = v_i^1$, $x_{k_2}^2$, ..., $x_{k_{c+1}}^{c+1} = v_j^1$ em W tais que

 $q_{x_{i}}^{i}$ $x_{i+1}^{i+1} \neq 0$, para $1 \leq i \leq c$. Logo, $q_{x_{i}}^{i}$ $i+1 \neq 0$ para

l≤i≤c e, portanto, V' ={ x^1 , ..., x^c } ⊆ V contém um ciclo. Con-

tradição. Temos que

$$v_i^k, v_i^k \in W, 1 \le k \le s \Longrightarrow i=j$$

e o número de elementos de W é menor ou igual ao número de ele

ii) Por (i), podemos supor que

W=
$$\{v_{k_1}^1, v_{k_2}^2, \ldots, v_{k_r}^r\}$$
, r\leqs. Devemos mostrar que

$$\mathbf{m'}_{\mathbf{v}_{i}}^{\mathbf{i}} \mathbf{v}_{k_{j}}^{\mathbf{j}} = \mathbf{n}_{\mathbf{v}_{i}}^{\mathbf{i}} \mathbf{v}_{\mathbf{v}_{i}}^{\mathbf{j}}$$
 para todos $\mathbf{v}_{k_{i}}^{\mathbf{i}}, \mathbf{v}_{k_{j}}^{\mathbf{j}} \in \mathbf{W}$.

$$\mathbf{m'}_{\mathbf{v}_{\mathbf{i}}^{\mathbf{i}}\mathbf{v}_{\mathbf{j}}^{\mathbf{j}}} = \begin{cases} \mathbf{n}_{\mathbf{v}^{\mathbf{i}}\mathbf{v}^{\mathbf{j}}} & \text{se } \mathbf{k}_{\mathbf{i}} = \mathbf{k}_{\mathbf{j}} + 1 \\ 0 & \text{se } \mathbf{k}_{\mathbf{i}} \neq \mathbf{k}_{\mathbf{j}} + 1 \end{cases}$$

$$m'v_{k_{i}}^{i}v_{k_{j}}^{j} = 0$$
 e $n_{v}i_{v}j \neq 0 \iff k_{i} \neq k_{j}+1$

Sabemos que $d_{v_k^j}(v_k^i) = c < \infty$. Do mesmo modo que no item (i), obtemos um conjunto $V' = \{x^1 = v^i, x^2, \dots, x^{c+1} = v^j\} \subseteq V$ tal que $q_x t_x t + 1 \neq 0$, $1 \leq t \leq c$, e $x^t \neq x^\ell$ se $t \neq \ell$. Como $q_x t_x c + 1 \neq 0$, V' contém um ciclo. Contradição.

Logo W é um subgrafo de V. Assim, para n suficientemente grande, existe uma componente do grafo associado a $\Gamma_{\rm n}$ que é o mesmo grafo associado a $T_{\rm R}({\rm M})$. Como $\Gamma_{\rm n}$ tem tipo de representação finito seu grafo é composto por diagramas de Dynkin. Portanto o grafo associado a $T_{\rm R}({\rm M})$ é um diagrama de Dynkin.

4 - O TEOREMA E EXEMPLOS

Tendo em vista os resultados das seções precedentes, obteremos agora condições necessárias e suficientes sobre $T_R(M) \text{ para que } \Lambda_n = T_R(M)/J^n \text{ tenha tipo de representação finita para cada } n\geq 1 \text{ .}$

Lembrando que se Λ_n tem T.R.F. então Γ_n tem T.R.F., pe lo teorema 3 da seção 3.3, temos o seguinte:

Proposição 1: Se $T_R(M)$ é uma álgebra tensorial especial e $\Lambda_n = T_R(M)/J^n$ tem T.R.F. para todo $n \ge 1$, então o grafo associado a $T_R(M)$ é composto por diagramas de Dynkin ou ciclos C tais que $|C| \ne 0$.

Proposição 2. Seja $T_R(M)$ uma álgebra tensorial especial. Se $\frac{\alpha}{R}^r$ M # O para rodo $r \ge 1$, então o grafo associado a $T_R(M)$ contém um subgrafo do tipo Z_m .

· Demonstração:

Sendo
$$M = \prod_{i,j=1}^{n} i^{M}j$$
 e $V = \{1,2,\ldots,n\}$ então

$$\underline{\mathbf{x}}^{r} \mathbf{M} =$$
 $\mathbf{k}_{0}, \mathbf{k}_{1}, \dots, \mathbf{k}_{r} = 1$
 $\mathbf{k}_{0}, \mathbf{k}_{1}, \dots, \mathbf{k}_{r} = 1$
 $\mathbf{k}_{0}, \mathbf{k}_{1}, \dots, \mathbf{k}_$

Sendo V um conjunto finito, para r suficientemente grande, os vértices k_0, k_1, \ldots, k_r não podem ser todos distintos. Isto é, existem $i,j \in \{0,1,\ldots,r\}$ tais que $k_i = k_j$. Supondo j = i + t, vemos que $V' = \{k_i, k_{i+1}, \ldots, k_{i+t}\}$ contém um ciclo do tipo Z_m .

