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Resumo

Fernando Valdés Ravelo. Sobre integradores exponenciais explícitos na solução
das equações elásticas de propagação das ondas. Tese (Doutorado). Instituto de

Matemática e Estatística, Universidade de São Paulo, São Paulo, 2023.

Os integradores exponenciais, uma classe de métodos numéricos usados para solucionar equações

diferenciais, são o objeto de estudo deste trabalho. Especificamente, concentramo-nos em integradores

exponenciais explícitos usados para resolver as equações diferenciais que descrevem a propagação de ondas

acústicas e elásticas, com condições de fronteira absorvente, encontradas em aplicações de imageamento

sísmico. Dentre os vários métodos de integradores exponenciais, analisamos detalhadamente o método

baseado em polinômios de Faber, uma generalização do conhecido integrador exponencial que utiliza

polinômios de Chebyshev. A partir do estado da arte da aproximação de polinômios de Faber, discutimos as

principais limitações do método e propomos soluções para elas.

Entre os resultados teóricos da aproximação de Faber, apresentamos uma estimativa mais precisa, em

comparação com a literatura existente, do erro de aproximação dométodo para matrizes normais. Destacamos

a importância de estimativas precisas do espectro do operador para garantir uma convergência rápida do

método. Também, fundamentado por vários experimentos numéricos, delineamos um esquema para obter as

estimativas dos autovalores usando apenas operadores de baixa dimensão.

Entre os resultados numéricos, observamos que ao aumentar o grau dos polinômios de Faber, o tamanho

máximo do passo de tempo na integração temporal também aumenta. Além disso, ao analisar a eficiência

computacional, constatamos que o uso de graus mais altos de polinômios de Faber reduz a quantidade de

operações matriz-por-vetor realizadas. A robustez de nossos resultados numéricos é assegurada por meio da

implementação de vários testes com diferentes níveis de complexidade.

Também, realizamos comparações entre o método dos polinômios de Faber e outros integradores

exponenciais explícitos, como o método dos subespaços de Krylov e os Runge-Kuttas de alta ordem, junto

com métodos clássicos de baixa ordem. As comparações foram feitas em cenários experimentais que simulam

situações reais encontradas em aplicações de imageamento sísmico. Logo, avaliamos a estabilidade, dispersão,

convergência numérica e eficiência computacional desses métodos. Em nossa análise, dentre os integradores

exponenciais de alta ordem, o método baseado nos subespaços de Krylov apresentou os melhores resultados

de convergência em comparação com todos os métodos de integração exponencial. Permitindo passos de

tempo mais longos para um mesmo grau de aproximação em relação aos demais métodos. Notoriamente, ao

compararmos os métodos quanto à eficiência computacional, observamos que os métodos numéricos de alta

ordem conseguem atingir uma eficiência comparável aos métodos de baixa ordem, ao mesmo tempo em que

permitem passos de tempo significativamente maiores.

Com o intuito de destacar outras aplicações que demandam a eficiente solução da equação da onda,

apresentamos uma nova aplicação na área de modelagem matemática para o tratamento do câncer. Como

uma proposta inovadora, desenvolvemos um modelo fundamentado na mecânica de meios contínuos para

simular o efeito da Terapia Mecânica de Ondas de Choque de Alta Intensidade (TMOC) no crescimento de um

tumor avascular. Neste modelo, demonstramos que, ao ajustar diferentes parâmetros da TMOC, conseguimos

reproduzir qualitativamente diversos padrões de crescimento do tumor, conforme relatado na literatura.
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Adicionalmente, realizamos uma análise de sensibilidade do modelo em relação aos vários parâmetros da

terapia, identificando os elementos mais influentes no crescimento do tumor.

Palavras-chave: Integradores exponencias. Equação da onda. Polinômios de Faber. Elasticidade linear.

Modelação matemática. Mecânica do contínuo. Câncer. Ondas de Choque de Alta Inten-

sidade.



Abstract

Fernando Valdés Ravelo. On explicit exponential integrators in the solution of
elastic wave propagation equations. Thesis (Doctorate). Institute of Mathematics

and Statistics, University of São Paulo, São Paulo, 2023.

The exponential integrators, a class of numerical methods used to solve differential equations, are the

subject of this work. Specifically, we focus on explicit exponential integrators used to solve the differential

equations describing the propagation of acoustic and elastic waves, with absorbing boundary conditions,

encountered in seismic imaging applications. Among the various methods of exponential integrators, we

analyze in detail the Faber polynomial-based method, a generalization of the well-known Chebyshev

exponential integrator. Considering the state of the art of the Faber polynomial approximation, we discuss

the main limitations of the method and propose solutions for them.

Among the theoretical results of the Faber polynomial approximation, we present a more accurate

estimate of the approximation error of the method for normal matrices, than the one reported in the literature.

We also show the importance of accurate estimates of the operator spectrum to ensure fast convergence of

the method. Moreover, based on various numerical experiments, we outline a scheme to obtain eigenvalue

estimates using only low-dimensional operators.

Among the numerical results, we observe that increasing the degree of Faber polynomials also increases

the maximum time step size in temporal integration. Furthermore, in analyzing computational efficiency,

we find that using higher degrees of Faber polynomials reduces the number of matrix-vector operations

performed. The robustness of our numerical results is ensured by implementing various tests with different

levels of complexity.

Additionally, we compare the Faber polynomial method with other explicit exponential integrators,

such as the Krylov subspace method and high-order Runge-Kutta methods, along with classical low-order

methods. Comparisons were made in experimental scenarios simulating real situations encountered in

seismic imaging applications. Subsequently, we evaluate the stability, dispersion, numerical convergence,

and computational efficiency of these methods. In our analysis, among high-order exponential integrators, the

Krylov subspace-based method showed the best convergence results compared to all exponential integration

methods. Allowing longer time steps for the same degree of approximation compared to other methods.

Notably, when comparing methods for computational efficiency, we observed that high-order numerical

methods can achieve efficiency comparable to low-order methods while allowing significantly larger time

steps.

To highlight other applications that require an efficient solution to the wave equation, we present a

new application in the field of mathematical modeling of cancer. As an innovative proposal, we developed a

model based on continuum mechanics to simulate the effect of High-Energy Shock Wave (HESW) therapy

on the growth of an avascular tumor. In this model, we demonstrate that by adjusting different parameters

of the HESW therapy, we can qualitatively reproduce various tumor growth patterns, as reported in the

literature. Additionally, we conduct a sensitivity analysis of the model to the various therapy parameters,
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identifying the most influential elements in tumor growth.

Keywords: Exponential integrators. Wave equation. Faber polynomials. Linear elasticity. Mathematical

modeling. Continuum mechanic. Cancer. High-Energy Shock Waves.
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Chapter 1

Introduction

The propagation of waves is a physical phenomenon present in various aspects of

our lives. Two of the main senses we use to perceive the world, sight and hearing, rely

on specialized receptors evolved to perceive a limited range of wave frequencies (Radi

and Rasmussen, 2013). Our pulsing heart, moving the circulatory system (Yomosa, 1987),

and the electrical pulses of our brain (Graimann et al., 2010), are also sources of waves.

Beyond ourselves, the natural world is also full of propagating waves, manifesting in

earthquakes, sea waves, pressure waves, gravity waves, and more. Virtually any object in

motion generates waves, setting off a series of particle displacements until the energy is

dissipated (Hendry, 2007).

Waves are not merely natural occurrences beyond our control; they also find applica-

tions that make use of their physical properties. One particularly intriguing application is

subsurface imaging (Virieux et al., 2017). The waves we perceive as light cannot penetrate
opaque solid objects, but various other types of waves can. Consequently, we could use

the information these waves bring back to understand the internal structure of objects.

Subsurface imaging is actively researched in various domains, including mapping Earth’s

structure (Lowrie and Fichtner, 2020), monitoring the subsurface for CO2 storage (Eiken,

2019), and exploring fossil fuels (Ikelle and Amundsen, 2018). It also extends its applica-

tion to the extraction of geothermal energy (Huenges et al., 2013), archaeological studies
(Woelz and Rabbel, 2005), civil engineering (Niederleithinger et al., 2016), and medical

imaging (Theis and Bonomi, 2023) for visualizing internal body parts.

Our primary interest lies in the subsurface imaging bellow the sea floor, employing

elastic waves with the objective of fossil fuel exploration. This technique is commonly used

in the industry for the exploration and extraction of fossil fuels (Ikelle and Amundsen,

2018). The procedure involves acquiring data on the propagating waves at the specific

regions of interest and developing a computer simulation of the subsurface such that the

simulated waves match with the measured data. Figure 1.1 illustrates one of the typical

data acquisition processes.
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Figure 1.1: The wave generated by the source travels through the water until it reaches the seafloor.
Then, depending on the encountered material and its frequency, a portion of the wave will be reflected.
The receptors at the surface register the time passed until the waves reach them and the amount of
energy of the wave.

At the initial time, a device creates an air explosion, generating acoustic waves that

propagate through the water. Depending on their frequency and energy, a portion of these

waves is reflected back to the surface and recorded by the receptors. Then, using the time

taken to reach the receptor, along with the energy of the waves, it is possible to map the

velocity field of the seafloor. This process is termed the inverse problem, and its resolution

can be employed by other mathematical models to estimate the petrochemical parameters

of the various materials constituting the ocean floor. Due to the complexity of the inverse

problem, numerical methods established for seismic mapping take too long to calculate

the solutions to the problem, difficulting their practical application. To solve the inverse

problem, we have to solve several times the direct problem, consisting of the simulation of

propagating waves.

Furthermore, in order to obtain more accurate representations of the subsurface, high-

order numerical methods to solve the wave equations are required (Jing et al., 2019;Wilcox

et al., 2010). Hence, the amount of computations and memory usage greatly escalates with

the necessity of solving the inverse problem iteratively. This challenge creates an active

area in numerical analysis, where ongoing research focuses on developing new algorithms

to enhance the solutions accuracy, or to reduce computational time, sometimes through

the utilization of parallel environments (Martinez et al., 2009; Pranab J Deka et al.,
2023).

In this research, we aim to tackle the numerical solution of wave propagation equations,

focusing on its application in seismic imaging. A distinctive aspect of this application lies

in the necessity to solve wave equations across an extensive numerical domain, so vast that

it is almost impossible to simulate in its entirety. Consequently, due to the impracticality

of considering the complete region, only the specific area of interest is simulated, while

implementing absorbing boundary conditions (ABC) at its limits. This approach allows

us to replicate an infinite domain, and avoid wave reflections at the boundaries of the

reduced domain.
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The incorporation of ABC into the wave propagation equations transforms what is

originally a purely hyperbolic problem into one that is nearly hyperbolic. This transfor-

mation holds significant implications for the numerical method under investigation in

our work—a generalization of the explicit exponential integrator based on Chebyshev

polynomials.

Over the past few decades, exponential integrators, a category of numerical algorithms,

have emerged as powerful tools with successful applications in diverse fields. Their effec-

tiveness has been demonstrated in the numerical solving of equations of mathematical

physics (Pototschnig et al., 2009; Peixoto and Schreiber, 2019; Loffeld and Tokman,

2013), often outperforming traditional schemes. Some advantages of exponential integra-

tors lie in their ability to maintain favorable dispersion properties while permitting the

use of larger time steps (Schreiber et al., 2019).

Despite their success in these areas, the application of exponential integrators in the

solution of the linear wave propagation equations is not completely understood. There have

been published a few studies in this direction (Tal-Ezer et al., 1987; Tessmer, 2011;Kosloff
et al., 1989; Kole, 2003; Zhang et al., 2014), but most of them deal with simplified versions

of the wave equations that are not well-suited for seismic imaging applications. In the

work by Kole (2003), an explicit exponential integrator, utilizing Chebyshev polynomials

of arbitrary order in time, is applied to elastic wave equations. However, it cannot solve

the wave equations with absorbing boundary conditions, rendering it impractical for its

usage in seismic imaging. Studies such as Tal-Ezer et al., 1987; Tessmer, 2011; Kosloff
et al., 1989 also employ Chebyshev expansions in conjunction with ABCs. Nonetheless,

the numerical results are primarily validated using simplistic ABCs, and there is a lack of

a proof demonstrating convergence for these boundary conditions. In contrast, Zhang

et al. (2014) presents an implicit exponential integrator of low order in time for solving the

wave equation with absorbing boundary conditions. Nevertheless, while implicit schemes

offer good stability properties allowing for larger time steps, they come with a significant

computational cost, and there is no assurance of good numerical accuracy.

Explicit exponential integrators using Chebyshev polynomials have been consistently

acknowledged by several authors as an efficient scheme with rapid convergence and

straightforward implementation (Bergamaschi and Vianello, 2000; Hochbruck and

Ostermann, 2010; Kole, 2003). This method has demonstrated success in solving wave

equations (Kole, 2003), achieving high accuracy and the capability to compute solutions

using remarkably large time steps. Nonetheless, the Chebyshev exponential was originally

designed for use when the discrete system defines a symmetric or antisymmetric operator.

However, in seismic wave propagation, the inclusion of ABC in the wave propagation

equations breaks the antisymmetry of the usual wave operator, restricting the applicability

of Chebyshev exponential integration for seismic problems.

To address this limitation, a generalization to non-symmetric (or non-antisymmetric)

operators has been proposed in Bergamaschi, Caliari, et al. (2003) using Faber polyno-

mials. They demonstrated that Faber polynomials, obtained by stretched and displaced

Chebyshev polynomials, serve as a generalization capable of handling systems with non-

symmetric matrices.

As the first contribution of this thesis, we formulate the exponential integrators based
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on Faber polynomials for the resolution of acoustic and elastic wave equations, incorporat-

ing the widely employed Perfectly Matching Layers (PML) absorbing boundary condition

(Assi and Cobbold, 2017). Then, considering the use of the scaling and squaring opti-

mization technique for Faber polynomials, we establish an error bound for the numerical

approximation of the Faber exponential integrator, specifically for operators represented

by normal matrices. Notably, our error estimation demonstrates improvement over a prior

bound reported by Bergamaschi and Vianello (2000). Moreover, since the construction

of Faber polynomials requires the usage of the operator spectrum, we conduct an in-depth

analysis of the eigenvalue distribution of both discrete and continuous operators associated

with wave equations. This comprehensive analysis considers various formulations of wave

equations, equation parameters, and spatial dimensions, leading to the proposal of precise

estimates for the operator spectrum boundaries. Additionally, we analyze the performance

of Faber approximations by studying stability, dispersion, convergence, and computational

efficiency. To achieve this, we implement the method in solving the wave equation across

a range of numerical examples with diverse complexities, ensuring the reliability and

robustness of our results.

Next, to assess the relevance of Faber polynomials in the solution of the wave propaga-

tion equations, we conduct a comparative analysis of the Faber polynomials method with

other exponential integrators based on Faber polynomials and several low-order methods.

Specifically, we consider exponential integrators based on Krylov subspace projections,

and high-order Runge-Kutta approximation, alongside classical low-order methods such as

Leap-frog, fourth-order and four-stage Runge-Kutta (RK4-4), second-order and three-stage

Runge-Kutta (RK3-2), and seventh-order and nine-stage Runge-Kutta (RK9-7). For this

analysis, we consider various critical aspects, such as dispersion, dissipation, convergence,

and computational cost. We examine numerical dispersion and convergence in a homoge-

neous medium with a single propagating signal, decomposing its frequencies through the

Fourier transform. On another hand, the numerical convergence is studied using practical

examples designed to replicate conditions encountered in real-field scenarios in seismic

imaging applications.

In addition to seismic imaging, there exist other fields where efficient computation of

the wave propagation equations is required. As an innovative proposal, we have developed

a mathematical model based on continuum mechanics to simulate the impact of a therapy

consisting of the generation of elastic for cancer treatment.

High-Energy Shock Wave (HESW) therapy, or Shock Wave Lithotripsy (SWL) (López-

Marin et al., 2018), is a medical technique commonly employed for procedures like

disintegrating kidney stones and treating fractured bones in humans (Shrivastava and

Kailash, 2005). In the latter part of the previous century, studies conducted in vitro and in

pre-clinical settings demonstrated the potential of this methodology for treating growing

tumors (Russo et al., 1986; Hoshi et al., 1991; Maruyama et al., 1995). Experimental

findings indicated a delay in tumor growth with HESW therapy, and when combined with

chemotherapy, a more substantial delay and even tumor regression has been observed

(Gamarra et al., 1993; Oosterhof et al., 1990). However, the precise mechanisms under-

lying this therapy remain not fully understood, and there is a scarcity of mathematical

studies intending to simulate its effects on tumors.
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Essentially, HESW therapy induces pressure changes on tissue. Therefore, it is crucial

to investigate the impact of these changes on volumetric stresses within tumors and their

effects on growth. Addressing this requires a mathematical model of a tumor grounded

in continuum mechanics capable of simulating the mechanical therapy involving shock

waves. To our knowledge, there is a lack of published research on this specific subject.

Consequently, we simulate the application of High-Energy Shock Wave therapy on tumors.

The tumor, considered as a linear elastic material with the ability to alter its volume,

displaces the external medium during anisotropic growth, connected to it by its boundary

under a perfect contact condition. The external medium is modeled as a homogeneous and

linear elastic isotropic material, following Hooke’s law in three dimensions. As a result,

our model is grounded in the linear elasticity theory of continuum mechanics.

A major challenge in these mathematical models lies in acquiring experimental data

for the model parameters, especially in the realm of mechanical models in biology, where

elasticity constants of tissues are needed. To support this, we also provide a concise

summary of published data regarding the parameters necessary for a continuummechanics-

based tumor model, with standardized physical magnitudes, and the main experimental

layouts outlined in relevant references concerning HESW therapy in both in vitro and in
vivo experiments.

Primary objective

Investigation of the numerical features of explicit exponential integrators when solving

the linear elastic wave propagation equations with ABC.

Specific objectives

1. Adapt the Faber polynomial approximation to efficiently solve the wave propagation

equations with ABC, while evaluating its numerical properties and computational

cost.

2. Determine the practical applicability of the Faber polynomials in solving the wave

propagation equations by comparing themwith other explicit exponential integrators

and commonly used low-order schemes in the field of seismic imaging.

3. Propose a novel application of the wave propagation equations where an efficient

computation of their solutions is crucial.

Thesis structure

This thesis comprises three main chapters, each corresponding to an article either

submitted for publication in a specialized journal or in the final stages of submission. These

articles enclose the primary findings of the research, starting with the adaptation of an

explicit exponential integrator method to solve the wave equations coupled with PML
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absorbing boundary conditions. Subsequently, a comprehensive comparison is conducted

between exponential integrators and various time integration methods in real-world

seismic imaging scenarios. Additionally, a novel application of wave propagation with

ABC is proposed in the modelling of tumor therapy.

In Chapter 2 it is investigated the application of an exponential integrator, utilizing

Faber polynomials, to quasi-hyperbolic problems such as wave propagation equations

with ABC. The focus lies on improving the method’s efficiency by closely examining its

characteristics and the system of equations to solve. This chapter thoroughly analyzes

the numerical aspects of Faber polynomials, including stability, dispersion, accuracy, and

computational efficiency across a wide range of approximation orders and time steps,

illustrated through diverse numerical examples.

Building upon the insights gained from Faber approximation, Chapter 3 complements

the previous findings by conducting a comparative study between the proposed method

and other explicit exponential integrators, as well as commonly used time integration

methods. For the analysis we use velocity fields resembling real-world data of seismic

imaging application, and compare the methods acording to various numerical features such

as dispersion, dissipation, accuracy, computational efficiency, and memory usage.

Ackgnowleding that the necessity for efficient calculation of wave propagation equa-

tions with ABC extends beyond seismic imaging, Chapter 4 presents a novel mathematical

model for HESW therapy applied to growing tumors. This therapy involves the propagation

of elastic shock waves in a 3D heterogeneous medium with an average application time of

approximately four seconds. Consequently, it is required a fast solver of the wave equations

given the amount of large time interval to compute the solution and the dimensionality of

the problem.

Lastly, Chapter 5 encapsulates the primary conclusions drawn from this research,

synthesizing the key findings derived from the three papers.

Scientific production

Publications in specialized journals

1. Fernando V. Ravelo, Pedro S. Peixoto, and Martin Schreiber. An explicit exponential
integrator based on Faber polynomials and its application to seismic wave modeling.
Journal of Scientific Computing. (Status: Accepted)

2. Fernando V. Ravelo, and Martin Schreiber, Pedro S. Peixoto. High-order exponential
integration for seismic wave modeling. (Status: Finished, and ready to be submitted

to the journal of Computational Geosciences.)

3. Fernando V. Ravelo, Reinaldo R. Ramos, and Pedro S. Peixoto. Incorporating High-
Energy Shock Waves therapy into a continuum model of a tumor growth. (Status: In
the final stages for submission.)
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Presentations at events

1. European-Latin-American Conference of Theoretical and Applied Mechanics. Effect
of shock waves in the interplay between stress and anisotropic growth of an avascular
tumor model. 2019. (Congress)

2. 32 Coloquio Brasileiro de Matemática. A mathematical model of the High-Energy
Shock Wave therapy in a growing avascular tumor in the framework of continuum
mechanics. 2019. (Congress)

3. Energy Transition Research & Innovation. Solving the wave equation with exponential
integrators. 2019. (Congress)

4. Latin American Congress on Industrial and Applied Mathematics. The application of
a time exponential integrator to the wave equations, oriented to seismic imaging. 2023.
(Congress, obtaining a best poster award).

Intership

During my six-month internship at the Jean Kuntzmann Laboratory, Université Greno-

ble Alpes, Grenoble, France, I collaborated closely with co-advisor Martin Schreiber. I

attended to a course on High Performance Computing (HPC), participated in the "SEIS-

COPE" workshop, and presented the research to the laboratory’s researchers, including

specialists in seismic imaging.





