• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
Document
Author
Full name
Julio Cezar de Oliveira Andrade
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Garcia, Manuel Valentim de Pera (President)
Carneiro, Mario Jorge Dias
Martins, Ricardo Miranda
Ragazzo, Clodoaldo Grotta
Salomão, Pedro Antonio Santoro
Title in Portuguese
Existência e destruição de toros invariantes, para uma certa família de sistemas Hamiltonianos no R4
Keywords in Portuguese
Aplicações twist
Níveis de energia
Sistemas Hamiltonianos
Toros invariantes
Abstract in Portuguese
Estudaremos uma fam lia de sistemas hamiltonianos no R 4 , H : R 4 R, satisfazendo certas condi c oes, dependendo de um parametro . Iremos ca- racterizar algumas condi c oes sobre n veis de energia desse sistema, que nos permitem concluir existencia e destrui c ao de toros invariantes, em tais n veis de energia. Al em disso, podemos concluir que o fluxo hamiltoniano, restrito a esses n veis de energia, possui entropia topol ogica positiva.
Title in English
Existence and destruction of invariant torus, for a certain family of Hamiltonian systems in R4
Keywords in English
Energy level
Hamiltonian systems
Invariant torus
Twist maps
Abstract in English
We will study a family of Hamiltonian Systems in R 4 , satisfying certain conditions, H : R 4 R, depending of a parameter . We will characterize some conditions about the energy levels of this system, which allow us to conclude existence and destruction of invariant torus, at such energy levels. Moreover, we can conclude that the hamiltonian flow, restricted to these energy level, has positive topological entropy.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
versao_final_tese.pdf (2.01 Mbytes)
Publishing Date
2019-09-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.