• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2011.tde-04062012-103241
Documento
Autor
Nome completo
Antonio Carlos Fernandes
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2011
Orientador
Banca examinadora
Mello, Luis Fernando de Osório (Presidente)
Garcia, Manuel Valentim de Pera
Leandro, Eduardo Shirlippe Goes
Ragazzo, Clodoaldo Grotta
Roberto, Luci Any Francisco
Título em português
Sobre configurações centrais do problema de n-corpos. Configurações centrais planares, espaciais e empilhadas.
Palavras-chave em português
Configuracao Central
Configuracoes Centrais Empilhadas.
Equacoes de Andoyer
Problema de n Corpos
Solucao Homografica
Resumo em português
No presente trabalho apresentaremos alguns aspectos do problema Newtoniano de n Corpos. Estudaremos o caso de dois corpos, que tem solução direta, embora não seja possível obter todas as variáveis como função do tempo. No caso n maior ou igual a 3 mostraremos que não existe método para integrar este problema via quadraturas. Podemos tirar apenas algumas informações sobre o caso geral, como a Identidade de Lagrange-Jacobi, o Teorema de Sundman-Weierstrass entre outros. Veremos alguns casos de soluções particulares, que serão chamadas de soluções homográficas. Nestas soluções a forma geométrica da configuração inicial dos corpos é preservada durante o movimento. Veremos condições necessárias sobre as configurações iniciais para que seja possível obter estas soluções. Mostraremos uma relação existente entre estas soluções particulares e os pontos críticos de uma aplicação, que associa a uma configuração a energia total e o momento angular total do sistema. Nestes vários casos, cairemos numa mesma equação algébrica, que será chamada de equação das configurações centrais. Mostraremos, em seguida, que as equações de configurações centrais são equivalentes a um outro conjunto de equações algébricas, que servem também para calcular as chamadas configurações centrais, porém, com estas equações as simetrias do problema ficam mais claras, às vezes. Faremos algumas aplicações diretas destas equações algébricas. Uma subclasse interessante da classe das configurações centrais são as chamadas de equações diferenciais empilhadas, nas quais um subconjunto próprio dos corpos também forma uma configuração central. Nos dois últimos capítulos veremos alguns exemplos de configurações centrais deste tipo, em especial aquelas onde podemos retirar uma massa e ainda ter uma configuração central.
Título em inglês
On central configurations of the n body problem. Planar, Spatial and Stacked central configurations.
Palavras-chave em inglês
Andoyer's Equations
Central Configuration
Homographic Solutions
n--Body problem
Stacked Central Configurations
Resumo em inglês
In this work we present some aspects of the Newtonian n--body problem. We study the case of two bodies, which have a straightforward solution, although we can not get all the variables as functions of the time. For n greater or equal to 3 we show that there is no method to integrate this problem by quadratures. We can have just some information about the general case, as the Lagrange-Jacobi's Identity the Sundman-Weierstrass's theorem and others. We will see some cases of particular solutions, which will be called homographic solutions. In these solutions the geometric shape of initial configuration of the bodies is preserved during the movement. We will see necessary conditions on the initial positions that turn possible to obtain these solutions. We show a relation between these particular solutions and critical points of an application, that associate the total energy and total angular momentum of the system. In these several cases, we will fall in same algebraic equation, which we called of the central configurations equations. We show that the central configurations equations are equivalent to another set of algebraic equations, which are also used to compute the central configurations, but with these equations the symmetries of the problem become clearer. We will make some direct applications these algebraic equations. An interesting subclass of the class of central configurations are called stacked differential equations, in which a proper subset of the bodies form a central configuration too. In the last two chapters we will see some examples of central configurations of this kind, especially those where we can remove a mass and still have a central configuration.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Tese_Antonio.pdf (928.88 Kbytes)
Data de Publicação
2012-06-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.