9

Chapter 2

An explicit exponential integrator
based on Faber polynomials and
its application to seismic wave
modeling

As an initial exploration of the application of explicit exponential integrators to the

wave equations, we have chosen one of the most well-known and straightforward schemes

- a generalisation of the Chebyshev polynomial approximation. The intention is to study

this method in detail, disussing the state of the art of the method and suggesting possible

extensions or directions for improvement, aiming at its most efficient implementation.

Subsequently, we study the numerical capabilities of the Faber polynomials when applied

to the solution of linear wave equations with ABC. Among the various possible choices

of ABC, we opted for the PML. Not only is PML one of the most widely used in seismic

imaging problems, but it is also one of the most complex to implement and computationally

expensive. This complexity makes it an ideal choice for studying the Faber method in one

of the more challenging scenarios.

One of the fundamental results of Faber approximation is the estimation of the convex

envelope of the operator spectrum without the need to compute its eigenvalues directly.

This estimation enables the construction of an optimal ellipse in practical applications,

which significantly improves the convergence rate of the Faber polynomials. As demon-

strated in Section 2.2.1, the maximum error of the Faber polynomial approximation occurs

at the boundary of this ellipse, which is circumscribed around the convex hull of the

spectrum. Thus, this ellipse serves as an optimal set for defining the Faber polynomials,

since the error does not exceed that of the convex hull.

This chapter consists of the accepted publication of Ravelo F (2023) in the Journal of

Scientific Computing, co-authored with my advisor Pedro Peixoto and co-advisor Martin

Schreiber. It represents a first approach to understand the application of explicit exponential

integrators, in particular the Faber polynomial approximation, within the domain of seismic

imaging. Not only do we describe its numerical properties, such as stability, dispersion,
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convergence and computational efficiency. But by illustrating the existing challenges, we

also contribute to the development of a more efficient application.
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1 Introduction

Producing images from the subsurface using elastic waves is an important and
challenging problem in geophysics [22]. From a mathematical perspective, this
process is divided into two sub-problems: the direct problem, consisting of solv-
ing the wave propagation equations, and the adjoint/reverse problem, which is
part of the optimization problem that generally uses the adjoint method. Both
tasks rely on the numerical solution of the propagating waves in the medium
of interest. Given the requirement of repeatedly solving the wave equations in
the inverse problem, the overall computational cost and memory requirements
tend to be very large. Additionally, this problem usually requires high-order
numerical methods for accurate representations of wave dispersion to ensure
adequate assessment of subsurface media interfaces [24, 43]. Naturally, better
algorithms are desired to obtain more accurate representations of the subsur-
face, posing a relevant challenge for numerical method development.

A particular class of methods, known as exponential integrators, have been
shown to outperform classical schemes in several partial differential equations
(PDEs) models from several applied areas in terms of accuracy and com-
putational performance (e.g., [9, 14, 28, 34, 36, 44]). For the specific case
of linear differential equations, there have been developed specialized expo-
nential integrators. Among these approaches, one of the pioneering works on
exponential integrators is based on Krylov subspace projections, and several
algorithms have been proposed based on this method [18, 33, 37]. Other well-
known schemes rely on Chebyshev and Faber polynomials, characterized by
their straightforward implementation and super-linear convergence properties
[7, 25]. Nonetheless, a notable requirement of these methods is the need for
knowledge of the spectrum of the linear operator of the equation. In this sense,
they are related to another algorithm based on interpolating polynomials at
the Leja points [10, 16], which also needs the operator spectral distribution.
These are just some . Other methods examples of exponential integrators can
be found in the comprehensive reviews of Hochbruck and Ostermann [20], and
Moler and Van Loan [29].

However, the study of such schemes for solving the wave equations is not
yet well established for seismic applications. Only a few studies have been con-
ducted in this direction [25, 44]. In Kole [25], an explicit exponential integrator
of arbitrary order in time using Chebyshev polynomials is applied to the elastic
wave equations, but without the possibility to consider absorbing boundary
conditions, hence rendering them inadequate for practical scenarios. In Zhang
et al. [44], an implicit exponential integrator of low order in time is developed
to solve the wave equation with absorbing boundary conditions. Nonetheless,
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Faber exponential integration and its application to seismic waves 3

although implicit schemes have good stability properties, allowing larger time
steps, they are very costly, and the numerical error is not granted to be small.

Some authors have recurrently mentioned explicit exponential integrators
based on Chebyshev polynomials as an efficient scheme of rapid convergence
and easy implementation [6, 20, 35], with further hardware-aware possible op-
timizations (c.f. Huber et al. [21] for exploiting caches). They have been used
to solve the wave equations [25], obtaining high accuracy in the approxima-
tions and being able to compute the solution using remarkably large time
steps. However, no analysis of the computational efficiency of the approxima-
tion was performed. Also, the proposed Chebyshev exponential was designed
to be used only when the discrete system defines a symmetric or an antisym-
metric operator. Nonetheless, in seismic wave propagation, an infinite domain
is imitated using a limited area domain alongside absorbing boundary con-
ditions to avoid spurious reflections. Such non-reflective boundary conditions
usually break the anti-symmetry of the usual wave operator, therefore mak-
ing Chebyshev exponential integration of very limited applicability for seismic
problems. Based on Faber polynomials, a generalization to non-symmetric
(or non-anti-symmetric) operators has been proposed in Bergamaschi et al.
[7]. They showed that Faber polynomials are a generalization of Chebyshev
polynomials obtained by stretching and displacing Chebyshev polynomials,
which are able to handle systems with non-symmetric matrices. Moreover, the
method was compared with a Krylov subspace algorithm, resulting in com-
parable accuracy and computational efficiency. Withal, the proposed method
is designed for and used to solve advection-diffusion equations but not wave
equations. Alongside, as in Kole [25], there was no analysis of the optimal poly-
nomial degree looking towards computational efficiency and competitiveness
with respect to traditional methods. Therefore, this work focuses on investi-
gating the theoretical and numerical properties of Faber exponential methods
and their application to seismic wave propagation problems. The objective is
to provide a foundational step for future research comparing Faber polynomi-
als with other exponential integrators and classical schemes in this particular
setting.

First, we develop the exponential integrators based on Faber polynomials
to solve acoustic and elastic wave equations with a commonly used absorbing
boundary condition, the Perfectly Matching Layers (PML) [4]. Then, consid-
ering the optimization technique of scaling and squaring, we establish an error
bound of the numerical approximation of the Faber exponential for operators
given by a normal matrix. Notably, our error estimation demonstrates im-
provement over a prior bound reported by Bergamaschi and Vianello [6]. Fur-
thermore, as a strategy to optimize the convergence of the Faber exponential
series, we analyze the eigenvalues’ distribution of the discrete and the contin-
uous operators of the wave equations. This analysis encompasses different for-
mulations of the wave equations, equation parameters, and spatial dimensions,
ultimately leading us to propose sharps estimates of spectrum boundaries. A
thorough numerical investigation of the stability and dispersion properties is
also performed, calculating the Courant-Friedrichs-Lewy (CFL) number and
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the dispersion error for several polynomial degrees, while searching for opti-
mal polynomials. We also study the performance of Faber approximations in
practice by solving the wave equation within several numerical examples with
different levels of complexity. To ensure robustness in our results, we investi-
gate stability, dispersion, convergence, and computational efficiency by varying
the model parameters in the continuum and the discrete models. Overall, this
work contributes to be the first description and investigation of the viability
of Faber exponential integration for classic seismic wave propagation prob-
lems with absorbing layers. Our findings highlight the competitiveness of the
scheme in terms of accuracy and computational cost.

This paper is organized as follows. In the next section, we introduce the ba-
sic formulations used to solve a general problem using exponential integrators,
with subsequent focus on using Faber polynomials on the exponential approx-
imations. We also include an analysis of error bound estimates for the system
of normal matrices. In Section 3, we present the wave equations with PML
absorbing boundaries condition, with their variations, the numerical consid-
erations, and the experiments we use throughout the work. The study of the
spectrum of the discrete spatial operators of the wave equations is in Section
4, where we also derived formulas for the convex hull of the respective prob-
lem’s eigenvalues. Section 5 contains the theoretical stability and dispersion
error analysis, together with an estimate of the method efficiency according to
these criteria. Further, we conduct several numerical experiments in Section
6 to compare the accuracy and efficiency for different degrees of approxima-
tion across the seven numerical experiments designed in Section 3. Section 7
concludes the work and summarizes the principal results.

2 Exponential integrators and Faber polynomials

This section briefly presents the theory of exponential integrators, followed
by a description of Faber polynomials. We also discuss some aspects of Faber
polynomials, such as the error bounds of the approximation and the depen-
dence of the convergence on the region where the polynomials are defined.

2.1 Exponential integrator perspective

As described in Hochbruck and Ostermann [20], and Al-Mohy and Higham [2],
exponential integrators are a class of time integrating methods used to solve
ordinary differential equations of first order in time,

du(t)

dt
= Hu(t) + f(t,u(t)), u(t0) = u0, (1)

where u(t) and u0 are functions in Cn, H ∈ Cn×n is usually a discretization
of a continuous operator (originating from a partial differential equation, for in-
stance), and f may be a non-linear function, with
f : R× Cn → Cn.
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Faber exponential integration and its application to seismic waves 5

Then, an exponential integrator is defined as an approximation of the semi-
analytic solution of the constants variation formula,

u(t) = e(t−t0)Hu0 +

t∫

t0

e(t−τ)Hf(τ,u(τ))dτ. (2)

Depending on how the integral term in (2) is approximated, different types
of exponential integrators are defined (see Hochbruck and Ostermann [20] for
a review). For our particular application to seismic imaging, f represents the
source term, which we will utilize later in its Taylor expanded form. In such
case, Higham [19] shows that (2) can be transformed into the calculation of
the exponential of a slightly larger matrix,

H̃ =

(
H W
0 Jp−1

)
,

where the columns of the matrix W are formed by the values of the function
f , and the approximations of the first p− 1 derivatives of f at t0,

W =

[
dp−1

dtp−1
f(t0,u0)

∣∣∣∣
dp−2

dtp−2
f(t0,u0)

∣∣∣∣ · · ·
∣∣∣∣
d

dt
f(t0,u0)

]
,

and Jp−1 is a square matrix of dimensions p × p with value one in the
upper diagonal and all the other elements zero,

Jp−1 =

(
0 I(p−1)×(p−1)

0 0

)
,

where I(p−1)×p−1 is the identity matrix of dimension p− 1.
Consequently, the information about the source term is contained in the

matrix W , and the solution of the system can be written as

u(t) =
[
In×n 0

]
e(t−t0)H̃

[
u0

ep

]
, (3)

where ep ∈ Rp is a vector with zero in its firsts p− 1 elements and one in its
last element, and In×n is the identity matrix of dimension n. This approach is
a generalization of the result in the previous work of [37], where the function

φ1(H)c = eH−In×n

H c is computed.
As with classical methods, we define a time-step size ∆t and calculate the

solution at tk = tk−1 +∆t as

u(tk) =
[
In×n 0

]
e∆tH̃

[
u(tk−1)

ep

]
,

and the sub-matrix W of H̃ now relates to an evaluation of f and its deriva-
tives at time tk−1.
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The calculation of the matrix exponential is one of the core steps of expo-
nential integrators and several families of methods to approximate the appli-
cation of the exponential of a matrix H onto a vector u0 have been proposed
(see Moler and Van Loan [29]). We continue by investigating such operations
with the help of Faber’s polynomials. From this point onward, we will repre-
sent the amplified matrix H̃ as H for the sake of notation simplicity, wherever
a source term is considered in the equation.

This research will use a Taylor expansion of the term f of the same order
as the matrix exponential approximation. This ensures that the effective order
of the temporal scheme is in agreement between matrix exponential (in Eq.
(3)) and source part (in Eq. (2)), without much added computational cost.
This is because the order of the expansion (p) is typically several orders of
magnitude smaller than the dimension of the discrete operator H. Moreover,
considering that f is usually a known function, the partial derivatives of the
Taylor expansion will be calculated symbolically.

2.2 Faber polynomials

Given a degree j, and a square matrix H, Faber’s polynomials are defined as
F j(H), with

F 0(H) = In×n, F 1(H) = H/γ − c0In×n, (4)

F 2(H) = F 1(H)F 1(H)− 2c1In×n, (5)

F j(H) = F 1(H)F j−1(H)− c1F j−2(H), j ≥ 3, (6)

with

γ =
a+ b

2
, c0 =

d

γ
, c1 =

c2f
4γ2

, b =
√
a2 − c2f , (7)

where the parameters a, cf , and d, are set according to the spectrum of the op-
erator H. Faber’s polynomials are considered a generalization of Chebyshev’s
polynomials because they are stretched and translated into Chebyshev’s poly-
nomials [38].

In Bergamaschi and Vianello [6], it is shown that given an ellipse E(d, cf , a),
symmetric with respect to the real axis (with center d, focuses d±cf , and semi-
major axis length a), if the spectrum σ(H) of the matrix H is contained in
the ellipse E(d, cf , a), the Faber partial sums

Sm(H) =

m∑

j=0

ajF j(H) (8)

are maximally convergent to eH in E(d, cf , a), i.e.,

lim
m→∞

sup ∥eH − Sm(H)∥1/mE(d,cf ,a) = lim
m→∞

sup ∥eH − p∗
m(H)∥1/mE(d,cf ,a), (9)

where p∗
m is the polynomial of degree m that optimally approximates eH in

the infinite norm ∥ · ∥E(d,cf ,a),
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∥h(.)∥E = max
x∈E

|h(x)|. (10)

In such a case, the polynomial coefficients aj are obtained from

aj =

1∫

0

exp

((
γ +

c2f
4γ

)
cos(2πθ) + d+ i

(
γ −

c2f
4γ

)
sin 2πθ

)
e−ij2πθdθ.

(11)
As pointed out in Bergamaschi et al. [7], if the ellipse where the polyno-

mials are defined is large, it can be difficult to compute the coefficients (11)
accurately. When the ellipse capacity γ increases, the magnitude of the term
inside the integral (11) grows several orders of magnitude, introducing signifi-
cant numerical errors. Therefore, calculating the coefficients can require higher
arithmetic precision in their calculations. Here, we used double precision in all
calculations, which was enough to ensure an adequate representation.

Optimization of exponential integrator methods to reduce computational
cost can be achieved using the scaling and squaring technique for large matrices
[19, 29]. It is based on the parameters s ≥ 1, and z ∈ N, such that the error
of the truncated Faber series

eH =
(
es

−1H
)s

≈




m∑

j=0

ajF j(s
−1H)




s

(12)

remains under a fixed threshold, while the amount of matrix-vector opera-
tions (MVOs) is minimized. The number of MVOs required by Eq. (12) is
s×m, where m is the degree of the polynomial used in the approximation of
es

−1H . This approach was successfully implemented for Padé approximations
of the exponential in the works of Higham [19], and Al-Mohy and Higham
[1], connecting it later to exponential integrators in Al-Mohy and Higham [2].
However, reliable error bounds are necessary to estimate the optimal s and
m without evaluating the series and comparing them with the exact solution.
This point has been discussed in the works of Higham [19] and Al-Mohy and
Higham [1], where sharp bounds for the Padé approximation were required.
For Faber polynomials, this is still an open problem. Nonetheless, the next
subsection aims to provide further insights in this direction.

2.2.1 Faber exponential error bounds

A general expression for the error (on the usual Euclidean norm for Cn, ∥.∥2)
is stated in Bergamaschi and Vianello [6],

∥eH − Sm(H)∥2 ≤ cond2(P )∥exp(.)− Sm(.)∥E , (13)

where Sm is the partial sum of the first m + 1 terms of the series in the
recurrence (5)-(6), P is the diagonalization matrix of H (i.e., P−1HP is a
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diagonal matrix), cond2(P ) = ∥P ∥2∥P−1∥2, and ∥.∥E is the infinite norm over
the ellipse E (see (10)), enclosing the spectrum of H.

Expression (13) has the complication that determining cond2(P ) is a diffi-
cult challenge for large matrices, as the ones resulting after discretizing spatial
derivatives in partial differential equations. In addition, to the authors’ best
knowledge, a general bound for the term ∥exp(.) − Sm(.)∥E has not been re-
ported in the literature, yet.

In Bergamaschi and Vianello [6], they present a bound for the second term
on the right of (13),

∥ exp(.)− Sm(.)∥E ≤





8γ
m exp

(
4γ2

4γ−m + d− m2

4γ + c2(4γ−m)
16γ2

)
, m ≤ 2γ,

4 exp
(
d+ c2

4m

) (
eγ
m

)m
, m > 2γ,

(14)

where γ is the mean of the semi-axis of the ellipse E , d is its center, c is the
eccentricity, e is the base of the natural logarithm, and m is the polynomial
degree used. The second part of (14), when m > 2γ, represents an asymptotic
super-linear convergence. But when m ≤ 2γ, the expression in (14) is very
pessimistic and is not appropriate for practical applications (see Bergamaschi
and Vianello [6]). Furthermore, although it was not stated in their research,
the inequality (14) is only guaranteed if the ellipse is strictly contained in the
right half plane (see Moret and Novati [30]). However, for many problems of
interest, including the wave problems to be discussed in this work, there are
eigenvalues with negative real parts; therefore, expression (14) is not fulfilled.

Here, we propose an error bound that improves (14) when the ellipses are
in the positive half plane and is also valid for any ellipse. Let mϵ/2 be the
polynomial degree such that the Faber approximation error is at most ϵ/2.
Then, for all m < mϵ/2 we have,

∥ exp(.)− Sm(.)∥E ≤ ∥Smϵ/2
(.)− Sm(.)∥E + ∥ exp(.)− Smϵ/2

(.)∥E

=

∥∥∥∥∥∥

mϵ/2∑

j=m+1

ajF j(.)

∥∥∥∥∥∥
E

+ ∥ exp(.)− Smϵ/2
(.)∥E .

≤
mϵ/2∑

j=m+1

|aj |∥F j(.)∥E + ∥ exp(.)− Smϵ/2
(.)∥E

≤
mϵ/2∑

j=m+1

|aj |∥F j(.)∥E +
ϵ

2
. (15)

The polynomial coefficients aj can be calculated by explicit formulas us-
ing (11). Thus, the unknowns in (15) are the norm over the ellipse E of the
polynomials F j , and mϵ/2 discussed next.

From Section 2, we know that F j are stretched and translated Chebyshev
polynomials, then, all its roots are located at the points

rk = d+ cf cos

(
1 + 2k

2j
π

)
, k = 0, ..., j − 1.
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Faber exponential integration and its application to seismic waves 9

Therefore, as stated in Munch [31], the extreme values of the polynomials are
attained at the points over the ellipse E . Consequently, one of those points
is where the ellipse cuts the line passing by its foci. Hence, we can compute
∥F j(.)∥E in a straightforward way by evaluating the polynomial at these two
points.

To estimate mϵ/2, we may calculate the series in (15) until the new terms
are smaller than ϵ/2. In practice, due to the extremely fast convergence to
zero of Faber coefficients aj , the rest of the series ∥ exp(.)−Smϵ/2

(.)∥E will be
negligible when compared with the terms already computed.

We compare bounds (14) and (15), by means of numerical experiments,
using arbitrary diagonalizable matrices H = PDP−1. To ensure that the
condition number of the diagonalization matrix P is 1, we take real normal
matrices H, since in this case P is unitary. Therefore, the condition number
of P in the Euclidean norm is 1, i.e., cond2(P ) = 1.

In the following illustrative examples, we set P as a random orthonormal
matrix (therefore unitary)1 with dimensions 60×60. Then, we define the eigen-
values of the diagonal matricesD as the composition of 10 randomly generated
real numbers and 50 randomly sampled complex eigenvalues, symmetric with
respect to the real axis. We present the results of two experiments, for which
the ranges of the randomly generated eigenvalues are given by:

1. Experiment 1 (Figures 1a and 1b): real numbers between [2.8, 10.8] and
complex values in the domain [2.8, 10.8]× i[−3, 3].

2. Experiment 2 (Figures 1c and 1d): real numbers between [−8, 2] and com-
plex values in the domain [−8, 2]× i[−11, 11].

The spectrum and the comparison between the errors bound are shown in
Figure 1.

From Figure 1, we can observe that the error bound in Eq. (15) is sharper
than in Eq. (14). In fact, it can even be used as an estimator of the error of high
polynomial degrees. This behavior is also observed in several other simulations
for normal matrices generated using a random number of eigenvalues with a
uniform distribution. Moreover, for ellipses not contained in the right half
plane, the error bound (14) is not particularly reliable (see Fig. 1d).

These findings provide valuable theoretical insight into Faber polynomials
for normal matrices. However, the matrix operator is not necessarily normal
in wave propagation cases with absorbing boundary conditions, which will be
investigated later on. As a result, the bound (13) cannot be directly applied
in such cases.

2.2.2 Faber’s polynomials in conics

The performance of Faber polynomials depends on the conics they are defined
on. This dependence is very strong, in the sense that different ellipses can lead
to an enhancement or deterioration of the error in several orders of magnitude.

1 We used the python function ortho group.rvs from the Python’s package scipy
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(c) Ellipse of minimum γ containing the
n = 60 eigenvalues of H.
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Fig. 1: (Upper images) Error estimation of eH for a real normal matrix H with
randomly generated eigenvalues on the right half plane. (Lower images) Same
as before, but on both half planes. (Right images) The theoretical estimation
is based on Bergamaschi and Vianello [6], our approximation is based on in-
equality (15), and the real error are the effectively calculated errors, subject
to rounding errors effects, when approximating the exponential. The bound
proposed in this research is sharper than the one reported in the literature.

Therefore, we dedicate this Section to discuss the approximation performance
for different types of conics.

