• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Jackeline Conrado
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2016
Director
Tribunal
Gonzalez, Cristian Andres Ortiz (Presidente)
Brahic, Olivier
Grama, Lino Anderson da Silva
Título en portugués
Teorema de Serre-Swan para grupoides de Lie étale
Palabras clave en portugués
Álgebra de convolução
Equivalência de Morita
Grupoides de Lie étale
Serre-Swan
Resumen en portugués
Este trabalho tem dois objetivos principais. O primeiro é estender o Teorema de Serre-Swan para grupoides de Lie étale. O segundo é demonstrar que, se dois grupoides de Lie étale são Morita equivalentes então a categoria dos módulos sobre as álgebras de convolução destes grupoides são equivalentes, e esta equivalência preserva a subcategoria dos módulos de tipo finito e posto constante.
Título en inglés
Serre-Swan's theorem for étale Lie groupoids
Palabras clave en inglés
Convolution algebra
Étale Lie groupoid
Morita equivalence
Serre-Swan
Resumen en inglés
In this work we have two main goals. The first one is to extend the Serre-Swan's theorem. Our second goal is to prove, if two étale Lie groupoids are Morita equivalence then the category of modules over its convolution algebra are Morita equivalence, and this equivalence preserve the subcategory of modules of finite type and of constant rank.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-04-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.