• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Oscar Daniel Lopez Osorio
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2016
Orientador
Banca examinadora
Guzzo Junior, Henrique (Presidente)
Araujo, Wilian Francisco de
Fernandez, Juan Carlos Gutierrez
Gorshkov, Ilya
Lopatin, Artem
Título em português
Nova álgebra de Lie simples de dimensão 30 sobre um corpo de característica 2
Palavras-chave em português
Algebras simples
Base toroidal absoluta
Posto toroidal
Resumo em português
S.Skryabin demonstrou que qualquer álgebra de Lie simples de dimensão finita sobre um corpo de característica 2 possui posto toroidal 2. Duas 2- álgebras de Lie de dimensão 31 foram estudadas. Neste trabalho, mostramos que a primeira delas contem uma base toroidal absoluta de dimensão três, assim como a segunda, que foi estudada por Grishkov e Guerreiro anteriormente. Utilizando uma decomposicão de Cartan, exibimos um isomorfismo entre as duas 2- álgebras de Lie de dimensão 31. Este resultado foi sugerido depois de encontrar uma sub álgebra de dimensão 12 n ao solúvel e 7 isomorfas 2-sub álgebras de Lie de dimensão 7 nas duas álgebras. Finalmente, exploramos uma 2- álgebra de Lie de dimensão 34 como o fim de encontrar base toroidal absoluta de dimensão 4. Apoiamos os cálculos com algumas códigos no linguajem de MATLAB que permitiram optimizar e acelerar a pesquisa.
Título em inglês
A new 30 dimensional simple lie algebra on a field of characteristic 2
Palavras-chave em inglês
Absolute toral rank
Maximal toral subalgebra
Simples algebras
Resumo em inglês
S.Skryabin showed that any finite dimensional simple Lie algebra over a field of characteristic 2 has absolute toral rank 2. Two 31-dimensional 2-algebras were known. In this work, we show that the first of these algebras, contains a 3-dimensional maximal toral subalgebra, as the second one, which was studied by Grishkov e Guerreiro previously. Using a Cartan decomposition we establish an isomorphism between the two 31-dimensional 2-algebras. This result was suggested after finding a 12-dimensional not soluble subalgebra and seven 7-dimensional isomorphic 2-subalgebras in both algebras. Finally, a 34-dimensional 2-Lie algebra was studied in order to find 4-dimensional maximal toral subalgebras. Some computations in this work were performed with help of MATLAB.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tesiscorregido.pdf (543.80 Kbytes)
Data de Publicação
2019-04-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.