The necessity of enclosing σ(H) within the ellipse E(d, cf , a) for the Faber
series approximation of matrix functions is not solely a theoretical require-
ment. Violations of this condition in numerical experiments show considerably
worsened solutions. Moreover, opting for an ellipse larger than required results
in a deceleration of convergence. In practical terms, this implies that a higher
polynomial degree will be needed to attain a certain error by using an ellipse
larger than necessary. When contrasted with the optimal ellipse, this approach
proves to be less efficient. Fig. 2 depicts the error in an exponential approxi-
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mation with respect to the polynomial degree considering ellipses of different
sizes.
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(a) Five ellipses, one optimal (green), four
others varying in sizes, and the eigenvalues
of a randomly generated normal matrix.
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Fig. 2: Error of Faber polynomials on the approximation of the exponential of
a randomly generated normal matrix by using the optimal ellipse (green), and
four other ellipses with varying sizes in a percentage of the optimal ellipse. If
the ellipse does not enclose all eigenvalues or if the ellipse is too large, errors
can be considerably larger.

As we notice, the best approximation is given by the smallest ellipse that
still covers all eigenvalues of the operator. To compute this ellipse, we em-
ployed a modified version of the algorithm outlined in Welzl [42] to identify
the minimum capacity circle enclosing a finite set of points. As indicated by
Welzl [42], the required changes for ellipses are minimal. Upon comparing this
ellipse with the largest one, a notable disparity of at least two orders of mag-
nitude in the approximation error becomes apparent. Notably, it appears that
employing the 90% ellipse yields a superior approximation compared to the
110% ellipse. This could be because very few eigenvalues are left outside by the
90% ellipse, making the impact of the excluded eigenvalues less pronounced.
Nevertheless, this observation is not necessarily true for other numerical ex-
amples or polynomial degrees. Should we opt for a higher polynomial degree,
such as 200, the approximation linked to the 90% ellipse would diverge, while
the approximations using ellipses encompassing all eigenvalues would main-
tain their convergence. Hence, a good estimation of a small-as-possible convex
cover of σ(H) to construct the ellipse seems to be of utmost importance when
dealing with computational efficiency.

From bound (15), we notice that the amplitude of Faber coefficients aj
influences the convergence speed. When they are smaller, the error bound
(15) is lower; therefore, a faster convergence may be achieved. The principal
constants influencing the magnitude of aj coefficients are the ellipse capacity
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12 Fernando V. Ravelo et al.

γ, and the ellipse eccentricity cf . In Fig. 2, we observe that when the capacity
of the ellipse increases, the rapidity of the convergence decreases.

Next, we also investigate decreasing the ellipse eccentricity cf at the cost of
increasing the ellipse capacity. Starting from the ellipse with minimum capac-
ity, we construct the optimal ellipses with a predefined cf , followed by reducing
step-by-step cf with each ellipse until we get a circle (cf = 0).
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(a) Five ellipses with decreasing cf and the
eigenvalues of a randomly generated normal
matrix.
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(b) Error of Faber approximation for each
of the ellipses on the left.

Fig. 3: Error of Faber polynomials on the approximation of the exponential
of a normal matrix by using five different ellipses with decreasing eccentricity.
When the eccentricity diminishes, the error is lower for some degrees and
higher for others.

Fig. 3 shows the errors of calculating the matrix exponential for each conics
using the matrix infinity norm. For low polynomial degrees, the approxima-
tions using conics with less eccentricity are better, but the magnitude of the
errors is too high to be considered a good approximation. In addition, the
ellipse with minimum capacity has the lowest error for high degrees. An in-
teresting observation is that the minimum capacity ellipse exhibits a hump
effect (Fig. 3 (b)) that diminishes as we decrease the eccentricity of the ellipse.
However, this should not be confused with the hump phenomenon described
in [29], relating the approximation error of the exponential matrix with the
time step size and the number of time steps. Remarkably, as demonstrated
by Figure 4 (b), adopting a circular shape does not necessarily eliminate this
phenomenon in all cases.
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(a) Ellipse and circle used in the Faber ex-
ponential approximation.
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(b) Error of Faber approximation for ellipse
and circle shown on the left.

Fig. 4: Error of Faber polynomials on the approximation of the exponential
of a normal matrix by using the optimal ellipse and an optimal circle. In this
particular case, a circle with higher capacity outperforms the use of the optimal
ellipse.

In general, the conclusion that an ellipse with minimum capacity has the
lowest error for high degrees is not always valid. If we have a different dis-
tribution of eigenvalues, similar to the ones appearing in the wave equations
discussed in the next sections, we may get different relations as illustrated in
Fig. 4. As such, a circle can provide a better alternative than an ellipse with
minimum capacity under special circumstances. Hence, it is conceivable that
other conic shapes might be more suitable for achieving faster convergence,
depending on the eigenvalue distribution. Further investigations on the Faber
convergence with respect to eccentricity and conic form may be of interest but
go beyond the scope of this paper and will be discussed elsewhere. Hence, this
paper will only study the method over an ellipse with minimum capacity.

3 Application to seismic waves

This section is dedicated to the mathematical formulations of the wave equa-
tions with an absorbing boundary condition, its numerical discretization, and
the description of the experiments used in this work. Taking all these differ-
ent aspects into account is of utmost importance for the Faber approximation
since they define the discrete operator, and the exponential method relies on
the spectrum of the operator.

3.1 Formulations of the wave equations with PML

The eigenvalue distribution of a discrete operator is strongly influenced by the
continuous equations. Therefore, to study the spectrum σ(H) of the matrix
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14 Fernando V. Ravelo et al.

operator H, and the characteristics of the approximation using Faber polyno-
mials, we take different formulations into account to obtain better numerical
conclusions. All formulations include the PML absorbing boundary condition,
as discussed next.

The PML is one of the most popular absorbing boundary conditions used
for the wave equations and related areas [13, 24, 40]. While termed as a bound-
ary condition, it is in fact an extension of the problem to a larger domain,
containing an absorbing layer, together with a set of additional variables and
equations acting on this layer. It is very effective for most seismic imaging
applications, but it is also of relatively complex implementation due to an
increase in the number of equations. It is built from a transformation of the
real domain to the complex plane, where the waves outside the physical region
of interest (PML layers) are attenuated, while the others (inside the physical
domain) remain unchanged [4, 5].

For the acoustic wave equations, we have two formulations in one and two
dimensions, and they differ in the order of spatial discretization, given as fol-
lows.

One dimensional form: (x ∈ Ω = [a1, a2], t > t0)

∂

∂t



u
v
w


 =




0 1 0

c2 ∂2

∂x2 −βx c2 ∂
∂x

−βx
∂
∂x 0 −βx
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0
f
0


 , (2SD) (16)
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Two-dimensional form: ((x, y) ∈ Ω = [a1, a2]× [b1, b2], t > t0)
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(18)
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. (1SD) (19)

Here, u = u(t, x) (or u = u(t, x, y) in 2D) is the displacement, c = c(x)
(or c = c(x, y) in 2D) is the given velocity distribution in the medium, v =
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v(t, x) (or (vx, vy) = (vx(t, x, y), vy(t, x, y)) in 2D) is the wave velocity, f =
f(x, t) (or f = f(x, y, t) in 2D) is the source term, and its time integral

∫
f is

calculated over the interval [t0, t], where t0 is the initial time. The w-functions
(w = w(t, x) in 1D and (wx, wy) = (wx(t, x, y), wy(t, x, y)) in 2D) are the
auxiliary variables of the PML approach and the β-functions are known and
control the damping factor in the absorbing layer. The parameters a1, a2, b1,
and b2 are real numbers that define the boundaries of the domain Ω.

The spatial domain is decomposed into two parts: a main physical domain
of interest and an outer domain layer surrounding the physical one, used to
place the wave-absorbing boundary conditions. On the physical domain (with-
out the PML layer), the β-functions are zero, and the system of equations
coincides with the classic wave propagation without absorbing boundary con-
ditions. Therefore, the auxiliary w-functions are different from zero only in
the PML domain. On the other hand, since the displacement is attenuated in
the PML layer, arbitrary conditions can be set at the boundary of the PML
region, where zero-Dirichlet conditions are adopted. The differential equations
are then well-defined once the initial conditions are given in conjunction with
the Dirichlet (null displacement) outer boundary conditions, see Assi and Cob-
bold [4].

For the sake of readability, equations, and details for the two-dimensional
elastic wave problem are only provided in Appendix A.1, together with a
further description of the continuous equations for the acoustic problem.

3.2 Numerical discretization by finite differences

In this Section, we present the basic information about the spatial discretiza-
tion methods focused on classic finite difference schemes. To ensure an ade-
quate representation of high-frequency waves, we use a staggered grid, repre-
senting waves up to frequencies of 2/∆x, improving spatial stability and dis-
persion properties [41]. Fig. 5 depicts the variable positioning of 1SD equations
for two dimensions, employing uniform spacing. Figures for other formulations
are provided in App.A.2.
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Fig. 5: Uniformly staggered grid in 2D with the relative positions of the (1SD)
wave equations variables and parameters. u, wx, wy and c are collocated
(centered) and vx, vy are staggered in the grid.

We use discretizations of fourth and eighth order for the spatial derivatives.
Having a high-order spatial discretization relates to a reduction of dispersion
effects due to spatial discretizations [27], supporting us to investigate errors
in the time domain of exponential integration schemes.

For collocated and staggered variables, in a similar way to [26], we used
the expansion in the Taylor series to construct the fourth-order scheme

∂ui+ 1
2

∂x
≈ ui−1 − 27ui + 27ui+1 − ui+2

24∆x
(20)

and the eighth-order scheme

∂ui+ 1
2

∂x
≈ 1225

1024∆x

(
ui+1 − ui −

ui+2 − ui−1

15
+

ui+3 − ui−2

125
− ui+4 − ui−3

1715

)

(21)
with analogous expressions for the y-coordinate in the 2D discretization.

For the points near the outer boundary, we use the same discretization
formulas as for the interior points, but with zero-valued functions (Dirich-
let Boundary condition) for points outside the domain. After all, if a wave
reaches the outer boundary, it will be continuously weakened on its way to the
boundary and back to the physical domain, attaining minimal energy.

For the PML thickness δ, and the parameter β0, Assi and Cobbold [4]
proposed a relation between them and the spatial grid space ∆x. However,
our objective in this paper is not the study of the PML absorbing boundary,
but the solution of the wave equations with PML constraints. Therefore, we
choose suitable values for δ and β0, such that δ is small and the wave reflections
remain minimal but without numerical errors because of large values of β0.
The values for these parameters and other numerical details are in Appendix
A.3.

We continue with a description of various test cases used for further inves-
tigation of numerical experiments in one of the following sections.
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Faber exponential integration and its application to seismic waves 17

3.3 Test cases

To construct the operator, we also require the definition of the velocity field
and other model parameters. Their description is organized in several numer-
ical experiments for the wave propagation equations with PML used through-
out this paper. The numerical tests comprehend scenarios with variable dif-
ficulty, changing the dimension of the wave equations, the characteristics of
the medium, the initial conditions, and the use of a source term. The general
features of the numerical experiments used in the remainder of this work are
summarized in Table 1, with further details provided in Appendix A.3. The
source term for the test cases consists of a Ricker’s wavelet since this is one of
the most frequently used source terms in seismic imaging [22].

Test Case ID Type Dim Medium Initial cond. Source term

TC#1 acoustic 1D homog. non-zero -

TC#2 acoustic 1D heterog. non-zero -

TC#3 acoustic 1D heterog. zero yes

TC#4 acoustic 2D homog. non-zero -

TC#5 acoustic 2D heterog. non-zero -

TC#6 acoustic 2D heterog. zero yes

TC#7 elastic 2D heterog. zero yes

Table 1: General features of the numerical experiments: type of equation, prob-
lem dimensions, medium heterogeneity (homogeneous or heterogeneous), ini-
tial conditions, and the use of Ricker’s source term.

The cases TC#1 and TC#4, where the wave is propagated in a homoge-
neous medium without a source term in one and two dimensions, are intended
to analyze the Faber approximation of the wave equation with PML in a math-
ematical scenario of lowest complexity. A non-zero initial condition is used in
case of no source term.

4 Spectrum of discrete operator

The Faber approximation requires an estimation of the convex hull of the
spectrum of the matrix operator to construct the ellipse where the polynomials
will be defined. This is a difficult task for the matrix operators derived from the
spatial discretization of PDE systems, where the analytical expression of the
eigenvalues is not generally known. Since the matrix dimensions can be very
large, the computational time to compute the eigenvalues can be inadequate for
practical applications. In addition, when solving PDEs numerically, variations
in the parameters of the equations often produce significant changes in the
spectrum of the discrete operator. This is the case in seismic imaging for the
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18 Fernando V. Ravelo et al.

wave equations with PML, where the velocity field is constantly modified when
solving the inverse problem.

Based on empirical results produced by the numerical considerations and
the test experiments of the previous section, we propose an estimate of the
spectrum of the discrete operator H. We start by studying the eigenvalue
distribution of a lower-resolution discrete wave equations operator for which a
computation of eigenvalues is possible. By doing so, we aim for sharp bounds
of the H operator spectrum σ(H) for the construction of the optimal ellipse,
which can be generalized to high-resolution discretizations.

4.1 General properties

We study the spectrum of H by calculating all of its eigenvalues for a finite
decreasing sequence of ∆x, utilizing the eigs function from the Scipy Python
package. Different distributions of eigenvalues on the complex plane for a 4th-
order spatial discretization with 1SD formulation are given in Figure 6. When
∆x → 0, the convex hull of σ(H) tends to a rectangle with sides parallel to the
real axis. Thus, finding a relation between the rectangle sides and ∆x provides
an estimator of the convex hull of σ(H) for small ∆x.

We also notice from Fig. 6 that σ(H) is symmetric with respect to the
real axis. Since H is a real matrix, it is straightforward to verify that if
ζ ∈ σ(H), then ζ ∈ σ(H). Consequently, it is sufficient to only investigate
the eigenvalues with non-negative imaginary parts. Moreover, Fig. 6 indicates
that the limits of the rectangle on the imaginary limit seem to relate linearly
to 1/∆x. At the same time, for the real part, there is apparently a constant
negative limit on the left side, −β0, for the PML parameter β0 > 0, and zero
on the right. The spectral distribution for the 2SD formulation is given in
Appendix A.4.

These bounds for the real axis agree with the theoretical bounds for the
continuous spectrum of the wave equations with PML conditions. For instance,
performing a Fourier analysis of the eigenvalues of the continuum operator H
of the (1SD) formulation (Eq. (17)), in a unitary spatial domain ([0, 1]), using

(u, v, w)T =

∞∑

k=−∞
(Ak, Bk, Ck)

T eikx, (22)

and considering the linear map of the continuum operator H on each term, we
obtain the symbol of the operator H [39] as

H



Ak

Bk

Ck


 eikx =




0 c2ik −c2

ik −βx(x) 0
0 βx(x)ik −βx(x)





Ak

Bk

Ck


 eikx. (23)

Now, the eigenvalues of the operator symbol are given by

λ0 = 0, λ1,2 = −βx(x)± ick. (24)
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Fig. 6: Eigenvalues on the complex plane (using coordinates (Re(λ), Im(λ)))
using a fourth-order spatial discretization of the acoustic wave equation
in one dimension, with formulation 2SD, considering TC#3, for ∆x =
{0.105, 0.021, 0.0105, 0.0021}. For each ∆x, the spectrum has a rectangular-
shaped convex hull.

Therefore, if the wave number k is constrained within [− 1
∆x ,

1
∆x ], as it is

the case for discrete representations of the domain, the bounds of σ(H) on
the complex plane are given by [−βmax, 0] × [− cmax

∆x , cmax

∆x ], where cmax is the
maximum velocity in the medium and βmax is the maximum of βx(x). So, we
have a linear relation of the imaginary limits of the axis with respect to 1

∆x ,
and the real part is within the interval [−βmax, 0], where

βmax = β0

(
δ −∆x/2

δ

)2

, (25)

where β0 and δ are PML parameters.
It is worth noting that while we have exclusively presented the complete

spectrum for the particular instance of the 4th-order spatial discretization
and TC#3, the preceding analysis remains valid for the other test cases. This
holds whether they involve a 4th or 8th-order spatial discretization, span one

29



20 Fernando V. Ravelo et al.

or two dimensions, or pertain to different equation formulations. The omission
of these plots is only for the sake of brevity.

In the next two subsections, we will examine the dependency of the imag-
inary and real limits of the eigenvalues on the problem variables. While the
presented numerical examples focus on acoustic cases, it is pertinent to high-
light that these findings also hold for the elastic formulation in TC#7 (see
Appendix A.4).

4.2 Estimation of the imaginary limit
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Fig. 7: Maximum imaginary parts of the eigenvalues of σ(H) for varying 1/∆x.
The plot indicates a linear relation between the maximum imaginary part of
the eigenvalues and 1/∆x.

We perform experiments varying the resolution and other parameters to
empirically validate the linear relation between the maximum imaginary part
of σ(H) and 1/∆x. These parameters include the medium velocity field, equa-
tion formulation, and discretization order. The results of these experiments
are presented in Figure 7. The linear relations are clear in all experiments per-
formed, with slope variations, due to the different maximum velocities (from
different test cases) and discretization orders, in agreement with the expected
theory discussed in Sec 4.1. However, we do not notice dependence on the
model formulation (1SD or 2SD). The dependency on the model velocity is
more clearly shown in the right panel of Fig. 8. In this case, the imaginary limit
is connected linearly with the maximum medium velocity cmax. The velocities
cmax are the same for TC#2 and TC#3, but differ by a factor of two with
respect to cmax of TC#1. This relation is also reflected by the imaginary limits
of their respective operator spectrum, where the slope of the curves are 7.84
(for TC#2 and TC#3, which have maximum velocity given by cmax = 3.048)
and 3.92 (for TC#1, with maximum velocity cmax = 1.524), approximately.
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Next, we investigate the influence of the PML parameters, with results in
the left image of Fig. 8. We can observe a superposition of the three lines, in-
dicating a lack of dependence on the PML parameters. This was also observed
for other test cases and parameter choices (not shown).
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(a) PML parameter variations of TC#3.

0 20 40 60 80 100 120 140
1/ x

0

200

400

600

800

1000

1200

Im
ag

in
ar

y 
lim

it

TC#1_ord8_1SD
TC#2_ord8_1SD
TC#3_ord8_1SD

(b) Velocity field variations.

Fig. 8: Maximum imaginary parts of the eigenvalues of σ(H) for varying ∆x.
(Left figure) Varying PML parameters δ and β0. Variations of the PML pa-
rameters do not affect the maximum imaginary part of the discrete operator.
(Right figure) Different velocity fields (test cases). If the maximum velocity
cmax does not change, the maximum imaginary parts remain unaltered.

In summary, the specific slope of each curve is primarily influenced by the
maximum medium velocity cmax, followed by the dimension of the problem,
the spatial discretization scheme, and finally, the formulation of the equa-
tions (for the acoustic case). Therefore, the linear relationship between the
maximum imaginary eigenvalue and 1/∆x allows determining the maximum
imaginary eigenvalue for high-resolution discretizations based on an eigenvalue
computation on a low-resolution discretization.

4.3 Estimation of the real limit

Next, we compare the theoretical lower bound of the real part of the eigenvalues
given by Eq. (25) with different test cases with results given in Fig. 9, where
we vary ∆x, and use different dimensions, formulations, spatial discretizations,
and equations parameters.

We observe that our estimate provides an adequate lower bound for the
1D problems (left image of Fig. 9). However, this estimate lacks the sharpness
exhibited in the 2D example TC#5 or the elastic formulation (as presented in
Appendix A.4).
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Fig. 9: Lower bound of the real part of the eigenvalues for varying ∆x, for 1SD,
2SD and elastic formulations, different dimensions, and experimental sets. The
dashed line is our estimated lower bound given by Eq. (25).

We observe very good matches for the 2D problems (middle and right
image), providing a sharp lower bound.

Concerning the upper bound, we observed that the limit slightly depends
on the particular model formulation (not shown), but always results in zero, or
a value close to zero. The right limit is zero for the acoustic 1SD formulation
and the elastic equations in all the experiments.

Overall, we have found a bound for the real part that only depends on
the PML parameters and is independent of the velocity field, the equation
formulation, and the spatial discretization scheme.

4.4 Construction of enclosing rectangle

We close this Section with some final remarks on the overall construction of the
rectangle enclosing the spectrum σ(H). For the imaginary limit, we can use
the linearity between the maximum imaginary part of the spectrum and ∆x,
where the linear relation can be estimated with an eigenvalue computation on a
sufficiently low-resolution discretization. For the real part, we found an explicit
lower bound, based on Eq. (25), and an upper bound of zero. Finally, we can
determine the enclosing rectangle, which will be the basis for constructing the
optimal ellipse with the Faber polynomials.

We would also like to highlight that estimating the spectrum is important
for other time integration methods, such as the explicit exponential integrator
based on the Leja points [8, 10]. In contrast to the Faber exponential integrator,
which employs the Faber series for the matrix function expansion, the Leja
approximation utilizes a basis of interpolating polynomials at specific points
called Leja points. When the method is defined within an ellipse encompassing
the eigenvalues of H, it is stated in [10] that the approximation error is akin
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to the second term in Eq. (14). Hence, the development of optimal ellipses
could potentially find application in the interpolation polynomials of the Leja
points as well.

5 Fourier’s stability and dispersion results

Next, we investigate two fundamentally important properties. First, the nu-
merical stability using a von Neumann approach in the next subsection and,
after this, the numerical dispersion, considered highly relevant in seismic imag-
ing [22, 40]. We analyze both aspects for several degrees of Faber polynomials
separately, aiming to define and compute optimal criteria.

