• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2018.tde-11052018-113001
Documento
Autor
Nombre completo
Leonardo Makoto Mito
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Haeser, Gabriel (Presidente)
Passos, Marcelo Dias
Senne, Thadeu Alves
Título en portugués
O problema de cobertura via geometria algébrica convexa
Palabras clave en portugués
Geometria algébrica real
Problema de cobertura
Programação semidefinida
Restauração inexata
Resumen en portugués
Este trabalho é focado num problema clássico das Ciências e Engenharia, que consiste em cobrir um objeto por esferas de mesmo raio, a ser minimizado. A abordagem prática usual conta com sérias desvantagens. Logo, faz-se necessário trabalhar com isto de forma diferenciada. A técnica proposta aqui envolve a utilização de resultados célebres da geometria algébrica real, que tem como peça central o positivstellensatz de Stengle e, fazendo a devida relação entre esses resultados e otimização com restrições envolvendo representações naturais por somas de quadrados, é possível reduzir o problema original a um de programação semidefinida não linear. Mas, por contar com particularidades que favorecem a aplicação do paradigma de restauração inexata, esta foi a técnica utilizada para resolvê-lo. A versatilidade da técnica e a possibilidade de generalização direta dos objetos envolvidos destacam-se como grandes vantagens desta abordagem, além da visão algébrica inovadora do problema.
Título en inglés
The covering problem via convex algebraic geometry
Palabras clave en inglés
Covering problem
Inexact restoration
Real algebraic geometry
Semidefinite programming
Resumen en inglés
This work is focused on a classic problem from Engineering. Basically, it consists of finding the optimal positioning and radius of a set of equal spheres in order to cover a given object. The common approach to this carries some substantial disadvantages, what makes it necessary to nd a dierent way. Here, we explore some renowned results from real algebraic geometry, which has Stengle's positivstellensatz as one of its central pieces, and SOS optimization. Once the proper link is made, the original problem can be reduced to a nonlinear semidenite programming one, which has peculiarities that favours the application of an inexact restoration paradigm. We point out the algebraic view and the no use of discretizations as great advantages of this approach, besides the notable versatility and easy generalization in terms of dimension and involved objects.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
mitodiss.pdf (22.78 Mbytes)
Fecha de Publicación
2018-11-23
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.