• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2014.tde-23012015-103203
Document
Author
Full name
Fabiano Carlos Cidral
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2014
Supervisor
Committee
Galego, Eloi Medina (President)
Alencar, Raymundo Luiz de
Aurichi, Leandro Fiorini
Silva, Antonio Roberto da
Vieira, Daniela Mariz Silva
Title in Portuguese
Unificação das generalizações do teorema de Banach-Stone para os espaços Co(K,X)
Keywords in Portuguese
Banach-Stone
Generalizações
Unificação
Abstract in Portuguese
Dado um espaço localmente compacto Hausdorff K e um espaço de Banach X, Co(K,X) representa o espaço de Banach das funções contínuas em K com valores em X que se anulam no infinito com a norma do supremo. No presente trabalho, unificaremos e melhoraremos várias generalizações do teorema clássico de Banach-Stone para os espaços Co(K,X) devidas a Cambern, Amir, Behrends e Jarosz. No caso em que X=lp com $ 2 p, nossos resultados são maximais.
Title in English
Optimal extensions of the Banach-Stone theorem for spaces Co(K,X)
Keywords in English
Banach-Stone
Generalizations
Optimal
Abstract in English
Let K be a locally compact Hausdor space and X a Banach space. By Co(K,X) we denote the Banach space of all X-valued continuous functions dened on K which vanish at innity, provided with the supremum norm. In the present work, we unify and strengthen several generalizations obtained in recent years of the classical Banach-Stone theorem for Co(K,X) spaces. In the case where X = lp such that 2 p < 1, our results are optimal.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
TeseFabianofinal.pdf (377.48 Kbytes)
Publishing Date
2015-06-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.