5.1 Von Neumann stability analysis

In this Section, we investigate the stability with Faber polynomials and es-
timate the CFL number (cCFL) for each polynomial degree by performing a
classical von Neumann analysis. We start by replacing the absorbing bound-
ary conditions with periodic ones and drop the source term. This reduces the
equations to solve a purely hyperbolic system (purely oscillatory, e.g., [15]).
We also assume a constant velocity profile (homogenous medium). When ex-
pressed in the Fourier series, the solution is given by

U(t, x) =
M∑

m=0

(
Am(t)eikmx

Bm(t)eikmx

)
, (26)

where M is the number of frequencies considered in the solution, km are the
wave numbers, and the terms in the first and second rows stand for the solu-
tions in the u and v variables (see Eqs. (16)-(17)), respectively. This particular
form of the linear wave equations allows an analysis of each spectral mode
(Am, Bm) separately. Then, depending on the spatial scheme and formulation
used, there will be a different matrix operatorG known as amplification matrix
(or stability function for this particular mode), such that

(
Am(tn+1)e

ikxi

Bm(tn+1)e
ikxi+1/2

)
= G

(
Am(tn)e

ikxi

Bm(tn)e
ikxi+1/2

)
. (27)

For the 1SD system, the amplification matrix G of Faber polynomial meth-
ods may be written as

G =

m∑

j=0

aj(∆tH)F j(∆tH), (28)

where H is the right-hand side operator of equations formulation 1SD (see
Eq. (17)), but without the PML term, and the coefficients aj are determined
by Eq. (11). As an intermediate step preceding the utilization of Eq. (28), we
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first delve into the application of ∆tH—a fundamental basic building block
of the polynomial approximations employed in this context.

In what follows, we provide an example of a spatial fourth-order finite-
difference approximation (20), where we obtain

∆tH

(
Am(t)eikx

Bm(t)e(i+1/2)kx

)
=

∆t

24∆x

(
0 c2g1
g2 0

)(
Am(t)eikx

Bm(t)e(i+1/2)kx

)

=
α

24

(
0 cg1

1
cg2 0

)(
Am(t)eikx

Bm(t)e(i+1/2)kx,

)

where

α =
c∆t

∆x
, θ = k∆x ∈ [0, π], (29)

g1 = e−2iθ − eiθ + 27(1− e−iθ) (30)

g2 = e−iθ − e2iθ + 27(eiθ − 1), (31)

and we are considering the wavenumber k ∈ [0, π/∆x]. This leads to the rep-
resentation of ∆tH

∆tH =
α

24

(
0 g1
g2 0

)
, (32)

which also holds for other spatial discretization orders, but in other cases, we
may have different g1 and g2 values.

Given this form, we build the operator G by substituting (32) into ex-
pression (28). For the operators derived from the other formulations, spatial
schemes, and dimensions, the reader can refer to Section A.5.

Next, we compute the CFL number (cCFL) as the largest α so that the
spectral radius ρ(G) is at most 1 + ϵ, with ϵ = 10−7 accounting for round-off
errors. We compute this CFL number for several polynomial degrees and differ-
ent numerical specifications with results shown in the upper row of Fig. 10. We
observe that for the acoustic equations, the spatial discretization and equation
formulations considered have little influence on the stability of the method.
Yet, this is not the case for the elastic equations, and an important gain is
observed when the spatial discretization order is increased. Overall, there is a
small improvement in the performance using 2SD equations instead of 1SD,
and the passing from 1D to 2D reduces the values of cCFL. This reduction is
partly because, in two dimensions, the CFL number is divided by a factor of
a square root of two. Moreover, in all scenarios, the CFL number is enhanced
with the increase in polynomial degrees.

Furthermore, we use the MVOs as a reference for computational cost and
define

NCFL

op =
# MVOs

cCFL

, (33)

representing the ratio between the computational requirements and a value
relating to the CFL. Hence, this scalar value represents the computational
efficiency, where smaller values relate to better efficiency. Since the number of
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Fig. 10: Stability graphics of the Faber approximation method for different
spatial discretizations, dimensions, 1SD and 2SD formulations, and polynomial
degrees m = {3, 4, ..., 40}. The CFL number (top row), and the measure of the
operations number of Eq. (33) (bottom row). Higher polynomial degrees imply
larger cCFL, but this does not necessarily result in a decrease in computations,
owing to the oscillations.

MVOs coincides with the polynomial degree used in the approximation, for the
graphics, we will use polynomial degrees instead of MVOs with results given
in Fig. 10. The oscillatory behavior indicates that higher polynomial degrees
are not reflected by fewer computations, but rather some particular degrees
are more fitted to improve the values of NCFL

op . The oscillations of the curves
have a periodicity of four and five degrees, which we account for by relating
it to some sort of symmetry of the complex polynomials F j . The results for
the elastic equations correspond to those discussed in this section and can be
found in the Appendix (Section A.5).
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5.2 Numerical dispersion

We continue studying the dispersion (R) given by the quotient between the
velocity of the numerical solution cnum and the real wave velocity c, hence

R =
cnum
c

=
wnum

k c
, (34)

where wnum is the numerical angular frequency, and k is the wavenumber.
Ideally, a method with no spurious numerical dispersion should have R = 1.
Therefore, we define the dispersion error as |R− 1|.

In Equation (34), the velocity c is known, k is any wavenumber value
contained in the interval [0, π/∆x], and wnum is calculated from the phase of
the eigenvalues of G.
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Fig. 11: Dispersion studies of Faber approximation method using different
spatial discretizations, dimensions, equations formulations, and polynomial
degrees m = {3, 4, ..., 40}. Higher polynomial degrees imply larger αR and
a non-monotonous decrease in the number of operations.
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Now, we introduce αR, similar to the cCFL number, but relating to a
maximum dispersion error instead. We define αR to be the maximum α (see
Eq. (29)) such that the dispersion error is less than ϵR = 10−5, which is set to
be the required dispersion accuracy. We can then compute the computational
efficiency with respect to dispersion by using

Nα
op =

# MVOs

αR
. (35)

Results are presented in Fig. 11, using 1SD and 2SD formulations in one
and two dimensions, with different spatial discretization orders.

From Fig. 11, we observe that the αR in 1D is larger than in the 2D case,
and the dispersion changes very little with respect to the spatial discretiza-
tion order. For the elastic equations, αR decreases even more, and there is
only a small difference between the spatial discretization order. Moreover, in
agreement with the stability analysis, increasing the polynomial degree leads
to larger αR. However, in contrast with the results on stability, there is a
stronger impact on the equation formulation, and higher polynomial degrees
imply fewer computations. This agrees with the expected behavior since larger
polynomial degrees allow larger time steps, diminishing the number of time
steps needed for the computations and, then, reducing the dispersion error.

6 Convergence and efficiency

In this section, we address the numerical convergence and computational ef-
ficiency of Faber polynomial approximations for the full equation sets on the
limited area domain with the PML absorbing conditions. Due to the complex-
ity of the equations, the analysis is purely numerical, relying on the test cases
shown in Section 3.3. To ensure the robustness of the results, and as explained
in Section 3.3, the seven experiments vary in levels of complexity and problem
specifications. Then, we assess the convergence of the experiments, using the
approximation error in L2, computed for a wide range of Faber polynomial
degrees and time-step sizes ∆t.

To approximate the solutions using Faber polynomials, we define a spatial
step size ∆x = 0.0025 for the 1D examples and ∆x = 0.02 for the 2D examples
and use a finite difference scheme with 4th and 8th spatial order. For com-
parison purposes, we use a nine-stage seventh-order temporal Runge-Kutta
scheme RK(9,7) recommended for hyperbolic problems (see Calvo et al. [11]))
with a small time-step size (∆t = ∆x/(8cmax)), where cmax is the maximum
velocity. The formulas of the RK(9-7) algorithm are presented in Appendix
A.6. The equation formulation and spatial discretization size and order used
in the RK(9,7) are the same as the one adopted in the Faber approximations,
so the spatial operator is exactly the same as the one used in the Faber approx-
imation scheme. Therefore, only temporal effects are visible in the numerical
errors shown.
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Fig. 12: Approximation error of Faber polynomials using 1SD and 2SD for-
mulations, to solve TC#1, TC#6, respectively. The curves represent the error
when using polynomials of degrees m = {5, 10, . . . , 25}. Increasing the degree
of the polynomial allows for larger steps in time while keeping the approxima-
tion error smaller than a fixed threshold.

Fig. 12 shows the approximation error for three different examples, with
one and two dimensions, using three different formulations and for different
spatial approximations order. We observe in all cases that increasing the poly-
nomial degree of the method allows larger stable time-step sizes. This is also
demonstrated for the elastic equations (refer to Appendix A.6). If we define a
maximum ∆t such that the approximation error is bounded by a fixed thresh-
old, we note that the magnitude of this ∆tmax changes depending on the
problem specifications. We also notice that for each polynomial degree, the
convergence deteriorates before reaching the critical ∆t.

Moreover, we point out that the solution behavior described in Fig. 12
is sustained for other scenarios and is independent of the wave formulation,
spatial discretization, and numerical examples considered in this paper. This is
due to the fact that larger polynomial degrees relate to higher approximation
orders, hence allowing larger time steps.

Next, we further investigate ∆tmax, the maximum time-step size allowed
by the polynomials while maintaining an error lower than ϵ∆t = 10−6 (see
Fig. 13). In (a), we notice that the medium velocity influences ∆tmax, as ex-
pected, since the maximum velocity in TC#1 is two times lower than the
maximum velocity in TC#3. From the same figure, we also note that even
when there is a consistent increase in maximum time-step size, the behavior
is not monotonic (TC#1 lines in (a)). Moreover, there are experiments where
the equation formulation seems to have no influence on the convergence (Sub-
Fig. (a)). Still, there are others where the 2SD formulation seems to perform
better than the 1SD (SubFig. (b)). We account for the increased difficulty of
the 2D experiments TC#4 and TC#5 when compared to the 1D TC#1 and
TC#3. This difference highlights the distinctions between the 1SD and 2SD
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Fig. 13: Convergence in polynomial order for 1SD and 2SD formulations, using
different experimental sets, spatial discretization orders, and a wide range of
polynomial degrees. The maximum ∆t such that the error of Faber approx-
imations is less than 10−6 is shown in the top row. In the bottom row, we
show the number of operations using the values of ∆tmax of the upper line.
When the polynomial degree increases, the maximum allowed time-step size
also increases, together with a decrease of the number of operations.

formulations. However, further investigation is needed to confirm this hypoth-
esis. In general, we have observed that 2SD always performs similarly or better
than 1SD. This suggests the continuum formulation of the wave equation with
PML to be an important factor to consider when solving the equations. The
situation for the elastic case is comparable, although the discretization order
has a lesser impact on the elastic equations (see Appendix A.6).

We again remark that our experiments consider the reference solution to
have the same discrete operator as the exponential scheme. Therefore, only
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temporal effects are to be noted. Here, we see that the increase in spatial
order has only a minor effect of reducing the maximum time step size.

We now define a measure of the number of operations depending on the
time step sizes (analogously to Eq. (33) and Eq. (35)) as

N∆t
op =

# MVOs

∆tmax
,

where again ∆tmax is the maximum ∆t such that the approximation error is
bounded by a fixed threshold γ = 10−6.

In Sections 5.1 and 5.2, we used simplified formulations on periodic do-
mains. Here, we finally consider the full equation sets on the limited area
domain with the PML absorbing conditions. Therefore, N∆t

op represents a re-
alistic measure of the number of computations by a unit of time.

A general behavior in the number of operations graphics in Fig. 13 is to have
a lot of computations for low degree approximations, followed by a declination
pattern, and seems to approximate an equilibrium.

The corner model

Although the previous figures of convergence are useful for understanding the
approximation error with different setups, they offer little insight into the
spatial distribution of the error. Now, we use the TC#5, which has a high
velocity contrast heterogeneous medium, to compute the approximation error
along a straight line that cuts vertically the space (as shown in Fig. 14 (c)).
The Faber solution is calculated with a time-step size ∆t, which is 11× larger
than the one used in the reference solution and its error is computed for several
polynomial degrees.
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(b) Displacement snapshot at time
t = 0.6s.
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(c) Displacement snapshot at time
t = 1.2s.
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(d) Reference solution at time t = 1.2s.

Fig. 14: (Subfigure (a)) Acoustic wave propagation in a heterogeneous medium
with a sharp corner. The physical domain is the region enclosed by the black
squared contour, the region outside it is the PML domain, and the initial
wave explosion arises at the dot black point inside the physical region. (Sub-
figures (b)-(c)) The reference solution is calculated at the final time and at
intermediate time instants. (Subfigure (d)) Approximation errors at the final
time t = 1.3 for several degrees of Faber polynomials m = {10, . . . , 18} over
the black vertical line in Subfigure (c). When the degree of the polynomial
increases, the error calculated over the black line in Subfigure (c) diminishes
by several orders of magnitude (Subfigure (d)).

Fig. 14 is composed of the velocity field of TC#5, two wave propagation
snap-shoots for different time instants, and Subfigure (d) showing the spatial
error for different polynomial degrees over the line drawn in Subfigure (c). If
the reference solution was to be calculated with the same ∆t as the one used
in the Faber approximations, it would not have converged to the solution. The
same applies to the Faber polynomials with degrees lower than 11. However, for
the polynomials of degrees higher than 10, we observe that the error decreases
almost an order of magnitude for each degree increment. Therefore, at least
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for this particular experiment, when using the large fixed ∆t, increasing the
approximation order results in a reduction of one order in the numerical error.
We again highlight that the dominant error shown here is the temporal one,
since our reference solution uses the same discrete operator as the exponential
scheme. The peaks of the errors illustrated in Figure 14 (d), occurring within
the depth intervals of (3km, 4km) and (5km, 6km), are a result of the presence
of front waves at the time t = 1.2s within those particular intervals.

We found that the numerical experiments agree with the theoretical analy-
sis of stability and dispersion. For higher polynomial degrees, we have a larger
CFL number, which translates into larger time-step sizes, such that high ac-
curacy solution can be achieved with large time-step sizes.

7 Discussion, contributions & outlook

Faber’s polynomials provide a way to generalize exponential integration based
on Chebyshev polynomials to non-symmetric or non-antisymmetric matrices.
In the present work, we have developed sharper bounds of Faber approxima-
tions for normal matrices and a discussion about the importance of the conics
used in the construction of the method. We showed that these conics are of
utmost importance to ensure a fast convergence of the polynomial approx-
imation. Furthermore, if the conics do not encompass the spectrum of the
operator, the convergence of the approximation is not assured.

We provided explicit bounds of the convex hull of the spectrum using differ-
ent scenarios with respect to continuous model formulation and discretization
schemes for the acoustic and elastic wave operators with the popular PML
absorbing boundaries. These estimates remove the necessity of computing the
eigenvalues of the full operator matrix, requiring only a calibration about the
growth of the imaginary part with large ∆x for only one velocity model. In
this manner, we can predefine the spectrum ranges of the discrete operator
using a simplified velocity model, leading to substantial computational sav-
ings during the wave inversion process. This is particularly important since
the wave inversion involves solving multiple wave propagation scenarios with
varying velocity configurations. It is worth recalling that the computation
of discretized operators for partial differential equations remains a persistent
challenge. This is the reason why in previous research (e.g. [7, 23]) computa-
tional algorithms were necessary to calculate the eigenvalues. In the context
of the wave equation with absorbing boundary conditions, there is the work of
Alonso-Mallo and Portillo [3], predominantly centered around the influence of
the real part limits of the eigenvalues of the discretized operator. However, this
specific aspect is closely tied to the boundary conditions, and the treatment
of the PML was not investigated. A promising approach in this direction is
the generalized local Toeplitz sequences. These have been applied in selected
cases to derive closed-form expressions that offer precise approximations of
eigenvalues [12, 17].
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Furthermore, we studied the stability, dispersion error, numerical conver-
gence, and computational cost for the Faber approximation utilizing polyno-
mial orders ranging from 3 up to 30 (and in certain examples, up to 35 or
40). Exploring diverse scenarios involving various wave equation formulations
with distinct PML parameters, spatial discretization orders, and dimensions.
We observed relatively small differences between distinct formulations of the
continuum operator. In particular, we observed that 2SD performs better than
the other formulation. This suggests that the choice of an adequate formula-
tion could improve even more the performance of Faber approximation. We
also found that increasing the order of the approximation implies a larger
CFL number, and the solution calculated for larger time steps maintains high
accuracy. Due to the high order expansion of the source term (integral of
Eq. (2)), we also note that these results of large time step sizes are not af-
fected by time-frequency sampling issues of the source term. Moreover, from
the computational efficiency results, we conclude that, at least for the Faber
polynomials applied to seismic waves, the increase in the polynomial degrees
is also computationally more efficient than using lower-order polynomials. We
assume this could lead to real improvements in seismic imaging, where low dis-
persion errors are extremely important and very demanding on computational
resources. Nonetheless, determining the optimal polynomial degree in general
scenarios for the Faber exponential integrators is an unresolved challenge. Po-
tential strategies to advance in this direction include studying numerical tests
to understand the behavior of the approximation error and propose sharp
bounds, as discussed in Section 2.2.1. In this context, we consider our research
to contribute to this subject.

In future research, we intend to work on the open problem of Section 2.2.2
and explore the conics that grant the fastest convergence for Faber polyno-
mials. Additionally, further investigation is required to prove the convergence
of the spectra of the discrete operators to the continuum operators, as has
been done for the Schrödinger equations in Nakamura and Tadano [32]. This
would theoretically predict the asymptotic behavior of the discrete operator’s
eigenvalues when ∆x tends to zero.

We plan a follow-up work on comparing the Faber polynomial exponential
scheme with other exponential integrators and several classic methods in the
context of wave propagation equations and realistic seismic wave problems.
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A Appendix

A.1 Continuous framework

We formally write the equations formulations, with PML conditions, used throughout the
work. For 1D the domain Ω = [a1, a2] is an interval and for 2D Ω = [0, a2] × [0, b2] is
considered a square. The particular values of a1 and a2 are fixed in the numerical tests.

One dimensional acoustic waves with PML:

1. Using second order spatial derivatives (2SD)

∂u

∂t
(x, t) = v(x, t), (36)

∂v

∂t
(x, t) = −βx(x)v(x, t) + c2(x)

(
∂2u

∂x2
(x, t) +

∂w

∂x
(x, t)

)
+ f(x, t), (37)

∂w

∂t
(x, t) = −βx(x)

(
w(x, t) +

∂u

∂x
(x, t)

)
. (38)

2. Using only first order spatial derivatives [13] (1SD)

∂u

∂t
(x, t) = c2(x)

(
∂v

∂x
(x, t)− w(x, t)

)
+

t∫

t0

f(x, s)ds, (39)

∂v

∂t
(x, t) = −βx(x)v(x, t) +

∂u

∂x
(x, t), (40)

∂w

∂t
(x, t) = βx(x)

(
−w(x, t) +

∂v

∂x
(x, t)

)
. (41)

Two dimension acoustic waves with PML:

1. Using second order spatial derivatives (2SD)

∂u

∂t
(x, y, t) = v(x, y, t), (42)

∂v

∂t
(x, y, t) = −

(
βx(x) + βy(y)

)
v(x, y, t)− βx(x)βy(y)u(x, y, t)

+ c2(x, y)

(
∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t) +

∂wx

∂x
(x, y, t)

+
∂wy

∂y
(x, y, t)

)
+ f(x, y, t), (43)

∂wx

∂t
(x, y, t) = −βx(x)wx(x, y, t) + (βy(y)− βx(x))

∂u

∂x
(x, y, t), (44)

∂wy

∂t
(x, y, t) = −βy(y)wy(x, y, t) + (βx(x)− βy(y))

∂u

∂y
(x, y, t). (45)
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2. Using only first order spatial derivatives [13] (1SD)

∂u

∂t
(x, y, t) = c2(x, y)

(
∂vx

∂x
(x, y, t) +

∂vy

∂y
(x, y, t)− wx(x, y, t)

− wy(x, y, t)

)
+

t∫

t0

f(x, y, s)ds, (46)

∂vx

∂t
(x, y, t) = −βx(x)vx(x, y, t) +

∂u

∂x
(x, y, t), (47)

∂vy

∂t
(x, y, t) = −βy(y)vy(x, y, t) +

∂u

∂y
(x, y, t), (48)

∂wx

∂t
(x, y, t) = βx(x)

(
−wx(x, y, t) +

∂vx

∂x
(x, y, t)

)
, (49)

∂wy

∂t
(x, y, t) = βy(y)

(
−wy(x, y, t) +

∂vy

∂y
(x, y, t)

)
. (50)

Two-dimensional elastic waves with PML, see Assi and Cobbold [4]:

∂ux

∂t
(x, y, t) = vx(x, y, t), (51)

∂uy

∂t
(x, y, t) = vy(x, y, t), (52)

∂vx

∂t
(x, y, t) = −

(
βx(x) + βy(y)

)
vx(x, y, t)− βx(x)βy(y)ux(x, y, t)

+
1

ρ(x, y)

[
∂

∂x
(Txx(x, y, t) + wxx(x, y, t))

+
∂

∂y
(Txy(x, y, t) + wxy(x, y, t))

]
+ fx(x, y, t), (53)

∂vy

∂t
(x, y, t) = −

(
βx(x) + βy(y)

)
vy(x, y, t)− βx(x)βy(y)uy(x, y, t)

+
1

ρ

[
∂

∂x
(Txy(x, y, t) + wyx(x, y, t))

+
∂

∂y
(Tyy(x, y, t) + wyy(x, y, t))

]
+ fy(x, y, t), (54)

∂Txx

∂t
(x, y, t) =

(
2µ(x, y) + λ(x, y)

)∂vx
∂x

(x, y, t) + λ(x, y)
∂vy

∂y
(x, y, t), (55)

∂Txy

∂t
(x, y, t) = µ(x, y)

(
∂vx

∂y
(x, y, t) +

∂vy

∂x
(x, y, t)

)
, (56)

∂Tyy

∂t
(x, y, t) = λ(x, y)

∂vx

∂x
(x, y, t) +

(
2µ(x, y) + λ(x, y)

)∂vy
∂y

(x, y, t), (57)

∂wxx

∂t
(x, y, t) = −βx(x)wxx(x, y, t) +

(
βy(y)− βx(x)

)(
2µ(x, y) + λ(x, y)

)∂ux

∂x
(x, y, t),

(58)

∂wxy

∂t
(x, y, t) = −βy(y)wxy(x, y, t) +

(
βx(x)− βy(y)

)
µ(x, y)

∂ux

∂y
(x, y, t), (59)

∂wyx

∂t
(x, y, t) = −βx(x)wyx(x, y, t) +

(
βy(y)− βx(x)

)
µ(x, y)

∂uy

∂x
(x, y, t), (60)

∂wyy

∂t
(x, y, t) = −βy(y)wyy(x, y, t) +

(
βx(x)− βy(y)

)(
2µ(x, y) + λ(x, y)

)∂uy

∂y
(x, y, t),

(61)
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with the variables and parameters described in Table 2.