Observação: A reciproca da proposição anterior é verdadeira.

Teohema: Seja $T_R(M)$ uma álgebra tensorial especial cuja decomposição em álgebras tensoriais especiais indecomponíveis \tilde{e} $\overrightarrow{T_R}_i(M_i)$. Sejam $J=M+M^{(2)}+\ldots$ e $J_i=M_i+M_i^{(2)}+\ldots$, para $1\leq i\leq r$. Então Λ_n tem T.R.F. para todo $n\geq 1$ se, e somente se, para cada $i=1,\ldots,r$, $T_R_i(M_i)$ tem T.R.F. ou $T_R_i(M_i)/J_i^2$ \tilde{e} um anel de Nakayama. Isto \tilde{e} , Λ_n tem T.R.F. para todo $n\geq 1$ se, e somente se, o grafo associado a $T_R(M)$ \tilde{e} composto de diagramas de Dynkin ou ciclos do tipo Z_m , $m\geq 1$.

Agora, suponhamos que $T_R(M)/J^n$ tem T.R.F. para todo $n \ge 1$. Então o grafo associado a cada $T_{R_i'}(M_i)$ é um diagrama de Dynkin ou um ciclo C com $|C| \ne 0$, pois $T_{R_i'}(M_i)$ tem T.R.F. para cada $i \in \{1, \ldots, r\}$.

O teorema estará demonstrado se provarmos que:

(I) Se o grafo associado a uma álgebra tensorial especial $T_R(M)$ é um ciclo C, com $|C| \neq 0$, então $T_R(M)/J^n$ tem T.R.F. para todo $n \geq 1$ se, e somente se, C é do tipo Z_m .

Para isto, consideremos a afirmação:

Suponhamos que $T_R(M)/J^n$ tem T.R.F. para todo $n\ge 1$. Se Ω_R^r M=0 para algum r, então $J^r=0$ e $T_R(M)/J^r=T_R(M)$. Mas se $T_R(M)$ tem T.R.F., o grafo associado a $T_R(M)$ é composto por diagramas de Dynkin. Isto contradiz o fato de ser o grafo associado um ciclo. Assim, Ω_R^r $M\neq 0$ para todo r e, por II,

Cé do tipo Z_m.

Reciprocamente, se C é do tipo Z_m , pela proposição 1, seção 2.3, $T_R(M)/J^n$ é um anel de Nakayama, para todo $n\ge 1$. Lo go, os anéis $T_R(M)/J^n$ têm T.R.F. para $n\ge 1$.

Uma aplicação do teorema anterior:

Teorema: Seja Λ uma K-álgebra artiniana tal que rad(Λ) é um somando direto de Λ e $\Lambda/\mathrm{rad}(\Lambda) = \prod_{i=1}^m F_i$ co-

mo K-álgebra, onde cada F_i é uma álgebra com divisão, central e de dimensão finita sobre K. Então, Λ tem T.R.F. se o grafo associado a $T_{\Lambda/\mathrm{rad}(\Lambda)}$ (rad(Λ)/(rad(Λ)) é composto por dia gramas de Dynkin ou ciclos do tipo Z_p .

f:
$$T_R(M)/J^n \longrightarrow \Lambda$$

definida por

$$f(r + m + m_1^1 \otimes m_2^1 + \dots + m_1^{n-2} \otimes \dots \otimes m_{n-1}^{n-2}) = r + m + m_1^1 \cdot m_2^1 + \dots + m_1^{n-2} \cdot \dots m_{n-1}^{n-2}$$

 \tilde{e} um epimorfismo de an \tilde{e} is. Logo Λ tem T.R.F. pois $T_R(M)/J^n$ tem T.R.F.

Exemplo 1. Sejam $F_1 = F_2 = K$, $R = F_1 \times F_2$, rum número inteiro ≥ 1 e $\begin{cases} K^r, & \text{se } i = 2 \text{ e } j = 1 \end{cases}$

$$i^{M}j = \begin{cases} K^{r}, & \text{se } i = 2 & \text{e } j = 1 \\ 0, & \text{se } i \neq 2 & \text{ou } j \neq 1 \end{cases}$$

a) $T_R(M) = K \times K + 2^{M_1} + 0 + \dots, J^n = 0 \text{ para } n \ge 2$ $T_R(M) = \begin{pmatrix} K & 0 \\ V & K \end{pmatrix} \text{ onde } V \in \text{um } K\text{-espaço vetorial } de$

dimensão r.

b) O grafo associado a $T_R(M)$ \tilde{e}

Logo, $T_R(M)$ tem T.R.F. se, e somente se, r=1 e, neste caso $T_R(M)$ é a álgebra das matrizes $2x^2$ triangulares $\begin{pmatrix} K & 0 \\ K & K \end{pmatrix}$

c)
$$T_R(M)/J^n = \begin{cases} R \text{ se } n=1 \\ \\ T_R(M) \text{ se } n>1 \end{cases}$$

Exemplo 2: Sejam R=K e $_1M_1$ = K^r , r>0.

a)
$$T_R(M) = K + K^r + K^r + \dots \sim K(x_1, x_2, \dots, x_r)$$

b) O grafo associado a $T_R(M)$ \tilde{e}

 $T_{R}(M)$ não tem T.R.F., para todo $r \ge 1$.

c) Para r=1,
$$Q$$
 \in \bigcirc e $T_R(M)$ \sim $K[x]$

 T_R (M) não tem T.R.F., mas Γ_n e Λ_n têm T.R.F. para todo n ≥ 1 .

