• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Leandro Antunes
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Ferenczi, Valentin Raphael Henri (Presidente)
Batista, Leandro Candido
Beanland, Kevin
Brech, Christina
Corrêa, Willian Hans Goes
Título em inglês
Light groups of isometries and polyhedrality of Banach spaces
Palavras-chave em inglês
Combinatorial spaces
Distinguished points
Light groups
LUR renormings
Polyhedrality
Resumo em inglês
Megrelishvili defines light groups of isomorphisms of a Banach space as the groups on which the weak and strong operator topologies coincide and proves that every bounded group of isomorphisms of Banach spaces with the point of continuity property (PCP) is light. We investigate this concept for isomorphism groups G of classical Banach spaces X without the PCP, especially isometry groups, and relate it to the existence of G-invariant LUR or strictly convex renormings of X. We give an example of a Banach space X and an infinite countable group of isomorphisms G < GL(X) which is SOT-discrete but such that X does not admit a distinguished point for G, providing a negative answer to a question of Ferenczi and Rosendal. We also prove that every combinatorial Banach space is (V)- polyhedral. In particular, the Schreier spaces of countable order provide new solutions to a problem proposed by Lindenstrauss concerning the existence of an infinite-dimensional Banach space whose unit ball is the closed convex hull of its extreme points.
Título em português
Grupos leves de isometrias e poliedralidade de espaços de Banach
Palavras-chave em português
Espaços combinatórios
Grupos leves
Poliedralidade
Pontos distintos
Renormações LUR
Resumo em português
Megrelishvili define grupos leves de isomorfismos de um espaço de Banach como os grupos em que as topologias fraca e forte do operador coincidem e prova que todo grupo limitado de isomorfismos de espaços de Banach com a propriedade do ponto de continuidade (PCP) é leve. Investigamos esse conceito para grupos de isomorfismos de espaços de Banach clássicos sem PCP, especialmente grupos de isometrias, e o relacionamos com a existência de renormações G-invariantes LUR ou uniformemente convexas. Damos um exemplo de um espaço de Banach X e um grupo enumerável infinito de isomorfismos G < GL(X) que é SOT-discreto mas tal que X não admite ponto distinto em relação a G, fornecendo uma resposta negativa a uma questão de Ferenczi e Rosendal. Também provamos que todos espaços de Banach combinatórios são (V)-poliedrais. Em particular, os espaços de Schreier de ordem enumerável fornecem novas soluções para um problema proposto por Lindenstrauss sobre a existência de um espaço de Banach de dimensão infinita cuja bola unitária seja igual a envoltória convexa fechada de seus pontos extremos.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-08-01
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.