Symbol Description

x, y Spatial variables

t Time

t0 Initial time instant

u(x, y, t) Displacement of acoustic waves

v(x, y, t) Displacement velocity for 2SD, and material velocity for 1SD

ux(x, y, t), uy(x, y, t) Displacement of elastic waves in x and y directions, respec-
tively

vx(x, y, t), vx(x, y, t) Displacement velocity for elastic waves, and material velocity
for 1SOD, in x and y directions, respectively

Txx(x, y, t),
Txy(x, y, t), Tyy(x, y, t)

Stress components of elastic waves

w(x, y, t), wx(x, y, t),
wy(x, y, t), wxx(x, y, t),
wxy(x, y, t),
wyx(x, y, t),
wyy(x, y, t)

auxiliary variables of the PML boundary condition

c(x, y) wave propagation velocities in 1D and 2D, respectively

µ(x, y), λ(x, y) Lamé parameters

ρ(x, y) density

βx(x, y), βy(x, y) wave damping functions

Table 2: Variables used in the equations and their description

The damping functions βz , related to the absorption factor are defined as

βz(z) =





0, if d(z, ∂Ω) > δ

β0

(
d(z,Ω1)

δ

)2
, if d(z, ∂Ω) ≤ δ

, z = x, y (62)

where d(z, ∂Ω) is the distance from z to the boundary of Ω, δ is the thickness of the PML
domain, β0 is the magnitude of the absorption factor, and Ω1 is the numerical domain with-
out the damping layer (physical domain). Thus, Ω is composed by the union of Ω1 and a
damping layer of thickness δ extending on the boundary of Ω1.

A.2 Discrete framework

The spatial discretizations are based on a staggered grid using 4th and 8th order approxima-
tion of the spatial derivatives defined by equations (20) and (21). Figs. 15 and 16 describe the
discrete space for the 1SD and 2SD formulation in 1D, and the 2SD and elastic formulations
in 2D, respectively.
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Ωu, v, c

w

∆x

∆x
2

Fig. 15: Staggered grid in 1D with the relative positions of the (2SD) and (1SD)
wave equation variables and parameters. u, v and c are collocated (centered)
and w is staggered in the grid.

Ω

+ + + + + + +

+ + + + + + +

+ + + + + + +

x x x x x x

x x x x x x

x x x x x x

+

x

u, v, ux, vx, c, ρ

Txx, Tyy, wx, wxx, wyy, µ, λ

Txy, wy, wxy, wyx, µ
uy, vy, ρ

∆x
2

∆x
2

Fig. 16: Staggered grid in 2D with the relative positions of the (2SD and
elastic) wave equations variables and parameters. u, v, ux, vx, ρ and c are
collocated.

A.3 Numerical benchmarks

We define the numerical experiments, called “Test Case” used through the paper. In all
the tests we use a zero Dirichlet condition on the boundary of the domain Ω, a PML
layer thickness of δ = 0.8km, a damping parameter β0 = 30, and Ricker peak frequency of
f0 = 25Hz. If not otherwise stated, the initial condition for all the variables is zero. The
particular benchmarks are then defined as follows:

Test Case #1: Ω = [0, 10.5km]

c ≡ 1.524km/s, u0(x) = ((1− 10(x− 5.25)2)e−10(x−5.25)2 , f ≡ 0
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Test Case #2: Ω = [0, 10.5km]

c(x) =





1.524 km/s, if x < 5.25

3.048 km/s if 5.25 ≤ x < 7

0.1524 km/s if 7 ≤ x

,

u0 =





0, if |x− 2.6| ≥ 0.01

e
(x−2.6)2

(x−2.6)2−0.012 , if |x− 2.6| < 0.01
, f ≡ 0

Test Case #3: Ω = [0, 10.5km]

c(x) =

{
1.524 km/s, if x < 5.25

3.048 km/s if 5.25 ≤ , u0 ≡ 0,

f(x, t) =





0, if |x− 2.6| ≥ 0.01

e
(x−2.6)2

(x−2.6)2−0.012 (1− f2
0π

2(t− t0)2)e−f2
0π2(t−t0)

2
, if |x− 2.6| < 0.01

Test Case #4: Ω = [0, 8 km]× [0, 8 km]

c ≡ 3 km/s, u0(x, y) =





0, if ∥(x, y)− (4, 2)∥ ≥ 0.01

e
∥(x,y)−(4,2)∥2

∥(x,y)−(4,2)∥2−0.012 , if ∥(x, y)− (4, 2)∥ < 0.01
,

f ≡ 0

Test Case #5: Ω = [0, 8 km]× [0, 8 km]

c(x, y) =





3 km/s, if y ≥ 4

6 km/s, if (y < 4 and x ≤ 6) or (16/3 < y < 4 and x > 6)

1 km/s, if 6 ≤ x and y ≤ 16/3

,

u0 =





0, if ∥(x, y)− (4, 2)∥ ≥ 0.01

e
∥(x,y)−(4,2)∥2

∥(x,y)−(4,2)∥2−0.012 , if ∥(x, y)− (4, 2)∥ < 0.01
, f ≡ 0

Test Case #6: Ω = [0, 8 km]× [0, 8 km]

c(x, y) =

{
3 km/s, if y ≥ 4

6 km/s, if y < 4
, u0 ≡ 0,

f(x, y, t) =





0, if ∥(x, y)− (4, 2)∥ ≥ 0.01

e
∥(x,y)−(4,2)∥2

∥(x,y)−(4,2)∥2−0.012 (1− f2
0π(t− t0)2)e−f2

0π2(t−t0)
2
, if ∥(x, y)− (4, 2)∥ < 0.01

Test Case #7: Ω = [0, 8 km]× [0, 8 km] for elastic waves

ρ ≡ 0.25, µ(x, y) =





1 km/s, if y ≥ 4

1.5 km/s, if (y < 4 and x ≤ 6) or (16/3 < y < 4 and x > 6)

2.25 km/s, if 6 ≤ x and y ≤ 16/3

λ(x, y) =





8 km/s, if y ≥ 4

12 km/s, if (y < 4 and x ≤ 6) or (16/3 < y < 4 and x > 6)

18 km/s, if 6 ≤ x and y ≤ 16/3

, u0 ≡ 0,

f(x, y, t) =





0, if ∥(x, y)− (4, 2)∥ ≥ 0.01

e
∥(x,y)−(4,2)∥2

∥(x,y)−(4,2)∥2−0.012 (1− f2
0π(t− t0)2)e−f2

0π2(t−t0)
2
, if ∥(x, y)− (4, 2)∥ < 0.01
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A.4 Spectrum complementary results

In this subsection, we present the spectral distribution results using the 2SD formulation,
along with the real and imaginary limits of the spectrum for the elastic equations with PML.

20 15 10 5 0
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40
20

0
20
40
60

(a) ∆x = 0.105

25 20 15 10 5 0

300
200
100

0
100
200
300

(b) ∆x = 0.021

25 20 15 10 5 0

600
400
200

0
200
400
600

(c) ∆x = 0.0105

25 20 15 10 5 0

3000
2000
1000

0
1000
2000
3000

(d) ∆x = 0.0021

Fig. 17: Eigenvalues on the complex plane (using coordinates (Re(λ), Im(λ)))
using a fourth-order spatial discretization of the acoustic wave equation
in one dimension, with formulation 2SD, considering TC#3, for ∆x =
{0.105, 0.021, 0.0105, 0.0021}. For each ∆x, spectrum, the spectrum has a
rectangular-shaped convex hull.

Based on Figure,17, it is evident that besides σ(H) being symmetric with respect to
the real axis, the limits of the rectangle on the imaginary axis appear to have a linear
relationship with 1/∆x. However, for the real part, the relationship is different, exhibiting
a constant negative limit on the left side (−β0) for the PML parameter β0 > 0, and a small
positive number on the right. In general, we observed similar results for other formulations.

For the acoustic 2SD equations, empirical studies, as the one shown in Figure 6, indicate
that the upper bound is a positive small number, smaller than 1. Since in all experiments
this upper bound is always close to zero, this will not affect the estimates of the optimal
ellipse for Faber polynomial approximations, as the ellipse size will be dominated by the
imaginary axis bounds and the lower bound in the real axis. Therefore, a precise upper real
bound will not be further required.
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(a) Imaginary limit of the TC#7, in 2D, elas-
tic.
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(b) Negative real limit of the TC#7, in 2D,
elastic.

Fig. 18: Maximum imaginary parts (left) and lower bound of the real parts
(right) of the eigenvalues of σ(H), for varying 1/∆x.

A.5 Stability and dispersion

Here we present the operators and results of stability and dispersion for all the systems of
equations considered in Section A.2 (assuming no PML and no source term), with a spatial
discretization of fourth and eighth orders. At the end of the section are also presented the
graphics of stability and dispersion of the elastic formulation.

1. 1SD and 2SD in one dimension

∆tH =
c∆t

∆x

(
0 g11

g21 0

)
, ∆tH =

c∆t

∆x

(
0 1

h11 0

)
.

2. 1SD and 2SD in two dimension

∆tH =
c∆t

∆x




0 g11 g12

g21 0 0

g22 0 0


 , ∆tH =

c∆t

∆x

(
0 1

h11 + h22 0

)
.

3. elastic in two dimension (without considering the decoupled two first equations)

∆tH =
∆t

∆x

2µ+ λ

ρ




0 0 1
2µ+λ

g11
1

2µ+λ
g12 0

0 0 0 1
2µ+λ

g21
1

2µ+λ
g22

ρg21
ρλ

2µ+λ
g12 0 0 0

ρµ
2µ+λ

g22
ρµ

2µ+λ
g11 0 0 0

ρλ
2µ+λ

g21 ρg12 0 0 0




.

Where
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1. For 4th order

g11 =
1

24

(
27(1− e−ikx∆x) + e−2kx∆x − ekx∆x

)

g12 =
1

24

(
27(1− e−iky∆x) + e−2ky∆x − eky∆x

)

g21 =
1

24

(
27(eikx∆x − 1) + e−kx∆x − e2kx∆x

)

g22 =
1

24

(
27(eikx∆x − 1) + e−kx∆x − e2kx∆x

)

h11 = −1

6
cos(2θx) +

8

3
cos(θx)−

5

2

h22 = −1

6
cos(2θy) +

8

3
cos(θy)−

5

2

2. For 8th order

g11 =
1225

1024

(
1− e−ikx∆x +

1

15
(e−2kx∆x − ekx∆x) +

1

125
(e2kx∆x − e−3kx∆x)

+
1

1715
(e−4kx∆x − e3kx∆x)

)

g12 =
1225

1024

(
1− e−iky∆x +

1

15
(e−2ky∆x − eky∆x) +

1

125
(e2ky∆x − e−3ky∆x)

+
1

1715
(e−4ky∆x − e3ky∆x)

)

g21 =
1225

1024

(
eikx∆x − 1 +

1

15
(e−kx∆x − e2kx∆x) +

1

125
(e3kx∆x − e−2kx∆x)

+
1

1715
(e−3kx∆x − e4kx∆x)

)

g22 =
1225

1024

(
eiky∆x − 1 +

1

15
(e−ky∆x − e2ky∆x) +

1

125
(e3ky∆x − e−2ky∆x)

+
1

1715
(e−3ky∆x − e4ky∆x)

)

h11 = − 1

560
(e−4kx∆x + e4kx∆x) +

8

315
(e−3kx∆x + e3kx∆x)− 1

5
(e−2kx∆x + e2kx∆x)

+
8

5
(e−kx∆x + ekx∆x)− 205

72

h22 = − 1

560
(e−4ky∆x + e4ky∆x) +

8

315
(e−3ky∆x + e3ky∆x)− 1

5
(e−2ky∆x + e2ky∆x)

+
8

5
(e−ky∆x + eky∆x)− 205

72

A.6 Convergence

In this section, we detail the construction of the RK(9-7) scheme employed for computing
the reference solution. Furthermore, we provide the convergence and computational effi-
ciency results achieved through the utilization of Faber polynomials in solving elastic wave
propagation equations.
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(a) CFL number of the 2D, elastic equations.
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Fig. 19: Stability graphics of the Faber approximation method for different
spatial discretizations, and polynomial degrees m = {3, 4, ..., 40}, for the elas-
tic formulation. The CFL number (left), and the measure of the operations
number of Eq. (33) (right). Higher polynomial degrees implies in larger cCFL,
but this does not necessarily results in a decrease of the MVOs.
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(a) Dispersion number, αR, of the 2D, elastic
equations.

5 10 15 20 25 30 35 40
Polynomial degree

0
20
40
60
80

100
120
140
160

N
op

2D_Elastic_ord4
2D_Elastic_ord8

(b) Nα
op quantity of the 2D, elastic equations.

Fig. 20: Dispersion studies of Faber approximation method using different spa-
tial discretizations, dimensions, equations formulations, and polynomial de-
grees m = {3, 4, ..., 40}. Higher polynomial degrees implies larger αR and a
non-monotonous decrease of the operations number.

RK(9-7) algorithm:

k1 = Hun + f(tn)

k2 = H

(
un +

4

63
∆tk1

)
+ f

(
tn +

4

63
∆t

)

k3 = H

(
un +∆t

[
1

42
k1 +

1

14
k2

])
+ f

(
tn +

2

21
∆t

)

k4 = H

(
un +∆t

[
1

28
k1 +

3

28
k3

])
+ f

(
tn +
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Fig. 21: Approximation error of Faber polynomials using the elastic equations,
to solve TC#7. The curves represent the error when using polynomial of de-
grees m = {5, 10, . . . , 25}. Increasing the degree of the polynomial allows for
larger steps in time, while keeping the approximation error smaller than a
fixed threshold.
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(a) Maximum time step, ∆tmax, for TC#7,
using 4th and 8th order spatial discretiza-
tion.
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Fig. 22: Convergence in polynomial order for the elastic equations, using differ-
ent spatial discretization orders, and a wide range of polynomial degrees. The
maximum ∆t such that the error of Faber approximations is less than 10−6

is shown on the right. On the left, we show the number of operations using
the values of ∆tmax of the upper line. When the polynomial degree increases,
the maximum allowed time-step size also increases, together with a decrease
of the number of operations.
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Remark: In Section 4.1 of Chapter 2, the interval limiting the wavenumber 𝑘 is

[−
1

2Δ𝑥
,

1

2Δ𝑥 ]
, instead of [−

1

Δ𝑥
,

1

Δ𝑥 ]
.
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Chapter 3

High-order exponential
integration for seismic wave
modeling

This chapter complements our earlier discussion of the optimal adaptation of Faber

polynomials in seismic imaging. The primary objective of Chapter 3 is to enhance our

comprehension of Faber method potential by comparing it to other well-studied explicit

exponential integrators of arbitrary order in the context of seismic imaging, with the aim

of determining which method is most qualified. Furthermore, we extend this comparison to

include classical low-order methods, providing a comprehensive evaluation of the perfor-

mance of explicit exponential integrators against commonly used techniques for solving

the wave propagation equations. The metrics used for comparison include numerical

dispersion, dissipation, convergence, computational cost, and memory utilization.

In Chapter 3, our focus lies on maximizing the time-step of each method while ensuring

the accuracy of the solutions remains high. However, it’s noteworthy that the time sample

rate of seismograms in seismic imaging applications typically operates at a finer scale,

around 4 ms. Nevertheless, methods employing larger time-steps are still atractive. This is

because if the time-step they can accommodate surpasses the sampling interval, it enables

several computations in parallel for smaller time steps, thus enhancing efficiency.

This chapter offers a more comprehensive understanding of the application of explicit

exponential integrators in solving the wave equations. It is a self-sufficient Chapter, since

it has been written as an article submitted for publication in the journal of Computational

Geosciences, co-authored with my advisor Pedro Peixoto and co-advisor Martin Schreiber.

I believe it contributes to our knowledge of this class of methods and serves as a first step

not only for their application in the linear wave equations with ABC, but also, for linear

quasi-hyperbolic partial differential equations.
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Abstract Seismic imaging is a major challenge in geophysics with broad
applications. It involves solving wave propagation equations with absorbing
boundary conditions (ABC) multiple times. This drives the need for accurate
and efficient numerical methods. This study examines a collection of expo-
nential integration methods, known for their good numerical properties on
wave representation, to investigate their efficacy in solving the wave equation
with ABC. The purpose of this research is to assess the performance of these
methods. We compare a recently proposed Exponential Integration based on
Faber polynomials with well-established Krylov exponential methods alongside
a high-order Runge-Kutta scheme and low-order classical methods. Through
our analysis, we found that the exponential integrator based on the Krylov
subspace exhibits the best convergence results among the high-order methods.
We also discovered that high-order methods can achieve computational effi-
ciency similar to lower-order methods while allowing for considerably larger
time steps. Most importantly, the possibility of undertaking large time steps
could be used for important memory savings in full waveform inversion imag-
ing problems.

1 Introduction

The resolution of wave propagation equations is a widely researched topic due
to its broad range of applications in various fields. One particularly prominent
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Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Brazil

Martin Schreiber E-mail: martin.schreiber@univ-grenoble-alpes.fr
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application is seismic imaging, where material parameters of underground re-
gions are estimated based on seismic data. This technique is extensively uti-
lized in the industry for the exploration and extraction of fossil fuels [Ikelle
and Amundsen, 2018].

The numerical approximation of propagating wave equations is a critical
stage in this procedure. Consequently, the complexity of the problem impels
the development of novel techniques competitive to the efficiency and accuracy
of existing schemes [Alkhadhr et al., 2021, Kwon et al., 2020, Lee, 2023].

The propagation of elastic waves can be described as a linear hyperbolic
system of PDEs. Nonetheless, the addition of absorbing boundary conditions
to replicate an infinite domain modifies the eigenvalues, and they are no longer
purely imaginary. In this context, low-order classical explicit schemes such as
the Leap-Frog [Ruud and Hestholm, 2001] approximation, fourth-order Runge-
Kutta [Walters et al., 2020], and similar methods [Jing et al., 2019, Li and Liao,
2020] have proven effective. Nevertheless, despite their computational speed,
these algorithms require very small time steps to approximate the solution
accurately. Consequently, this leads to high memory requirements, which can
be a significant challenge in solving inverse problems, which is another crucial
step in seismic imaging.

In recent decades, a class of numerical algorithms known as exponential
integrators have emerged and demonstrated successful applications in various
fields. These algorithms have been effectively utilized in areas such as photonics
[Pototschnig et al., 2009], the development of numerical methods for weather
prediction [Peixoto and Schreiber, 2019], and the modeling of diverse physical
phenomena [Loffeld and Tokman, 2013], often surpassing the performance of
classical schemes. Another example of successful applications of exponential
integrators is provided by Brachet et al. [2022], where classical explicit and
implicit schemes were compared with exponential integrators, revealing that
exponential integrators exhibit superior dissipation and dispersion properties.
In Cohen and Dujardin [2017], exponential integrators were compared with
explicit and implicit schemes for solving the non-linear Schrödinger equation,
demonstrating accuracy comparable to the best performance of classical meth-
ods and surpassing other schemes such as the Crank-Nicholson method. In Iyi-
ola and Wade [2018], an exponential integrator was compared with an Implicit-
Explicit (IMEX) scheme and a second-order backward difference scheme for
solving non-linear space-fractional equations, concluding that it offers a sig-
nificantly larger stability region. Enabling the use of larger time steps, with
the potential for parallel implementation to enhance efficiency. Exponential
integrators are typically employed to preserve favorable dispersion properties
while allowing for larger time steps Schreiber et al. [2019].

Exponential integrators can be categorized into two types: one primarily
concerned with approximating the exponential (or related φ-functions) of a
large matrix resulting from the spatial discretization of the linear term of a
system of PDE, and the other focused on different schemes to approximate
the non-linear term [Hochbruck and Ostermann, 2010, Mossaiby et al., 2015].
In the context of wave propagation equations with absorbing boundary condi-
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tions, these equations are primarily governed by the linear term, and a source
function replaces the non-linear term with a well-defined analytic represen-
tation. This leads to a transformation of the problem, as demonstrated by
Al-Mohy and Higham [2011], which is a generalization of the work of Sidje
[1998], where the problem transforms into calculating the exponential of a
slightly enlarged matrix.

The approximation of a matrix exponential has received significant atten-
tion [Acebron, 2019, Alonso et al., 2023, Moler and Van Loan, 2003]. Numerous
exponential integrators have been developed to address this matrix function
calculation [Al-Mohy and Higham, 2011, Hochbruck and Ostermann, 2010, Lu,
2003]. One notable exponential integrator is based on the Krylov subspace,
with several schemes utilizing this approach and demonstrating good perfor-
mance [Gaudreault et al., 2021, Niesen and Wright, 2009, Sidje, 1998]. An-
other method relies on rational approximations [Al-Mohy and Higham, 2010],
which are generally implicit and less suitable for large operators. However,
they can be combined with the Krylov method to reduce matrix dimensions
[Al-Mohy and Higham, 2011]. Another approach utilizes Chebyshev polyno-
mials, an explicit method that can be formulated as a three-term recurrence
relation [Bergamaschi and Vianello, 2000, Kole, 2003]. Additionally, there are
other methodologies, such as Leja points interpolation [Bergamaschi et al.,
2004, Deka et al., 2023], optimized Taylor approximations [Bader et al., 2019],
and contour integrals [Schmelzer and Trefethen, 2006], among others.

