• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2007.tde-06062007-164626
Document
Auteur
Nom complet
Thiago Afonso de Andre
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2007
Directeur
Jury
Silva, Paulo José da Silva e (Président)
Andreani, Roberto
Queiroz, Marcelo Gomes de
Titre en portugais
Penalidades exatas para desigualdades variacionais
Mots-clés en portugais
Desigualdades variacionais
penalidades
sistemas KKT
Resumé en portugais
Esta dissertação busca aproveitar os métodos de penalidades exatas diferenciáveis de programação não-linear para resolver problemas de desigualdades variacionais. Problemas desse tipo têm recebido grande atenção na literatura recentemente e possuem aplicações em diversas áreas como Engenharia, Física e Economia. Métodos de penalidades exatas diferenciáveis foram desenvolvidos nos anos 70 e 80 para resolver problemas de otimização com restrições por meio da solução de problemas irrestritos. Esses problemas são tais que, com uma escolha apropriada do parâmetro de penalização, uma solução do problema original é recuperada após a resolução de um único problema irrestrito. A função a ser minimizada é semelhante a um lagrangiano aumentado clássico, porém uma estimativa do multiplicador é automaticamente calculada a partir do ponto primal. Nesse trabalho, mostramos como acoplar a estimativa de multiplicadores sugerida por Glad e Polak [27] ao lagrangiano aumentado clássico para desigualdades variacionais sugerido por Auslender e Teboulle. Obtivemos assim uma penalidade exata para problemas de desigualdades variacionais. Os resultados mais finos de exatidão foram obtidos no caso de problemas de complementaridade não-linear. Uma característica importante da penalidade proposta é que ela não envolve informações de segunda ordem das funções que definem a desigualdade variacional. Além desses resultados, que formam o núcleo da dissertação, apresentamos uma breve revisão de penalidades não-exatas diferenciáveis , exatas não-diferenciáveis e exatas diferenciáveis em otimização.
Titre en anglais
Exact Penalties for Variational Inequalities
Mots-clés en anglais
KKT systems
penalties
variational inequalities
Resumé en anglais
This work intends to build upon differentiable exact penalty methods for nonlinear programming, using them to solve variational inequality problems. Such problems have been given a lot of attention in the literature lately and have applications to diverse areas of knowledge such as Engineering, Physics and Economics. Differentiable exact penalty methods were developed during the 70s and 80s to solve constrained optimization problems by means of the solution of unconstrained problems. Those problems are such that, with an appropriate choice of the penalty parameter, one finds a solution of the original constrained problem by solving only one unconstrained problem. The function which is minimized is similar to the classic augmented lagrangian, but an estimate of the multiplier is automatically calculated from the primal point. In this thesis we show how to couple Glad and Polak?s multiplier estimate, with the classic augmented lagrangian of a variational inequality developed by Auslender and Teboulle. This allowed us to obtain an exact penalty function for variational inequality problems. The best exactness results were obtained in the particular case of nonlinear complementarity problems. An important characteristic of the proposed penalty is that it doesn?t involve second order information of any of the functions which compose the variational inequality. In addition to those results, which are the core of this work, we also present a brief review of inexact differentiable penalties, exact nondifferentiable penalties and differentiable exact penalties in optimization.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
thiago.pdf (416.89 Kbytes)
Date de Publication
2007-10-09
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.