• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Marco Eduardo Barros Chucata
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Lopes, Pedro Tavares Paes (Presidente)
Kapp, Rafael Augusto dos Santos
Picon, Tiago Henrique
Título en portugués
Cálculo funcional holomorfo para operadores pseudodiferenciais
Palabras clave en portugués
Cálculo funcional
Operador pseudodiferencial
Operador setorial
Resumen en portugués
O cálculo funcional de operadores em espaços de Banach tem uma longa história, sendo inicialmente desenvolvido por F. Riesz, N. Dunford entre outros. Em 1986, uma importante contribuição foi feita por Alan McIntosh, que definiu um cálculo funcional holomorfo de operadores setoriais e destacou uma importante classe de operadores setoriais desses operadores: a dos operadores com cálculo funcional holomorfo limitado (CFHL). Do ponto de vista de operadores diferenciais e pseudodiferenciais, alguns elementos envolvidos neste cálculo já estavam presentes nos trabalhos de R. T. Seeley sobre potências complexas de operadores diferenciais elípticos. Mais tarde mostrou-se que diversos operadores possuem CFHL. Um artigo recente nesta direção e base para esta dissertação foi publicado por Bilyj, Schrohe e Seiler. Neste trabalho mostraremos que certos operadores pseudodiferenciais, agindo em espaços de Banach apropriados, são setoriais e possuem CFHL. Para isso faremos o estudo da álgebra dos símbolos de ordem zero e utilizaremos uma construção para a parametriz do resolvente. A apresentação procura ser uma versão mais didática do artigo de Bilyj, Schrohe e Seiler. Além disso, fazemos certas adaptações nas demonstrações com o propósito de facilitar a compreensão dos argumentos. Também vamos apresentar aplicações do resultado obtido.
Título en inglés
Holomorphic functional calculus for pseudodifferential operators
Palabras clave en inglés
Functional calculus
Pseudodifferential operator
Sectorial operator
Resumen en inglés
Functional calculus for operators acting on Banach Spaces has a long history. It was initially developed by F. Riesz, N. Dunford among others. In 1986, an important contribution was made by Alan McIntosh who defined a holomorphic functional calculus for sectorial operators and put on the scene an important class of sectorial operators, namely, operators with a bounded holomorphic functional calculus (BHFC). From the point of view of differential and pseudodifferential operators, some elements treated in this calculus were already in the works of R. T. Seeley about complex powers of elliptic differential operators. Later it was shown that several operators have BHFC. A recent paper in this direction, and the one on which this dissertation is based, was published by Bilyj, Schrohe and Seiler. In this work we show that certain pseudodifferential operators, acting on appropriate Banach spaces, are sectorial and have BHFC. For this we will study the algebra of symbols of order zero and use a construction for the parametrix. This presentation aims to explore and detail the paper of Bilyj, Schrohe and Seiler. Furthermore, we make adaptations in the proofs in order to clarify the argument. We also show applications of the obtained results.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
dm.pdf (499.29 Kbytes)
Fecha de Publicación
2019-09-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.