When applied to solve hyperbolic systems, such as the wave equations in
heterogeneous media, their performance is poorly understood. To the best of
our knowledge, only a limited number of literature publications have focused
on methods of practical relevance for this specific problem [Kole, 2003, Kosloff
et al., 1989, Ravelo F, 2023, Tal-Ezer et al., 1987, Tessmer, 2011, Zhang et al.,
2014].

In Zhang et al. [2014], an implicit exponential integrator method is de-
veloped, and a comparison with other methods is presented, demonstrating
superior results in terms of accuracy and dispersion. However, a notable draw-
back of the implicit method is its high computational cost for each time step,
making it primarily suitable for very stiff problems.

Kole [2003] proposes an explicit exponential integrator based on Chebyshev
polynomial approximations, which achieves high solution accuracy and permits
large time steps. Nevertheless, the applicability of Chebyshev polynomials for
approximating the solution is limited to cases where the system matrix is
symmetric or antisymmetric, preventing the modeling of absorbing boundary
conditions. As a result, its usage in seismic applications is constrained.

In the researches [Kosloff et al., 1989, Tal-Ezer et al., 1987, Tessmer, 2011]
there have been proposed the use of Chebyshev expansions to approximate
the matrix exponential, and with the use of absorbing boundary conditions.
Nonetheless, the numerical results are primarily validated using simplistic
ABCs, and there is a lack of proof demonstrating convergence for these bound-
ary conditions.
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In previous work [Ravelo F, 2023], we explored a generalization of the
exponential integrator using Faber polynomials, a variant of Chebyshev poly-
nomials. This approach enabled us to solve the wave equations with absorb-
ing boundary conditions. We found that employing higher approximation de-
grees in the Faber polynomial-based method allows for increased time step
sizes without incurring additional computational costs. Furthermore, the aug-
mented time step approximations exhibit favorable accuracy and dispersion
properties.

A notable gap in the existing literature is the absence of experiments com-
paring high-order methods with classical low-order schemes for solving wave
equations with absorbing boundary conditions. Our work fills in this gap by
comparing exponential integrators based on Faber polynomials, Krylov sub-
space projection, and High-order Runge-Kutta with various classical meth-
ods. Specifically, we consider classical low-order methods such as Leap-frog,
fourth-order and four-stage Runge-Kutta (RK4-4), second-order and three-
stage Runge-Kutta (RK3-2), and seventh-order and nine-stage Runge-Kutta
(RK9-7). Detailed descriptions of these methods can be found in Section 3. The
comparison between these algorithms focuses on several key characteristics,
including numerical dispersion, dissipation, convergence, and computational
cost, which are thoroughly discussed in Sections 4 and 5. By investigating these
aspects, we aim to comprehensively evaluate the different methods and their
suitability for solving wave equations with absorbing boundary conditions.
Finally, in Section 6, we summarize the main findings and draw conclusive
remarks based on our research.

2 The wave equation

The execution of finite difference methods when solving a system of partial
differential equations depends on the continuum formulation and the approxi-
mation of the spatial derivatives [Thomas, 2013]. These factors directly impact
the discrete operator used in the computations. This section lays the ground-
work for the entire analysis presented in the manuscript. We discuss the fun-
damental elements defining the discrete spatial operator present in seismic
imaging applications. These elements include formulating wave propagation
equations with absorbing boundary conditions (ABC), spatial discretization
using derivative approximations, and free surface treatment.

We employ Perfectly Matching Layers (PML) as the absorbing boundary
condition [Assi and Cobbold, 2017] to simulate an infinite domain. Despite
the significant computational cost associated with PML absorbing boundaries,
they remain widely used in numerous numerical studies within the field of
seismic imaging [Chern, 2019, Jing et al., 2019, Tago et al., 2012]. For com-
putational efficiency, we implement the PML for the two-dimensional acoustic
wave propagation equations. While we can extend our analysis to propagating
waves in three dimensions, the complexity of the equations substantially in-
creases, resulting in a significant rise in computational requirements. Thus, for
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our purposes, we define the system of equations within a rectangular domain
Ω = [0, a]× [0,−b] for t > 0, as follows:

∂
∂t




u
v
wx

wy


 =




0 1 0 0

−βxβy + c2
(

∂2

∂x2 + ∂2

∂y2

)
−(βx + βy) c

2 ∂
∂x c2 ∂

∂y

(βy − βx)
∂
∂x 0 −βx 0

(βx − βy)
∂
∂y 0 0 −βy







u
v
wx

wy


+




0
f
0
0


 ,

(1)
where, u = u(t, x, y) is the displacement, c = c(x, y) is the given velocity dis-
tribution in the medium, v = v(t, x, y) is the wave velocity, and f = f(x, y, t)
is the source term. The w-functions, (wx, wy) = (wx(t, x, y), wy(t, x, y)), are
the auxiliary variables of the PML approach and the β-functions are known
and control the damping factor in the absorbing layer.

βz(z) =

{
0, if d(z, ∂Ω) > δ

β0

(
1− d(z,Ω)

δ

)2
, if d(z, ∂Ω) ≤ δ

, z ∈ {x, y} (2)

where d(z, ∂Ω) is the distance from z to the boundary of Ω, δ is the thickness of
the PML domain, and β0 is the magnitude of the absorption factor. Thus, the
domain Ω comprises a physical domain, where the wave propagates normally,
and an outer layer of thickness δ (the domain of the PML), where the waves
dampen.

Due to the attenuation of displacement within the PML domain, we opt
for a Dirichlet boundary condition (null displacement) along three sides of the
rectangular domain Ω. However, this boundary condition does not apply to
the top side, as a free-surface boundary condition is more suitable for seismic-
imaging simulations. Therefore, on the upper side of Ω, we exclude the PML
domain (βy(y) = 0, for all y ∈ [0, δ]), and determine the solution approxima-
tion at the upper boundary based on the chosen spatial discretization.

2.1 Spatial discretization

Several finite difference discretization schemes have been proposed for the wave
propagation equations [Jing et al., 2019, Miao and Zhang, 2022, Moczo et al.,
2000, Robertsson and Blanch, 2020, Zingg et al., 1996]. While determining the
optimal approach remains an open problem, staggered grids have gained signif-
icant popularity for these equations, as noted in Moczo et al. [2000]. Staggered
grids offer the capability to consider information of wave up to wavenumbers
of 1

∆x . Additionally, in the study of Moczo et al. [2000], the effectiveness of sec-
ond and fourth order staggered grid spatial discretizations was compared for
solving the wave equation, with the fourth-order discretization demonstrating
superior accuracy and stability over the second-order counterpart. As our main
interest is the time integration methods, to minimize spatial numerical errors
we adopted an eighth-order staggered grid spatial discretization. However, we
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do not use higher-order approximations, as their advantage in the numerical
approximation is unclear and they have greater computational demands.

The spatial discretization consists of a uniform staggered grid (∆x = ∆y)
of 8th-order. The positions of the discrete points are depicted in Fig. 1.

Ω

PML

+ + + + + + +

+ + + + + + +

+ + + + + + +

+

u, v, c

wx

wy

∆x
2

∆x
2

Fig. 1: Uniform staggered grid in 2D with the relative positions of the acoustic
wave equations’ variables and parameters. u, v and c are collocated. The
shaded region represents the PML domain.

For the inner discrete points, the 8th-order approximation of the derivatives
is given by

∂ui+ 1
2

∂x
≈ 1225

1024∆x

(
ui+1 − ui −

ui+2 − ui−1

15
+

ui+3 − ui−2

125
− ui+4 − ui−3

1715

)

(3)

∂2ui

∂x2
≈ −205

72
ui +

8

5
(ui+1 − ui−1)−

1

5
(ui+2 − ui−2) +

8

315
(ui+3 − ui−3)

− 1

560
(ui+4 − ui−4) (4)

with analogous expressions for the y-coordinate in the 2D discretization.

The approximation of derivatives near the sides and bottom boundaries,
where Dirichlet boundary conditions within a PML domain are applied, is
performed using the formulas (3) and (4). In these cases, the function values
required outside the domain Ω are set to zero. However, this does not im-
pact the accuracy of the numerical approximations because, within the PML
domain, the wave amplitudes decrease to zero.

A different strategy is necessary to approximate derivatives at points near
the upper boundary. Since there is no PML domain, and the boundary condi-
tion corresponds to a free surface.
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2.2 Free surface

From the free-surface condition∇u·(0, 1) = 0, we deduce the Neumann bound-
ary condition ∂u

∂y = 0. Additionally, by substituting βy = 0 at the free surface
in the third equation of 1, we obtain wy = 0 at the free surface. Utilizing these
values, we can approximate the required spatial derivatives of the functions in
(1) concerning the variable y.

There are two main approaches for approximating the spatial derivatives
concerning y. The first approach introduces artificial points outside Ω, assign-
ing function values at these points to satisfy the conditions at the free surface.
The second procedure involves approximating the derivatives at the free sur-
face and its nearest points using only the function values within the domain Ω,
without artificially extending the functions. According to Kristek et al. [2002],
the latter alternative brings greater accuracy to the numerical solution and is
the approach employed throughout this work.

Next, assuming that the grid points lying on the free surface correspond
to the evaluation of the displacement u (i.e., the free surface is at y = 0), we
need 8th-order approximations for

1. the second derivative ∂2u
∂y2 at the points with y = {0,−∆x,−2∆x,−3∆x}.

2. the first derivative ∂u
∂y at the points with y = {− 1

2∆x,− 3
2∆x,− 5

2∆x}.
3. the first derivative

∂wy

∂y at the points with y = {0,−∆x,−2∆x,−3∆x}.

The referred approximations for the derivatives ∂2u
∂y2 and ∂u

∂y , using Taylor

expansions, can be found in the Appendix A.1. As for the derivative
∂wy

∂y ,

we apply the algorithm outlined in Fornberg [1988]. This algorithm computes
the derivative with any approximation order and utilizes an arbitrary points
distribution where the values of the derived function are known.

3 Time integration methods

After characterizing the spatial discretization and the approximation of the
spatial derivatives, we obtain the following linear system of equations:

d

dt
U(t) = HU(t) + f(t), U(t0) = U0. (5)

Here, U(t) is a vector comprising the discretized functions u, v, wx, and wy,
while the matrix H represents the discretized spatial operator of the system
(1). The vector f consists of the source function evaluated at each grid point.

Most of the numerical methods described in this section solve the first-
order system of ordinary differential equations (5). Our primary focus lies in
approximating the time dimension, leading to the classification of methods as
either low or high order concerning time. The following subsections present
the numerical schemes employed in the former classifications.
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3.1 Low order methods

We consider four low-order methods that offer attractive features for approx-
imating the solution of wave equations. Three of these methods are based on
the Runge-Kutta (RK) approach, while the fourth is the Leap-frog scheme.

– 2nd order Runge-Kutta (RK3-2): The RK3-2 method is a second-
order RK scheme with three stages. It is a modification of the classical
RK2-2 method designed to increase its stability region [Crouseilles et al.,
2020], enabling its application to hyperbolic problems. The scheme can be
expressed as follows:

k1 = Hun + f(tn),

k2 = H(un + (∆t/2)k1) + f(tn +∆t/2),

k3 = H(un + (∆t/2)k2) + f(tn +∆t/2),

un+1 = un +∆tk3.

– 4th order Runge-Kutta (RK4-4): The classical RK4-4 scheme balances
stability region and computational requirements [Burden et al., 2015].

– 7th order Runge-Kutta of nine stages (RK9-7): This scheme has
been specifically constructed for hyperbolic equations and exhibits favor-
able dispersion properties [Calvo et al., 1996].

– Two step method (Leap-frog): The Leap-frog method is highly effi-
cient for solving wave equations. It utilizes two time steps to approximate
the second-order time derivative. The equations solved by the Leap-frog
method are

∂2u

∂t2
= −βxβyu− (βx + βy)

∂u

∂t
+ c2

(
∂2u

∂x2
+

∂2u

∂y2
+

∂ωx

∂x
+

∂ωy

∂y

)
+ f

∂wx

∂t
= −βxwx + (βy − βx)

∂u

∂x
∂wy

∂t
= −βywy + (βx − βy)

∂u

∂y

with the discrete approximations in time

∂2un
i

∂t2
≈ un+1

i − 2un
i + un−1

i

∆t2
,

∂wn
zi+1/2

∂t
≈

wn+1
zi+1/2

− wn−1
zi+1/2

2∆t
, with z ∈ {x, y}.

3.2 High order methods

The methods presented in this section are of arbitrary order and utilize ex-
ponential integrators based on Faber polynomials, Krylov subspaces, and a
high-order Runge-Kutta method.

67



High-order exponential integration for seismic wave modeling 9

According to Hochbruck and Ostermann [2010], an exponential integrator
approximates the semi-analytic solution of (5) using the formula of constant
variation

U(t) = e(t−t0)HU0 +

t∫

t0

e(t−τ)Hf(τ)dτ.

Expanding the function f in a Taylor series, the solution of (3.2) can be
expressed as the matrix exponential [Al-Mohy and Higham, 2011]

u(t) =
[
In×n 0

]
e(t−t0)H̃

[
u0

ep

]
, (6)

where ep ∈ Rp is a vector with zeros in its first p− 1 elements and one in its
last element, In×n is the identity matrix of dimension n, and

H̃ =

(
H W
0 Jp−1

)
,

where the columns of the matrix W consist of the values of the function f
and the approximations of the first p−1 derivatives of f , and Jp−1 is a square
matrix of dimensions p×p with ones in the upper diagonal and zeros elsewhere.

Equation (6) forms the basis for the exponential integrator methods im-
plemented in this research, and the approach used to compute the matrix
exponential in (6) determines each of the following exponential integrators.

– Faber approximation (FA): This method is an exponential integrator
based on Faber polynomials. As presented in Ravelo F [2023], the expo-
nential approximation is carried on with the three-term recurrence Faber
series

F 0(H) = In×n, F 1(H) = H/γ − c0In×n,

F 2(H) = F 1(H)F 1(H)− 2c1In×n,

F j(H) = F 1(H)F j−1(H)− c1F j−2(H), j ≥ 3,

where the parameters c0 and c1 depend on the eigenvalues distribution of
the operator H. Then, the solution in the next time instant is expressed
as

un+1 =
m∑

j=0

ajF j(H)un, (7)

where aj are the Faber coefficients.
– Krylov subspace projection (KRY): This method is an exponential in-

tegrator utilizing operator projections within the Krylov subspace. Various
proposed algorithms involve adaptive time steps and different strategies for
generating the subspace basis [Gaudreault et al., 2021]. However, to ensure
an impartial comparison among all the schemes, we opt for the traditional
Arnoldi algorithm to establish the vector basis and perform the projection
of H [Gallopoulos and Saad, 1992].
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u1 = u0/∥u0∥2
Do j from 1 to m :

w = Huj

Do k from 1 to j :
Ai,j = w · uk

w = w −Ai,juk

Aj+1,j = ∥w∥2
uj+1 = w/Aj+1,j

Then , eHu0 ≈ ∥u0∥2[u1| . . . |um]eAe1

Listing 1: Pseudocode of Arnoldi algorithm.

After constructing the matrix projection A, we compute the reduced ma-
trix’s exponential using the Padé polynomial approximation method, as
outlined in Al-Mohy and Higham [2011].
The Arnoldi algorithm to construct an orthonormal basis is very compu-
tationally intensive, and the amount of matrix-vector operations does not
represent its actual computational cost. Regarding this subject, the use of
non-orthonormal bases has been proposed to greatly reduce this cost Gau-
dreault et al. [2021]. However, due to the non-orthogonality of the Krylov
basis, the reduced matrix A does not represent an orthogonal projection of
the linear transformation H onto the Krylov subspace [Gaudreault et al.,
2021]. This discrepancy may lead to numerical errors that differ from those
encountered in the classical Arnoldi method. As we aim to use the classi-
cal Krylov method, we employ the Arnoldi algorithm without considering
the cost of constructing the Krylov subspace, given the potential to signif-
icantly reduce the computational cost.

– High-order Runge-Kutta (HORK): Runge-Kutta methods are exten-
sively used for solving differential equations Butcher [1996], and also in
combination with exponential integrator schemes [Crouseilles et al., 2020,
Lawson, 1967]These methods are naturally extended to high-order schemes.
They can be explicit and are easy to implement. For this research, we adopt
the Runge-Kutta algorithm of arbitrary order proposed by Gottlieb and
Gottlieb [2003], defined by the relation

k0 = un

ki = (In×n +∆tH)ki−1, i = 1 . . .m− 1

km =
m−2∑

i=0

λiki + λm−1 (In×n +∆tH)km−1

un+1 = km,

where λi are the coefficients of the Runge-Kutta and have a straightforward
computation. According to Gottlieb and Gottlieb [2003], the Runge-Kutta
method exhibits strong stability-preserving properties if the coefficients λi

are non-negative.
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3.3 Computational cost and memory usage

In addition to the accuracy of the numerical solution when discussing the dif-
ferent approaches, we are also interested in their resource consumption. Specif-
ically, we focus on the computational operations required by each algorithm
and their utilization of computational memory.

Determining the exact number of computations performed by these meth-
ods is a complex task, further complicated by the fact that sparse matrix-vector
multiplications are known to be bandwidth-limited in terms of performance
Alappat et al. [2022], Huber et al. [2020]. Therefore, we adopt a simplified
model that focuses exclusively on counting the loading and storing of ele-
ments. We consider only the matrix-vector operations, as the other vector
operations introduce, at most, small variations in the number of operations.
Consequently, the cost of each method by time step will be its number of stages
or matrix-vector operations (MVOs). Therefore, the overall number of MVOs
of a method for computing the solution up to a fixed time T and using a time
step size ∆t can be expressed as:

Nop = #MVOs
T

∆t
=

#MOVs

∆t
T,

where the value of T can be disregarded when comparing the methods since
it remains constant within a numerical experiment.

Memory consumption becomes a critical factor when solving the three-
dimensional wave equation for seismic imaging applications. The primary con-
cern is for the inverse problem, where the solution for each time step must be
stored to be accessed later. Therefore, the number of time steps required for
each method

Nmem =
T

∆t
,

is also an important variable that we will take into account afterward.

4 Analysis on homogeneous media

A common challenge arises when utilizing finite difference methods to solve
wave equations due to numerical dispersion and dissipation. Numerical disper-
sion occurs when phase velocities depend on the frequency, leading to distor-
tions in wave signals. On the other hand, numerical dissipation is associated
with wave amplitude and is responsible for the emergence of high-frequency
waves with small amplitudes in finite difference methods (Section 5.1 of Strik-
werda [2004]).

Since the continuous wave equation is non-dispersive and non-dissipative,
it is essential to ensure that the numerical methods used to solve it do not
introduce excessive dispersion and dissipation. In seismic imaging problems,
these issues can lead to significant inaccuracies in estimating the velocity field.
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Therefore, special attention must be given to identifying and mitigating these
errors.

In this section, we conduct a comparative analysis of the methods intro-
duced in Section 3 within the context of a homogeneous velocity field and
a single wave signal. We focus on evaluating their dispersion and dissipation
errors and examining how these errors depend on the choice of time-step size.

4.1 Numerical dispersion and dissipation by Fourier transform

Our analysis investigates numerical dispersion and dissipation by quantifying
variations in phase velocities of numerical approximations concerning a ref-
erence solution. To achieve this, we conduct a comparison in the frequency
domain and estimate velocity changes for each frequency. For this analysis,
a Fourier transform is applied to the solution, consisting of a single signal
of a Ricker wavelet [Harold, 1994]. Consequently, we consider a homogeneous
medium with a source point and a receiver (a spatial position where the signal
is recorded over time).

Let Fappr(ω) and Fref(ω) denote the Fourier transforms of the approxi-
mated and reference signals, respectively, with ω representing the frequency.
Thus, we establish the relationship as follows:

Fref(ω) = ek(ω)+il(ω)Fappr(ω),

where the real functions k(ω) and l(ω) account for the numerical dissipation
and dispersion errors, respectively, present in the approximated solution.

It is important to note that minimizing dissipation and dispersion errors
hinges upon the extent to which the functions k(ω) and l(ω) approaches zero.
As the numerical solution is computed at a finite number of time instants, ω
is also limited to a finite range. Then, we calculate the mean of the absolute
values of k(ω) and l(ω), which can be considered an approximation of the
integral of their absolute values. Hereafter, we refer to these metrics as the
dissipation and dispersion error. Furthermore, to mitigate potential numerical
errors arising from divisions by small quantities during the computation of
dispersion and dissipation errors, we exclusively consider frequencies where
the amplitudes in the reference or approximated solutions surpass 1% of the
peak amplitude of the reference solution.

In the next section, we will outline the numerical features of the Ricker
signal experiment. Following that, in the subsequent two sections, we will apply
the criteria discussed here to assess the numerical dissipation and dispersion
errors.
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4.2 Single signal experiment

The numerical solutions for wave propagation equations are computed in
the homogeneous medium Ω = [0km, 6km] × [0km, 5km], with a velocity
c = 3km/s. A Ricker source is placed at position (3km, 4.99km) (with a delay
of t0 = 0.18s), and a receiver is positioned at (3km, 2.5km). The time integra-
tion is carried out until T = 1.3s without applying any absorbing boundary
conditions, as the reflections at the boundary have not yet reached the receiver
by the final time. The spatial discretization size used for numerical solutions
of the methods is ∆x = 10m, while the reference solution is computed with
∆x = 2.5m and ∆t = 0.104ms using the RK9-7 scheme.

