• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2016.tde-09122015-123230
Documento
Autor
Nome completo
Jorge Luis Torrejón Matos
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Stern, Julio Michael (Presidente)
Campos, Adriano Polpo de
Lauretto, Marcelo de Souza
Rifo, Laura Leticia Ramos
Simonis, Adilson
Título em português
Aproximação numérica à convolução de Mellin via mistura de exponenciais
Palavras-chave em português
Aproximação numérica
Convolução
Mistura de exponenciais
Resumo em português
A finalidade deste trabalho e calcular a composição de modelos no FBST (the Full Bayesian Signicance Test) descrito por Borges e Stern [6]. Nosso objetivo foi encontrar um método de aproximação numérica mais eficiente que consiga substituir o método de condensação descrita por Kaplan. Três técnicas foram comparadas: a primeira é a aproximação da convolução de Mellin usando discretização e condensação descrita por Kaplan [11], a segunda é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para calcular a convolução de Fourier mediante a aproximação de mistura de convoluções exponenciais, usando a estrutura algébrica descrita por Hogg [10], mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin, a terceira é a aproximação da convolução de Mellin usando mistura de exponenciais, descrita por Dufresne [8], para aproximar diretamente via mistura de exponenciais a convolução de Fourier, mais a aplicação do operador descrito por Collins [7], para transformar a convolução de Fourier para a convolução de Mellin.
Título em inglês
Numerical approximation to Mellin convolution by mixtures of exponentials
Palavras-chave em inglês
Convolution
Mixtures of exponentials
Numerical approximation
Resumo em inglês
The purpose of this work is to calculate the compositional models of FBST (the Full Bayesian Signicance Test) studied by Borges and Stern [6]. The objective of this work was to find an approximation method numerically eficient that can replace the condensation methods described by Kaplan. Three techniques were compared: First, the approximation of Mellin convolution using discretization and condensation described by Kaplan [11], second, the approximation of Mellin convolution using mixtures of exponentials, described by Dufresne [8], to calculate the Fourier convolution by approximation of mixtures of exponential convolutions, using the algebraic structure described by Hogg [10], and then to apply the operator described by Collins [7], to transform the usual convolution to Mellin convolution, third, the approximation of Mellin convolution using mixtures of exponentials, described by Dufresne [8], to calculate the Fourier convolution by direct approximation of mixtures of exponentials, and then to apply the operator described by Collins [7], to transform the usual convolution to Mellin convolution.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
TextoTese.pdf (976.23 Kbytes)
Data de Publicação
2016-01-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.