• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2008.tde-02092008-131917
Document
Author
Full name
Seong Ho Lee
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2008
Supervisor
Committee
Tello, Jorge Manuel Sotomayor (President)
Garcia, Manuel Valentim de Pera
Garcia, Ronaldo Alves
Title in Portuguese
Familias de polinômios estáveis: teoremas de Routh-Hurwitz e Kharitonov
Keywords in Portuguese
Hurwitz
Kharitonov
Routh
Abstract in Portuguese
O objetivo deste trabalho é caracterizar os polinômios cujas raízes têm todas parte real negativa, chamados de polinômios estáveis ou de Hurwitz. Para este fim, apresentaremos e provaremos o critério de Routh-Hurwitz. Também estenderemos este resultado para obter uma caracterização da estabilidade para uma família de polinômios com seus coeficientes variando independentemente num intervalo limitado. Aplicaremos os resultados para obter um critério de estabilidade robusta para um sistema de equações diferenciais que descreve um sistema mecânico.
Title in English
Family of polynomials: Rouh-Hurwitz and Kharitonov´s theorem
Keywords in English
Hurwitz
Kharitonov
Routh
Abstract in English
The objective of this work is to determine when all of zeros of a given polynomial have negative real parts, called stable or Hurwitz polynomials. We will present and prove the Routh-Hurwitz criterion. Furthermore we will extend the result for classes of polynomials defined by letting their coeficients vary independently in an arbitrary finite interval. Then we will apply them to derive a robust stability condition for a mechanical system.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2009-02-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.