We are mainly interested in the largest time step allowed such that the error
of the methods is under a fixed threshold. However, to ensure uniform wave
sampling of the numerical approximations at the receiver, we use larger time
steps up to the point when the wave closely approaches the receiver (t = 0.6s).
Then, a uniform ∆t = 0.417ms is employed until the final time T = 1.3s is
reached. Figure 2 displays the homogeneous medium with the source and the
receiver positions and the snapshots of the reference solution at times t = 0.6s
and T = 1.3s.
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(a) Wave propagation at time t = 0.6s.
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(b) Wave propagation at time T = 1.3s.

Fig. 2: Snapshots of the reference solution at times t = 0.6s and T = 1.3s
within the homogeneous medium Ω = [0km, 6km] × [0km, 5km]. The Ricker
signal source position (blue dot) and the receiver location (black square) are
highlighted. During the time interval t ∈ [0.6, 1.3]s, the front wave propagates
through the receiver location.

Although our primary focus lies in evaluating the time error of the meth-
ods, it is essential to acknowledge the influence of spatial discretization on
numerical accuracy. To account for this spatial effect, convergence, disper-
sion, and dissipation are computed for all methods with a small time-step,
∆t = 0.417ms (see Figure 10 in Appendix A.2). The minimum convergence,
dispersion, and dissipation errors obtained from this computation serve as an
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estimation of the spatial effect. Then, we determine the maximum ∆t allow-
able for the methods such that the time error remains less or equal to 50% of
the spatial error.

For this experiment, the approximation error due to the spatial discretiza-
tion is approximately 3.9 · 10−6 (see Figure 10 in Section A.2). Based on this,
we determine ∆tmax as the maximum ∆t such that the approximation error
is less or equal to Err = 5.9 · 10−6. Then, the convergence can be analyzed by
investigating the signal error at a specific receiver location (3km, 2.5km). It
becomes clear that an increase in the number of stages leads to an increase in
∆tmax (see Figure 3).
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Fig. 3: Dependence of ∆tmax on the approximation degree of the numerical
scheme. A higher number of stages leads to an increase in the maximum allow-
able time step without significantly increasing the number of computations.

Referring to Figure 3, it can be observed that the Krylov method displays
a highly oscillatory pattern concerning its associated ∆tmax. Intriguingly, this
pattern reaches its local peak values when the subspace dimension is an odd
number. The general behavior of the methods convergence is not sensible to the
cutting point of the error threshold, and for variations of Err = 5.9 ·10−6, they
remain valid. So, we expect a similar behavior when studying the dispersion
and dissipation.

4.3 Dispersion results

The dispersion error arising from spatial discretization is estimated as 0.002.
Consequently, we permit for the time integrator methods an error threshold
of 1.5× higher, equating to a maximum allowable dispersion error of 0.003.
Then, we search for ∆tmax such that the dispersion error remains below this
limit.

In addition to ∆tmax, we introduce a computational cost measure denoted
as Ndisp

op , similar to the ideas of Section 3.3, defined as:
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Ndisp

op =
# MVOs

∆tmax
.
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(a) Maximum time-step, ∆tmax.
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Fig. 4: Variation of ∆tmax (left) and Ndisp

op (right) concerning the numerical
scheme and the number of stages utilized, according to the numerical disper-
sion error for a Ricker source peak frequency of fM = 15Hz. Generally, a
higher number of stages leads to an increase in the maximum allowable time
step size without significantly increasing the number of computations. * Here
we neglect the computational complexity of creating the Krylov subspaces.

Based on Fig. 4, the Leap-frog algorithm is approximately two times faster
than the other schemes but requires small time steps. On the other hand, the
explicit exponential methods exhibit an increase in their maximum time step
as the number of stages used rises, without a significant increase in the num-
ber of matrix-vector operations required. Interestingly, the peak values of the
Krylov methods for the largest ∆t and the lower Ndisp

op are consistently for the
odd numbers of the subspace dimension 4.

To ensure the robustness of our analysis, we reproduce the previous results
in Appendix A.2.1 using various peak frequencies of the Ricker source since
wave frequencies influence dispersion.

4.4 Dissipation results

Similar to the previous section, we estimate the minimum dispersion error,
independent of the time integrator used. The minimum dissipation error is
approximately 2.4 · 10−7. Thus, we once again compute the maximum time-
step, ∆tmax, such that the dispersion error remains below 3.6 · 10−7. Besides
of ∆tmax, we define the computational cost measure as
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Ndiss

op =
# MVOs

∆tmax
,

similar to convergence and dispersion.
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(a) Maximum time-step, ∆tmax.
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Fig. 5: Variation of ∆tmax (left) and Ndisp

op (right) concerning the numerical
scheme and the number of stages utilized, according to the numerical dissi-
pation error for a Ricker source peak frequency of fM = 15Hz. Generally, a
higher number of stages leads to an increase in the maximum allowable time
step size without significantly increasing the number of computations. * Here
we neglect the computational complexity of creating the Krylov subspaces.

In Figure 5, a similar trend is observed with the dispersion error, except
that the performance of the exponential integrator is better in relation to
the Leap-frog when comparing the dissipation error. Notably, the high-order
methods display an increase in the time-step size with the number of stages
used without significantly increasing the number of matrix-vector operations
required.

As with the numerical dispersion, we reproduce the experiments for differ-
ent Ricker source peak frequencies in Appendix (Section A.2.2).

5 Analysis on realistic seismic models

In this section, we describe the numerical experiments we will use to compare
the accuracy of the approximations of the different methods. For comparison,
we generated a reference solution using the RK9-7 scheme with a finer grid
(∆x = 5m) and then estimated the error for each method using various time
step sizes. To ensure a robust accuracy assessment, we employ two procedures.
First, we compare the approximated solution across the entire physical space
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(excluding the PML domain) at a specific time instant. Second, we compare
the seismogram data of the solution values at the upper boundary for all
the simulation time. For each error evaluation, we determine the maximum
time step size, ∆tmax, that allows a scheme of a particular order to achieve
a solution accuracy below a predefined threshold with the least number of
MVOs. Additionally, we introduce an efficiency measure and an indicator of
memory utilization derived from the number of MVOs and ∆tmax, following
the concepts outlined in Section 3.3.

5.1 Test cases

We consider four numerical scenarios with different velocity fields (see Figure
6). The first is a synthetic example of a heterogeneous medium with high
contrast velocities and a sharp corner. The second is a 2D slice of the velocity
field of the Santos Basin1 oil and gas exploration region. A 2D portion of
Marmousi velocity field is the third example, and the final test is the 2D
SEG/EAGE synthetic model.
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(a) Corner Model.
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(b) Santos Basin.
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(c) Marmousi.
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(d) SEG/EAGE.

Fig. 6: Velocity fields of the test cases Corner Model, Santos Basin, Marmousi,
and SEG/EAGE, used to study the numerical convergence.

1 A typical velocity field of Santos Basin region, in Brazil.

76



18 Fernando V. Ravelo et al.

In all the examples, we include a source and an arrangement of receivers
near the surface of the medium. The specification of this construct and other
parameters of the numerical simulations are specified in Table 1.

Test cases Corner Model Santos Basin

Domain dimensions Ω = [0km, 4km]× [0km, 4km] Ω = [0km, 12km]× [2km, 6.4km]

Simulation time T = 1.1s T = 1.5s

Source position (2km, 0.02km) (6km, 2.02km)

PML thickness (δ) 1.0km 0.8km

Test cases Marmousi SEG/EAGE

Domain dimensions Ω = [2km, 8km]× [0km, 3.5km] Ω = [2km, 11km]× [0km, 3.5km]

Simulation time T = 1.5s T = 2s

Source position (5km, 0.02km) (6.5km, 0.02km)

PML thickness (δ) 0.8km 0.8km

Table 1: Parameters of the four numerical simulations considered in this paper.

We save the solution at the upper boundary at each simulated time instant
to construct the seismogram. We use a time span twice as long as specified in
each experiment outlined in Table 1 to allow the reflected waves to reach the
surface.

5.2 Maximum time-step

We need to calculate the maximum allowable time step, denoted as ∆tmax, for
all time integration schemes. We initially consider the numerical error inherent
to the spatial discretization in each numerical experiment (see Appendix A.3)
since this error is independent of the time integration method. Next, we employ
a tolerance level equivalent to 150% of the spatial discretization error in each
experiment. Finally. we use that tolerance to compute the value of ∆tmax for
the numerical schemes described in Section 3.

We consider a spatial-step size of ∆x = 10m to compute the approximated
solutions mentioned before. Figures 7 and 9 show the allowed ∆tmax by all the
methods for the numerical tests Corner Model, Santos Basin, Marmousi, and
SEG/EAGE.

Figure 7 presents the maximum time step, ∆tmax, considering the spatial
error of the solution at a time instant. Generally, when the approximation
degree increases, we observe an increment in the allowed ∆tmax. Moreover,
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(a) Corner Model solution at time
T = 1.1s.
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(b) Computing ∆tmax for Corner Model using
an error tolerance of 3.03 · 10−7.

0 2 4 6 8 10 12
X Position [km]

2

3

4

5

6

7

De
pt

h 
[k

m
]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Di
sp

la
ce

m
en

t [
km

]

1e 5

(c) Santos Basin solution at time
T = 1.5s.
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(d) Computing ∆tmax for Santos Basin using
an error tolerance of 8.33 · 10−7.
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(e) Marmousi solution at time T = 1.5s.
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(f) Computing ∆tmax for Marmousi using an
error tolerance of 9.93 · 10−7.
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(g) SEG/EAGE solution at time T = 2s.
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(h) Computing ∆tmax for SEG/EAGE using an
error tolerance of 1.3 · 10−6.

Fig. 7: Snapshots of the reference solution for Corner Model, Santos Basin,
Marmousi, and SEG/EAGE numerical tests (left column), and the ∆tmax of
each method such that the error with the reference solution is under a fixed
threshold (right column). An increase in the number of stages of the method
leads to a larger ∆tmax.
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the Krylov subspace approximation exhibits the largest time steps among the
studied methods, followed by the other high-order methods. In contrast, low-
order methods such as Leap-frog and RK3-2 require smaller time steps.

The determination of ∆tmax based on the seismogram data is illustrated
in Figure 9. Similar to Figure 7, an increase in the number of stages leads to a
higher maximum time step. Notably, the Krylov subspace method consistently
demonstrates the highest ∆tmax values, followed by other high-order methods.

Based on the insights gained from Figures 7 and 9, we can conclude that
the choice between using the error of the solution at a particular time instant
or the seismogram data leads to similar values of ∆tmax for the methods.
Therefore, for the sake of simplicity, we estimate ∆tmax with the error of the
approximation in the physical domain at a specific time instant (as illustrated
in Figure 7). Next, we estimate the computational efficiency and memory
consumption of each method using the concepts of Section 3.3.

5.3 Computational efficiency and memory consumption

From the previous section, we concluded that using a method with a large
number of stages allows an increase in the maximum time step such that we
have a solution with good accuracy. However, it is unclear if increasing the
number of stages to use a larger ∆t reduces the number of operations or how
it helps in utilizing the memory. To answer this question, we apply the ideas
discussed in Section 3.3 and define the measure of computational efficiency

N∆t
op =

# MVOs

∆tmax
,

and the indicator of memory consumption to store results for a backward
propagation

N∆t
mem =

T

∆tmax
,

where T is the simulation time defined by Table 1, for each numerical experi-
ment.

Figure 8 illustrates the number of MVOs and the memory usage for all
the methods when solving the Marmousi numerical example. The Leap-frog
algorithm proves the most efficient among the tested methods. However, in
terms of memory utilization, this method requires a substantial amount of
memory. On the other hand, among the high-order methods, the Krylov sub-
space approximations demonstrate the best performance, even comparable to
the Leap-Frog scheme. However, we would like to point out that we are using
a simplified model that doesn’t consider the creation of the Krylov subspaces.
Nevertheless, we observe a significant decrease in the number of stored vec-
tors for high-order methods in general. Additionally, we notice that further
increases in the approximation degree have an attenuated effect in reducing
memory utilization, which is negligible for degrees larger than 20.
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(a) Corner Model seismogram until time
T = 2.2s.
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(b) Computing ∆tmax for Corner Model using
an error tolerance of 2.92 · 10−7.
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(c) Santos Basin seismogram until time
T = 3s.
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(d) Computing ∆tmax for Santos Basin using
an error tolerance of 2.65 · 10−6.
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(e) Marmousi seismogram until time
T = 3s.
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(f) Computing ∆tmax for Marmousi using an
error tolerance of 1.3 · 10−6.
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(g) SEG/EAGE seismogram until time
T = 4s.
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(h) Computing ∆tmax for SEG/EAGE using an
error tolerance of 4.2 · 10−6.

Fig. 9: Seismogram of the reference solution for Corner Model, Santos Basin,
Marmousi, and SEG/EAGE numerical tests (left column), and the correspond-
ing ∆tmax of each method, ensuring the error remains below a fixed threshold
(right column). An increase in the number of stages of the method leads to a
larger ∆tmax.

80



22 Fernando V. Ravelo et al.

0 4 8 12 16 20 24 28
# Stages (MVOs)

0.00

0.02

0.04

0.06

0.08

t m
ax

HORK
FA

KRY *

RK4-4
Leap-frog
RK3-2

RK9-7

0 5 10 15 20 25 30
# Stages

4.1 102

6.8 102

1.1 103

1.9 103

3.1 103

5.2 103

8.6 103

N
t

op

(a) Computational cost.

0 5 10 15 20 25 30
# Stages

9.3 101

1.9 102

3.9 102

8.0 102

1.6 103

3.3 103

6.9 103

N
t

m
em

(b) Memory utilization.

Fig. 8: Dependence of the number of MVOs and amount of stored solution vec-
tors on the polynomial degree for the Marmousi numerical test. As the number
of stages increases, the number of computations stabilizes, and memory usage
decreases. * Here we neglect the computational complexity of creating the
Krylov subspaces.

We observed similar behavior in the other numerical tests, and their cor-
responding graphs can be found in Appendix A.3.1.

6 Discussion

In this paper, we have implemented seven time-integration schemes, consist-
ing of three arbitrary-order schemes based on exponential integrators and four
classical low-order schemes. These algorithms have been compared through
various numerical accuracy metrics, including stability, dispersion, and conver-
gence. We have also studied the computational cost and memory requirements
for each method across different approximation degrees.

The stability and dispersion analyses were conducted within a homoge-
neous domain by analyzing the Fourier transform of a single wave generated
by a Ricker wavelet. We observed that the high-order methods were capa-
ble of using larger time steps as the polynomial degree increased. In general,
we found that the Leap-frog method, although requiring smaller time steps,
outperformed the high-order methods. Yet, when considering the dissipation
error, the high-order methods displayed competitiveness and even surpassed
all the low-order methods.

We conducted extensive tests to evaluate convergence using four distinct
velocity fields: three realistic fields and one with sharp interfaces. We assessed
the approximation error both in the physical space at a specific time instant
and using seismogram data. Remarkably, our results proved consistent and ro-
bust across both types of errors and all four numerical experiments. Moreover,
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the Krylov method presented the largest time step size in all the tests, re-
sulting in the least amount of solution vectors required to save for the inverse
problem. As a drawback, the Krylov method requires at each time instant
to access as many vectors (with the dimensions of the solution of the wave
equations) as stages of the method are used. This greatly hinders using the
method to solve the direct problem. In general, high approximation degrees
allowed for larger time steps, a finding that significantly impacts the number
of saved vectors needed for solving the inverse problem. These results provide
a different strategy to approach the memory challenges associated with the
inverse problem.

This research addresses a gap in the existing literature, as most previ-
ous studies on high-order methods have predominantly focused on the spa-
tial dimension Burman et al. [2022], Liu and Sen [2009], Weber et al. [2022],
Wilcox et al. [2010]. Additionally, no prior work has comprehensively examined
high-order exponential integrators in the context of the wave equation applied
to seismic imaging, scrutinizing the performance across a wide range of ap-
proximation degrees. Nonetheless, we acknowledge that our implementation
of high-order approximations using exponential integrators is naive. Substan-
tial enhancements are possible, particularly in terms of implementing adaptive
time-stepping strategies to mitigate the hump phenomena associated with the
matrix exponential Moler and Van Loan [2003]. Indeed, adaptive algorithms
have been proposed, such as the KIOPS algorithm for the Krylov subspace
projections, which significantly outperforms the classical Krylov method used
in our study.
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A Appendix

A.1 Approximations at the free-surface

We present the finite difference approximations of 8th order for the required derivatives
of the functions at the points near the free surface. To simplify the notation, we define
ui = u(x,−i∆x), and wi = wy

(
x,−(i+ 1

2
)∆x

)
. Since we are considering a uniform grid,

we have that ∆y = ∆x, and so, only ∆x will be used.
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A.2 Homogeneous medium

This section complements the results in Section 4. First, we show the convergence, dispersion,
and dissipation errors associated with the eighth-order spatial discretization scheme using
∆x = 10m (Figure 10). Additionally, we present how varying the peak frequencies as fM =
10, 15, 20, 25, impact the maximum allowable time-step ∆tmax and the number of matrix-
vector operations (MVOs) for different schemes and approximation degrees.
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(c) Dissipation error.

Fig. 10: Convergence, dispersion, and dissipation errors using the time-step
∆t = ∆x

8c for different numerical methods, with a peak frequency of fM =
15Hz. The approximation order does not matter, since there is an error asso-
ciated to the spatial discretization.
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A.2.1 Dispersion results

0 5 10 15 20 25 30
# Stages (MVOs)

0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

t m
ax

HORK
FA

KRY
RK4-4

Leap-frog
RK3-2

RK9-7

0 4 8 12 16 20 24 28
# Stages (MVOs)

0.00

0.02

0.04

0.06

0.08

t m
ax

(a) Peak frequency fM = 10Hz.

0 4 8 12 16 20 24 28
# Stages (MVOs)

0.00

0.02

0.04

0.06

0.08

t m
ax

(b) Peak frequency fM = 15Hz.

0 4 8 12 16 20 24 28
# Stages (MVOs)

0.02

0.04

0.06

0.08

t m
ax

(c) Peak frequency fM = 20Hz.

0 4 8 12 16 20 24 28
# Stages (MVOs)

0.02

0.04

0.06

0.08

t m
ax

(d) Peak frequency fM = 25Hz.

Fig. 11: Maximum time step (∆tmax) while controlling the time dispersion
error of each method to be below 50% of the spatial dispersion error concerning
different peak frequencies of the Ricker wavelet. A grater number of stages
generally allows larger time steps.

From Fig. 11, we perceive that the general behavior is maintained independent of the peak
frequencies. With the difference that when the peak frequency increases, the results for
the Krylov method are more oscillatory, and the high-degree approximations using Faber
polynomials suffer from more round-off errors.
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(a) Peak frequency fM = 10Hz.
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(b) Peak frequency fM = 15Hz.
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(c) Peak frequency fM = 20Hz.
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(d) Peak frequency fM = 25Hz.

Fig. 12: Dependence of the number of matrix-vector operations and the max-
imum time-step required to compute the solution on the polynomial degree,
considering different peak frequencies. While increasing the number of stages
generally leads to a slight increment in computations. * Here we neglect the
computational complexity of creating the Krylov subspaces.

In Figure 12, we still observe that the Leap-frog algorithm requires the least amount of
MVOs. The FA and HORK methods share a similar number of computations independent
of the peak frequency.

A.2.2 Dissipation results

A similar trend of Fig. 11 is observed in Figure 13, as with the dispersion error. The Krylov
method still has the worst performance for the different peak frequencies. However, it is
noteworthy that the RK9-7 method (red triangle) displays an even better performance
concerning the dissipation error.
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Fig. 13: Maximum time step such that the time dissipation error of each
method is less than 50% of the spatial dispersion error for different peak fre-
quencies of the Ricker wavelet. In general, more stages allow larger time steps,
except for the Krylov method, where ∆tmax reach a limit.

Regarding computational efficiency in the analysis of the dispersion error, the RK9-7
scheme still maintains an efficient computational performance. The FA and HORK exhibit
similar behavior among the high-order methods, with a decline in efficiency for high-order
Faber polynomials as the peak frequency increases. Nonetheless, the Krylov method exhibits
the best performance in general, but with a very marked oscillatory behavior.
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(a) Peak frequency fM = 10Hz.
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(b) Peak frequency fM = 15Hz.
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(c) Peak frequency fM = 20Hz.
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(d) Peak frequency fM = 25Hz.

Fig. 14: Dependence on the polynomial degree of the number of matrix-vector
operations by maximum time-step required to compute the solution for dif-
ferent peak frequencies. When the number of stages increases, the number of
computations increases slightly. * Here we neglect the computational complex-
ity of creating the Krylov subspaces.

A.3 Convergence and computational efficiency

In this section, we complement the results of the numerical experiments of Section 5. First,
we show the error graphics using the minimum time-step of ∆t = ∆x

8cmax
, where cmax is the

medium maximum velocity. These graphs account for all the methods discussed in Section
3 and several approximation degrees for the high-order schemes. Following that, we present
the graphics of the estimation of ∆tmax, the computational efficiency, and the memory
utilization.
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(c) Marmousi.
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(d) SEG/EAGE.

Fig. 15: Error at a time instant in the physical space achieved by each time in-
tegrator and several approximation degrees, for all the numerical experiments
described in Section 5.1, using a time step size of ∆t = ∆x

8cmax
. Regardless of

the order of the method, there is an inferior limit for the error due to spatial
discretization step-size size and scheme.