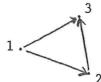
 $\Lambda_n = T_R(M)/(x^n)$, onde (x^n) é o ideal de K(x) gerado por x^n .

$$\Gamma_{n} = \begin{pmatrix} K & & \\ K & K \\ \vdots & \vdots & \\ K & K & \dots & K \end{pmatrix}$$

Exemplo 3. Seja R = K x K x K. Se $e_1 = (1,0,0), e_2 = (0,1,0)$ $e_3 = (0,0,1), \text{ sejam } R_i = e_i Re_i \text{ e M} = R_2 @_K R_1 + R_3 @_K R_2 + R_3 @_K R_1.$

a) $T_R(M)$ não tem T.R.F. pois o grafo Q associado a

T_R(M) é



b)
$$M \otimes_R M = (R_3 \otimes_K R_2) \otimes_R (R_2 \otimes_K R_1)$$

 $(M \otimes_R M) \otimes_R M = 0 \Longrightarrow M^{(n)} = 0 \quad \text{para } n \ge 3$

$$\implies$$
 T_R(M) = R + M + M Ω_R M + 0 + 0 + ...

Logo $T_R(M)$ é uma K-álgebra artiniana hereditária, com $(rad(T_R(M)))^3 = 0$.

c) Q \in um ciclo e |Q| = 1 \neq 0, logo $\Gamma_{\rm n}$ tem T.R.F. para todo n \geq 1.

d)
$$\Lambda_2 = T_R(M)/M^{(2)}$$
 tem T.R.F.

Demonstração:

$$\Gamma_{2} = \begin{pmatrix} R & 0 \\ M & R \end{pmatrix} = \begin{pmatrix} T_{R}(M)/J & 0 \\ J/J^{2} & T_{R}(M)/J \end{pmatrix}, \text{ onde}$$

 $J= rad(T_R(M))$, tem T.R.F.. A afirmação acima é consequência do seguinte teorema:

Teorema (Auslander-Reiten). Se Λ é um anel artinia no, $r = rad (\Lambda)$ e $r^2 = 0$, então Λ tem T.R.F. se, e somente se, $\begin{pmatrix} \Lambda/r & 0 \\ r & \Lambda/r \end{pmatrix}$ tem T.R.F. (ver (11))

Observação: O exemplo 3 mostra que para um anel artiniano Λ , com r^3 = 0, o anel

$$\begin{pmatrix}
\Lambda/r & 0 & 0 \\
r/r^2 & \Lambda/r & 0 \\
r^2 & r/r^2 & \Lambda/r
\end{pmatrix}$$

pode ter T.R.F. sem que A tenha T.R.F.

5 - REFERÊNCIAS BIBLIOGRÁFICAS

- 1 GREEN, Edward L. The Representation Theory of Tensor Algebras. Jornal of Algebra. Abril 1975. Vol. 34.
- 2 CHEVALLEY, Claude. <u>Fundamental Concepts of Algebra</u>. Columbia University, New York. 1956.
- 3 ATIYAH, M.F. e MACDONALD, I.G. <u>Introdución al álgebra comu-</u> tativa. Editorial Reverté, S.A. 1978.
- 4 JONES, A. e MERKLEN, H. <u>Representações de Algebras</u>. Instit<u>u</u>
 to de Matemática e Estatística. USP. 1986.
- 5 DLAB, V. e RINGEL, C. On algebras of finite representation type. Department of MathematicsLecture Notes no 2. Carleton University. Otawa. Ontario. 1973.
- 6 MERKLEN, H. <u>Representacions de álgebras y el Teorema de Ga-briel</u>. Universidade de São Paulo.1981.
- 7 GREEN, E. A criteria for relative global dimension 0 with aplications to graded rings. J. Algebra. 34. 130-135p.
- 8 DROZD, Yury A. y KIRICHENKO, Vladimir. Algebras de Dimen-<u>sion Finita</u>. Publicaciones del Departamento de Matemáti cas (Instituto de Ciências de la Universidad Autônoma de Puebla). Setembro de 1983.
- 9 NAKAYAMA, T. <u>On Frobenuisean algebras 11</u>. Ann of Math. 42. 1(1941). 1-21p.
- 10- CIBILS, C., LARRIÓN, F. e SALMERÓN L. <u>Metodos diagramáticos</u> em teoria de representaciones.
- 11- M.AUSLANDER AND I. REITEN, <u>Notes on the representation</u>

 theory of Artin algebras, Mimeographed notes, Brandeis
 University, Waltham, MA, 1973.