• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2013.tde-26062014-114617
Document
Auteur
Nom complet
Benigno Oliveira Alves
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Silva, Marcos Martins Alexandrino da (Président)
Hartmann Júnior, Luiz Roberto
Toben, Dirk
Titre en portugais
Folheações rimeannianas e folheações duais
Mots-clés en portugais
Folheação dual
Folheação riemanniana singular
Teorema de dualização
Resumé en portugais
Uma folheação Riemanniana singular em M, variedade Riemanniana completa, é uma folheação singular tal que as folhas são localmente equidistantes. Existe uma folheação singular, chamada de folheação dual a folheação Riemanniana dada, cuja folha passando por p é o conjunto dos pontos em M que são alcançados por alguma geodésica horizontal quebrada partindo de p. Se M possui curvatura seccional positiva, então a folheação dual possui apenas uma folha. Se a curvatura seccional de M é não-negativa e M não coincidi com alguma folha dual, então o fibrado normal de qualquer geodésica horizontal quebrada é gerado por uma família de campos de Jacobi paralelos. Ambos os resultados são conhecidos com Teorema de Dualização. Uma aplicação destes resultados é a prova da suavidade da projeção métrica na alma. Todos estes resultados são devidos a Wilking. O objetivo desta dissertação de mestrado é discutir tais resultados de Wilking, baseado no trabalho do mesmo e em uma abordagem feita por Gromoll e Walschap.
Titre en anglais
Singular Rimannian foliation and dual foliation
Mots-clés en anglais
Dual foliation
Duality theorem
Singular Riemannian foliation
Resumé en anglais
Let M be a Riemanniana manifold with nonnegative sectional curvature. A singular Riemannian foliation in M is a singular foliation with locally equidistant leaves. The dual leaf though p is the collection of the all points q in M such that p and q are connected with a piece-wise horizontal geodesic. The partition of M into the dual leaves is a singular foliation called dual foliation. Wilking proved that if the sectional curveture is positive, then the dual foliation consists of a single leaf. In other words, any two points in M can be connected with a piece-wise horizontal geodesic. In order to prove this result Wilking showed that, if M is nonnegatively curved, the normal bundle of a dual leaf along a piecewise horizontal geodesic is gerated for parallel Jacobi field. These results are used in the proof that the projection metric in the soul is smoth.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-07-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.