• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2016.tde-09122015-123230
Document
Author
Full name
Jorge Luis Torrejón Matos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Stern, Julio Michael (President)
Campos, Adriano Polpo de
Lauretto, Marcelo de Souza
Rifo, Laura Leticia Ramos
Simonis, Adilson
Title in Portuguese
Aproximação numérica à convolução de Mellin via mistura de exponenciais
Keywords in Portuguese
Aproximação numérica
Convolução
Mistura de exponenciais
Abstract in Portuguese
A finalidade deste trabalho e calcular a composição de modelos no FBST (the Full Bayesian Signicance Test) descrito por Borges e Stern [6]. Nosso objetivo foi encontrar um método de aproximação numérica mais eficiente que consiga substituir o método de condensação descrita por Kaplan. Três técnicas foram comparadas: a primeira é a aproximação da convolução de Mellin usando discretização e condensação descrita por Kaplan [11], a segunda é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para calcular a convolução de Fourier mediante a aproximação de mistura de convoluções exponenciais, usando a estrutura algébrica descrita por Hogg [10], mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin, a terceira é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para aproximar diretamente via mistura de exponenciais a convolução de Fourier, mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin.
Title in English
Numerical approximation to Mellin convolution by mixtures of exponentials
Keywords in English
Convolution
Mixtures of exponentials
Numerical approximation
Abstract in English
The purpose of this work is to calculate the compositional models of FBST (the Full Bayesian Signicance Test) studied by Borges and Stern [6]. The objective of this work was to find an approximation method numerically eficient that can replace the condensation methods described by Kaplan. Three techniques were compared: First, the approximation of Mellin convolution using discretization and condensation described by Kaplan [11], second, the approximation of Mellin convolution using mixtures of exponentials, described by Dufresne [8], to calculate the Fourier convolution by approximation of mixtures of exponential convolutions, using the algebraic structure described by Hogg [10], and then to apply the operator described by Collins [7], to transform the usual convolution to Mellin convolution, third, the approximation of Mellin convolution using mixtures of exponentials, described by Dufresne [8], to calculate the Fourier convolution by direct approximation of mixtures of exponentials, and then to apply the operator described by Collins [7], to transform the usual convolution to Mellin convolution.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
TextoTese.pdf (976.23 Kbytes)
Publishing Date
2016-01-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.