• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2019.tde-11022019-141411
Document
Author
Full name
Allan Fernandes Banzatto
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Pereira, Marcone Corrêa (President)
Marrocos, Marcus Antonio Mendonça
Pimentel, Juliana Fernandes da Silva
Title in Portuguese
Equações de difusão não locais do tipo Neumann
Keywords in Portuguese
Difusão
EDP
Não homogênea
Neumann
Abstract in Portuguese
Neste trabalho estudaremos uma classe de problemas não locais do tipo Neumann. Consideramos o caso linear não homogêneo, bem como o semi-linear com não linearidades globalmente Lipschitz. Procuramos escrever um trabalho auto-contido. Apresentamos alguns resultados clássicos de Análise e suas aplicações no contexto de equação de evolução não local. Na introdução, apresentamos uma motivação para tais equações tendo em vista os fenômenos de reação e difusão baseados no trabalho de P. Fife.
Title in English
Neumann non-local diffusion equations
Keywords in English
Diffusion
Neumann
Nonhomogeneous
PDE
Abstract in English
In this work we will study a class of nonlocal problems of the Neumann type. We consider the non-homogeneous linear case as well as the semi-linear one with globally Lipschitz non-linearities. We seek to write a self-contained work with some classic results of Analysis and its applications in the context of non-local evolution equations. In the introduction, we present a motivation for such equations in view of the phenomena of reaction and diffusion based on the work of P. Fife
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Allan.pdf (591.02 Kbytes)
Publishing Date
2019-04-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.