• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2017.tde-25112016-214355
Document
Auteur
Nom complet
Victor Andres Vargas Cubides
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Freire Junior, Ricardo dos Santos (Président)
Garibaldi, Eduardo
Leplaideur, Renaud Daniel Jacques
Lopes, Artur Oscar
Proença, Rodrigo Bissacot
Titre en portugais
Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing
Mots-clés en portugais
Estados de equilíbrio
Estados de Gibbs
Limite em temperatura zero
Medidas maximizantes
Potenciais de Markov
Potenciais somáveis
Subshifts de Markov
Resumé en portugais
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial ƒ com pressão de Gurevic finita e variação limitada (ƒ) < ∞, existe um único estado de equilíbrio µtƒ para cada t > 1, e a família (µtƒ)t>1 tem um ponto de acumulação quando t > ∞. Além disso se também supomos que o ƒ é um potencial de Markov, demonstramos que a família de estados de equilíbrio (µtƒ)t>1 converge quando t > ∞. Finalmente demonstramos a continuidade em ∞ da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs.
Titre en anglais
On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.
Mots-clés en anglais
Equilibrium states
Gibbs states
Markov potentials
Markov subshifts
Maximizing measures
Summable potentials
Zero temperature limit
Resumé en anglais
The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential ƒ with finite topological pressure Gurevic and bounded variation (ƒ) < ∞, there exists an equilibrium state µtƒ tf for each t > 1 and the family of equilibrium states (µtƒ)t>1 associated to each potential tf has an accumulation point at t > ∞. Moreover if we also assume that ƒ is a Markov potential we prove that the equilibrium states family (µtƒ)t>1 converges when t > ∞. Finally we prove the continuity at ∞ of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Tese.pdf (849.26 Kbytes)
Date de Publication
2017-04-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.