• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
Document
Author
Full name
Eddie Arrieta Arrieta
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Fernandez, Juan Carlos Gutierrez (President)
Guzzo Junior, Henrique
Kochloukov, Plamen Emilov
Title in Portuguese
Álgebras algébricas absolutamente valuadas
Keywords in Portuguese
Absolutamente valuada
Álgebras de Banach
Algébrica
Isótopa
Ultra-produtos
Abstract in Portuguese
O objetivo da dissertação é provar que toda álgebra, sobre o corpo dos números reais, algébrica e absolutamente valuada é de dimensão nita, e portanto isótopa a D . Observamos que H é a álgebra real dos Quatérnios e D R , C , H ou a álgebra real dos Octônios. A demonstração do resultado é feita gradualmente, considerando inicialmente álgebras reais absolutamente valuadas algébrica com unidade, a seguir com unidade e nalmente, algébrica. Na demonstração do teorema será necessário combinar resultados não triviais de álgebras não associativas, análise funcional, álgebras de Banach e técnicas de ultraprodutos de espaços normados. As álgebra absolutamente valuadas não são necessariamente associativas. Abraham Adrian 1947 mostrou que R , C , H e D são as únicas álgebras reais absolutamente valuadas dimensão nita e com unidade; o mesmo Albert dois anos depois, em 1949 , caracterizou Albert em de essas mesmas álgebras como as únicas que são absolutamente valuadas algébricas e com unidade sobre os reais. Em 1960 Fred B. Wright e Kazimierz Urbanik provaram que R , C , D são as únicas álgebra reais absolutamente valuadas e com unidade. Recentemente, em 1997 , Kaidi El-Amin, Maria Isabel Ramírez e Ángel Rodríguez Palacios mostraram que H e toda álgebra real absolutamente valuadas e algébrica é isótopa a uma de estas quatro. Nosso objetivo é desenvolver e unicar os resultados obtidos nestes 4 trabalhos.
Title in English
Absolute valued algebraic algebras
Keywords in English
Absolute valued
Algebraic
Banach algebras
Isotope
Abstract in English
Our goal here is to study the absolute valued algebraic real algebras. In order to reach our intention, we regard an absolute valued real algebra and on which one we impose: First, such one is nite-dimensional algebra; second; such one is algebraic algebra; third, such one is with unity; and in the end such one is algebraic algebra. In the latter case, our aim, it needs of certain classic results of functional analysis and others one of Banach algebras; then, we reach that such one real algebra is isotope to one of the classical absolute valued real algebras algebra and D R , C , H or D . Where H is the Quaternions real is the Octonions real algebra. The absolute valued algebras are not necessarily associative. Abraham Adrian Albert was the rst mathematician considering absolute valued algebras in a context not necessarily associative. In 1947 , he proved that any nite-dimensional absolute valued real algebra with unit element is isomorphic to either real eld H or the Octonions algebra D . Two years R , the complex eld C , the Quaternions algebra later, he demonstrated that R , C , H and D are the unique absolute valued algebraic real algebras with unit element. Recently, in 1997 , Kaidi El-Amin, Maria Isabel Ramírez and Ángel Rodríguez Palacios proved that any absolute valued algebraic real algebra is nite-dimensional.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-09-25
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.