Based on Figure 16, we observe an approximation error in all the numerical examples
that do not decrease with the order of the method or with the selected method. This error
is independent of the time integration strategy and is produced by the spatial discretization
operator. While the dependence of the spatial error on the numerical experiment is weak, it
is important to estimate it accurately for a reliable computation of ∆max, as quantified in
Table 3.
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Numerical experiment Spatial error Error tolerance

Corner Model 2.02 · 10−7 3.03 · 10−7

Santos Basin 5.55 · 10−7 8.33 · 10−7

Marmousi 6.62 · 10−7 9.93 · 10−7

SEG/EAGE 8.65 · 10−7 1.3 · 10−6

Table 2: Numerical error at a time instant in the physical domain produced
by the spatial discretization.

Table 3 contains two key columns of information. The first column, labeled “Spatial
error”, represents the error stemming from the spatial discretization. Meanwhile, the second
column, labeled “Error tolerance”, accounts for the error tolerance of 150% of the spatial
error we defined for the numerical experiment.

For the minimum error using the seismogram data, we have the respective error graphics
and tolerance for each numerical test.
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Fig. 16: Error using the seismogram data achieved by each time integrator and
several approximation degrees, for all the numerical experiments described in
Section 5.1, using a time step size of ∆t = ∆x

8cmax
. Regardless of the order of

the method, there is an inferior limit for the error due to spatial discretization
step-size size and scheme.

Numerical experiment Spatial error Error tolerance

Corner Model 2.92 · 10−7 4.38 · 10−7

Santos Basin 2.65 · 10−6 3.97 · 10−6

Marmousi 1.3 · 10−6 1.95 · 10−6

SEG/EAGE 4.2 · 10−6 6.3 · 10−6

Table 3: Numerical error utilizing the seismogram data produced by the spatial
discretization.
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A.3.1 Computational efficiency and memory consumption

Figure 17 displays each time the integrator’s computational cost and memory utilization
for the numerical tests Corner Model, Santos Basin, and SEG/EAGE. Although there are
some variations between the experiments, the general behavior remains consistent. High-
order methods require significantly less memory; in some cases, they are competitive with
low-order methods, such as the Leap-Frog scheme.

The relationship between the number of MVOs and the quantity of stored solution
vectors concerning the polynomial degree is illustrated for the Corner Model (first line),
Santos Basin (second line), and SEG/EAGE (third line) numerical tests. As the number of
stages increases, there is a stabilization in the number of computations, and memory usage
decreases.
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(a) Computational cost of Corner Model.
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(b) Memory utilization of Corner Model.
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(c) Computational cost of Santos Basin.
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(d) Memory utilization of Santos Basin.
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(e) Computational cost of SEG/EAGE.
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(f) Memory utilization of SEG/EAGE.

Fig. 17: Dependence of the number of MVOs and amount of stored solution
vectors on the polynomial degree, for the Corner Model (first line), Santos
Basin (second line), and SEG/EAGE (third line) numerical tests. As the num-
ber of stages increases, the number of computations stabilizes, and memory
usage decreases. * Here we neglect the computational complexity of creating
the Krylov subspaces.
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Chapter 4

A continuum model of a tumor
growth for assessment of
High-Energy Shock Waves
therapy

As discussed in Chapter 1, wave propagation equations are present in a wide range

of applications, and our focus has been on seismic imaging. However, exploring into a

different direction, we introduce a novel biological application by developing a mechanical

model of tumor growth subjected to High-Energy Shock Wave (HESW) therapy.

Given that HESW therapy involves the propagation of shock waves, the source term

lacks smoothness, making it unsuitable for constructing an exponential integrator based

on the derivatives over time of the source function. However, alternative strategies can

be employed, such as utilizing a parallel approximation of the source function via an

exponential integrator, similar to the approach outlined by (Tal-Ezer et al., 1987; Kole,
2003; Tessmer, 2011).

The potential use of HESW as a treatment for growing tumors has been extensively

investigated in biological experiments since the early 1990s. Despite its promising results

in both in vitro and in vivo experiments, three decades later, HESW therapy is yet to be a

standard clinical practice. We believe that this is partly due to the lack of a comprehensive

understanding of the action of the therapy on tumors, which is crucial for optimising its

efficiency while minimising intensity to prevent collateral damage to the surrounding

tissues.

HESW therapy as an inherently mechanical in nature, as it consists of sharp pressure

changes on the tissue. Thus, it is fundamental to investigate the impact of the pressure

changes induced by HESW therapy on the volumetric stresses within the tumor and their

subsequent effect on tumor growth. Addressing this question requires a mathematical

model of a tumor rooted in continuum mechanics capable of simulating a mechanical

therapy. Therefore, we developed a simple model within the framework of continuum

mechanics, yet sophisticated enough to enhance our understanding the stress changes
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within the tumor. Serving as a foundational step in the development of more complex

models, with the aim of simulating more realistic treatment scenarios.

This chapter is intended for submission in the Journal of Applied Mathematical Mod-

elling, co-authoredwithmy advisor Pedro Peixoto and Reinaldo Rodrigues, an international

collaborator. It is a self-contained unit, but has not been submitted yet due to the pending

subsection that examines the comparison with experimental data.
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ABSTRACT
The High Energy Shock Wave (HESW) therapy, commonly used in the treatment
of fractured bones and disintegration of kidney stones, also plays an important role
in tumor treatments in modern medicine. While experimental results reveal its ef-
fectiveness, the underlying mechanical properties still lack further understanding.
Aiming to help in the comprehension and optimal use of the technique, we propose
a mathematical model of the action of High Energy Shock Wave (HESW) ther-
apy in a growing tumor surrounded by an external medium. The model is based
on continuum mechanics, describing a simplified yet realistic modeling of the dy-
namic stresses encountered during tumor deformation. The goal is to assess the
tumor response under the action of shock waves generated in the external medium.
We conduct numerical experiments with different sets of parameters for the HESW
therapy observing that shock waves indeed produce a change in the tumor growth,
leading to some cases in a decrease of its size. Moreover, we identify parameters of
the shock wave application that have considerable influence on the resulting tumor
growth. Additionally, we conducted experiments using parameter values based on
real experimental measures and validated the model with reported data from tumor
growth in vitro experiments. We conclude that the model successfully incorporated
the mechanical features of the HESW therapy, contributing to a deeper understand-
ing of the therapy. This understanding could aid in further optimizing the application
of HESW. Finally, the model is intended to serve as a basis for further developments
with more complex combined therapies involving HESW therapy.

KEYWORDS
Mathematical model; continuum mechanics; cancer; linear elasticity; mechanical
therapy; high-energy shock waves;

1. Introduction

In the field of cancer research, mathematical models serve as valuable tools for
comprehending the intricate factors that govern tumor development [Watanabe
et al. 2016; Deisboeck et al. 2009; Tabassum et al. 2019; Roose et al. 2007; Al-
trock et al. 2015]. These models aid in predicting potential disease outcomes by
simulating scenarios in which alterations in specific elements lead to a reduction in
tumor progression or, in some cases, even tumor regression. Such successful modifi-
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cations may lead to innovative anti-tumor therapies [Ribba et al. 2018; Yin et al. 2019].

High-Energy Shock Wave (HESW) therapy, also called Shock Wave Lithotripsy
(SWL) [López-Maŕın et al. 2018], is an important technique in medicine, normally
adopted for medical procedures in humans such as the disintegration of kidney
stones and the treatment of fractured bones [Shrivastava and Kailash 2005]. In the
final decades of the last century, in vitro and pre-clinics studies showed how the
methodology can also be used for treatments of growing tumors [Russo et al. 1986;
Hoshi et al. 1991; Nicolai et al. 1994; Wörle et al. 1994; Maruyama et al. 1995b].
Experimental findings have revealed a delay in tumor growth upon the application
of HESW therapy, and when combined with chemotherapy, an even more significant
delay in growth and even tumor regression have been observed [Gamarra et al. 1993a;
Oosterhof et al. 1990a]. However, the precise mechanisms underlying this therapy
remain not fully understood, and mathematical studies modelling and replicating its
effects on tumors are scarce.

Various biological effects of shock wave therapy on tumor growth have been
documented. For instance, it enhances cell membrane permeability [López-Maŕın
et al. 2018; Li et al. 2018], improving the efficiency of chemotherapy [Wörle et al. 1994;
Frairia et al. 2003; Serpe et al. 2011]. It also causes vascular destruction within the
tumor, leading to necrosis in certain areas [Hoshi et al. 1991; Gamarra et al. 1993b].
Shock waves can also induce cellular damage, enhancing apoptosis [Russo et al.
1986], and lead to cellular death due to cavitation effects generated by the negative
pressure following the positive shock front [Sansone et al. 2018]. Furthermore, pressure
changes produced by the therapy can alter stresses within the tumor, potentially
affecting cell proliferation [Steinhauser 2016]. These processes occur simultaneously,
making it challenging to study each one individually. Therefore, mathematical models
that encompass these factors are crucial for a comprehensive assessment of HESW
therapy’s effects. Ensuring a favorable cost-benefit trade-off is vital in practical
HESW therapy applications to minimize collateral effects, such as damage to nearby
tissues and organs, and to reduce the risk of metastasis [Nardi et al. 2004; Roerdink
et al. 2017; Oosterhof et al. 1996]. This is particularly important for maintaining
lower treatment intensities compared to other tumor therapies [Abdelhalim et al. 2018].

In its essence, HESW therapy is a change of pressure on the tissue. Therefore, it
is essential to investigate the impact of pressure changes induced by HESW therapy
on the volumetric stresses within the tumor and their effects on tumor growth. Ad-
dressing this question requires a mathematical model of a tumor rooted in continuum
mechanics that can simulate the mechanical therapy involving shock waves. However,
to the best of our knowledge, there has not been published researches on this specific
subject. Nonetheless, related works, such as Ghasemi and Sivaloganathan [2020], have
developed a mathematical model to simulate the effects of similar therapies involving
high-intensity focused ultrasound (HIFU), consisting of compressions and rarefactions
that propagates in the medium [Madersbacher and Marberger 2003]. However, the
model is not mechanical, and so, it did not consider the stresses in the tumor.
Nonetheless, the importance of the simulation of the stress-deformation relation
in a growing tumor has been already highlighted in the review Steinhauser [2016]
for assessing the HIFU therapy. HIFU therapy combines mechanical and thermal
actions on tissue, and precise modeling requires the implementation of non-linear
propagation laws [Canney et al. 2010]. In the framework of modeling HESW therapy
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while taking into account the stress-deformation relations have been addressed by
Fagnan et al. [2008]. They developed a computational model focused on investigating
the stresses under the action of HESW in bones, considering complex geometries
and fluid mechanics. In their research, although it is recognized that the propagation
of shock waves lies in the theory of non-linear elasticity, for the case of the HESW
treatment, the linear elasticity theory served as a valid approximation.

In this study, we simulate the application of High-Energy Shock Wave therapy
on tumors. The mathematical model describes the effect of elastic shock wave
propagation within an external medium surrounding an avascular tumor. Both the
tumor and the external medium are treated as linear elastic materials, each governed
by distinct systems of equations. The tumor is a material with the ability to alter its
volume, displacing the external medium during its anisotropic growth. It is connected
to the external medium by its boundary, with a perfect contact condition. The
external medium is represented as a homogeneous and isotropic material, following
Hooke’s law in three dimensions. As a result, our model is grounded in linear elasticity
theory. This arrangement creates a heterogeneous medium, allowing us to investigate
the tumor material’s response to HESW therapy.

Our objective is to explore the possible outcomes of the tumor evolution for different
setups of the HESW treatment. Therefore, we conduct numerical experiments that
involve varying the parameters of HESW therapy to assess their impact on tumor
growth and volumetric stresses within the tumor. Although our model simplifies the
realistic tumor treatment involving various techniques, it is sophisticated enough to
enhance our understanding of one of the underlying mechanisms of HESW therapy:
the stress changes within the tumor. It serves as a foundation for developing more
complex, multi-technique models to emulate a more realistic treatment. One of
the main challenges inherent to these mathematical models lies in acquiring the
experimental data for the model parameters. In support of this endeavor, we also
provide a concise summary of published data regarding the parameters necessary for
a continuum mechanics-based tumor model, with standardized physical magnitudes,
and the primary experimental layouts outlined in relevant references concerning
HESW therapy in both in vitro and in vivo experiments.

In the following section, we describe the mathematical formulations of the tumor
and HESW therapy models. Thereafter, we outline the proposed composite tumor-
treatment model. Section 3 presents a sensitivity analysis concerning tumor growth and
stress distribution, exploring the influence of various HESW parameters. We also use
real data from an in vitro experiment, utilizing the insights from the previous section
to simulate HESW therapy with parameter sets designed to induce diverse effects on
tumor growth and volumetric stresses. Then, we discuss the practical viability of these
sets of parameters and outline the subsequent steps to develop a more accurate and
broad model.

2. Materials and Methods

The simulation of HESW therapy applied to a tumor involves the interaction of two
models. One model represents the interplay of stresses and the anisotropic growth of
an avascular tumor, while the other involves solving a wave equation with a source
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term to simulate the therapy.

Several tumor models have been proposed in the literature within the framework
of continuum mechanics Stylianopoulos [2017]; Unnikrishnan et al. [2010]; Jones and
Chapman [2012], ranging from linear elastic constitutive laws Araujo and McElwain
[2004, 2005]; Jones et al. [2000]; Ngwa and Agyingi [2012]; Roose et al. [2003] to
non-linear elastic models Pillay et al. [2018]; Voutouri et al. [2014]; Stylianopoulos
et al. [2013], considering more complex interactions and are expressed in both the
Eulerian and Lagrangian coordinate reference systems. These models take into
account the stresses resulting from the mass addition caused by the tumor growth,
and also how these stresses affect the tumor growth itself. The model adopted in
this research belongs to the category using linear elastic constitutive equations, and
its principal hypotheses are as follows. The tumor model deals with the stresses
within the tumor and how they influence the rate and direction of tumor growth.
Additionally, the rates of proliferation and death of the tumor cells depend on
these stresses. The model equations assumes an ample nutrient supply at the tumor
boundary, which is essential for tumor growth. It also imposes spherical symmetry
on all quantities within the tumor, employing a spherical coordinate system in its
mathematical formulation.

The mechanical therapy model is based on linear wave equations for elastic and
isotropic materials. However, its complexity increases due to the necessity of calcu-
lating numerical solutions within a finite domain, leading to wave reflections at the
boundary, potentially compromising the results of numerical experiments involving
shock waves. To mitigate wave reflections at the boundary, we utilize absorbing
boundary conditions (ABC), specifically the Perfectly Matching Layer formulation
[Assi and Cobbold 2016]. This results in a model of wave propagation consisting
of 15 equations formulated in Cartesian coordinates, in contrast with the classical
3-equation system for wave motion. These equations include three second-order
equations for 3D displacement and twelve first-order equations for auxiliary variables
associated with the ABC.

The contact between both models is at the tumor boundary, in the direction
normal to the boundary. The tumor model needs the value of the radial stresses at its
boundary at each instant of time, and the wave propagation model needs the value of
the displacement at the boundary of the tumor. This relationship is described in the
diagram of Figure 1.

The point of contact between these two models occurs at the tumor boundary, in
the direction perpendicular to the boundary. The tumor model requires the values of
radial stresses at its boundary at each time step, while the wave propagation model
necessitates the displacement values at the tumor’s boundary. This interaction is il-
lustrated in Figure 1.

Given that both models employ different coordinate systems, it is necessary to
convert coordinates for the radial stress, denoted as σr, and the displacement vector
(ux, uy, uz). For example, σr is computed using the stresses Tij of the external medium,
which are expressed in Cartesian coordinates. Meanwhile, the vector (ux, uy, uz) is
derived from the tumor displacement ur, which is specified in spherical coordinates.

Let σr represent the stress in the radial direction at the tumor boundary, and
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Figure 1. Plane projection diagram of the 3D mathematical model: The HESW therapy model determines the
radial stress (σr) at the tumor boundary and, while simultaneously, the tumor model regulates the conditions

for wave displacement (ux, uy , uz) at its boundary. This coupling forms a well-defined model for mechanical
therapy. The green contour in the diagram represents the device [Ogden et al. 2001] employed to generate

HESW, which has different elasticity parameters compared to the external medium.

(ux, uy, uz) denote the displacement components in Cartesian coordinates. We can
establish the following relationships between these two coordinate systems:

σr = Txx sin
2 θ cos2 ϕ+ 2Txy sin

2 θ sinϕ cosϕ+ 2Txz sin θ cos θ cosϕ+ Tyy sin
2 θ sin2 ϕ

+ 2Tyz sin θ cos θ sinϕ+ Tzz cos
2 θ, (1)

ux = ur sin θ cosϕ, uy = ur sin θ sinϕ, uz = ur cos θ, (2)

where θ, ϕ are the angle variables of the spherical coordinate system that can be
mapped to the cartesian coordinate system as

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

where r denotes the radial coordinate variable within the spherical coordinate system,
with its origin at the center of the tumor. The stress in the radial direction, σr,
is expressed in terms of the tensor stress components (Txx, Txy, Txz, Tyy, Tyz, Tzz) in
Cartesian coordinates (Eq. (1)), which are used in the mechanical therapy model.
On another hand, the displacement vector (ux, uy, uz) is formulated from within the
spherical coordinate system (Eq. 2), as applied in the tumor model.

2.1. Tumor model

The tumor model we use in this study builds upon the mathematical framework
introduced in Valdes-Ravelo et al. [2018], which focuses on the growth of avascular
tumors. This model is grounded in continuum mechanics, crucial to understand the
tumor mechanical responses to HESW therapy. Moreover, it has a balance between a
simplified structure that permits in-depth analysis of the stress changes by the HESW
therapy with minimal interference from other factors, yet remains representative of a
realistic setting.

In this model, the tumor is treated as a homogeneous elastic material with a

5

105



well-defined solid shape. The geometry of the tumor will be assumed as spherical,
maintaining its symmetry at all times. The tumor growth is stress-dependent, and its
direction of growth depends anisotropically on the stresses. The external medium is
considered elastic, isotropic, homogeneous, and infinite. Notably, our model differs
from Valdes-Ravelo et al. [2018] in a fundamental way. Here, we explicitly model the
external medium to assess the impact of HESW therapy on the tumor, while in the
previous study, the influence of the external medium was implicitly embedded in the
equations.

The proliferation and death of the tumor cells in the model are considered to be
dependent on the stresses. This relation determines the anisotropy in the directions
of growth, favoring those with less compressive stress. Moreover, this condition can
even lead to inhibition of cellular growth in the presence of stresses, and, on a lower
level, enhancement of cellular death.

The tumor model has two independent variables, denoted as t and r, where t repre-
sents time, and r indicates the distance of a particle point to the center of the tumor.
These two variables suffice to describe the spatial position of any point within the
tumor at any time, due to our assumption of spherical symmetry. Furthermore, there
are five dependent variables, corresponding to a critical aspect of the mathematical
model. Each of these variables is governed by its own equation, collectively forming a
quasilinear system of first-order partial differential equations. The equations govern-
ing tumor growth and stress distribution in the system are structured as outlined in
Valdes-Ravelo et al. [2018]:

dR

dt
(t) = vr(R, t), (3)

∂vr
∂r

(r, t) =
R sinh(r)

r sinh(R)
[1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2]

− ϵ[1 + ζ2
√

σ2
r(r, t) + 2(σr(r, t)− β(r, t))2]− 2

vr(r, t)

r
, (4)

∂σr

∂r
(r, t) = −2β

r
, (5)

∂g

∂t
(r, t) = −vr(r, t)

∂g

∂r
(r, t) +

R sinh(r)

r sinh(R)

(
1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

)

− ϵ
(
1 + ζ2

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

)
, (6)

∂β

∂t
(r, t) = −vr(r, t)

∂β

∂r
(r, t) +ϖ(r, t), (7)

with

ϖ(r, t) =
1

1 + 2ag
eaβ

(eaβ + 2)2

[
eaβ

eaβ + 2

(
R sinh(r)

r sinh(R)

[
1− ζ1

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

]

− ϵ
[
1 + ζ2

√
σ2
r(r, t) + 2(σr(r, t)− β(r, t))2

])
+

∂vr
∂r

]
.

6

106



subject to the initial and boundary conditions

R(0) = R0, (8)

vr(0, t) = 0, (9)

σ−
r (R(t), t) = σ+

r (R(t), t), (10)

g(r, 0) = 1, (11)

β(r, 0) = 0. (12)

Equation (3) models the tumor radius, R(t), at time t. Equation (4) represents the
velocity of a particle within the tumor, vr(t, r). The third equation, (5), determines the
radial stress, σr(r, t). The mass growth, g(r, t) (also referred to as volumetric growth),
is modeled by equation (6). Equation (7) accounts for β(r, t), the difference between
transversal and radial stress. A description of the other terms used can be found in
Table 1.

Term Definition
R0 Initial radius of the tumor
ζ1 Represents the dependence of cell proliferation rate with respect to stresses
ζ2 Represents the dependence of cell death rate with respect to stresses
ϵ Ratio of the proliferation and death of cellular rates
a Positive constant that regulates the anisotropy of the growth

with respect to stresses
σ+
r Radial stress at tumor boundary calculated from the external medium

σ−
r Radial stress at tumor boundary calculated from the interior of the tumor

Table 1. Description of terms used in the tumor model.

For the boundary condition of σr in the tumor model equation, given by Eq. (10), σ+
r

is provided by the external wave propagation model. However, since the tumor model
has spherical symmetry, the boundary condition can only be set if the limit (calculated
from outside the tumor) of radial stress at the tumor boundary remains constant across
all points. This assumption is somewhat unrealistic. Therefore, the value used for σ+

r

is determined as the average radial stress observed at the tumor boundary. Using the
mean value of σ+

r at the boundary ensures not only the preservation of the tumor’s
spherical symmetry but also contributes as a measure of the stress profile at the tumor
boundary.

2.2. HESW therapy model

The HESW therapy involves a device designed to generate shock waves, employing
a reflector positioned within the external medium to concentrate the energy of the
shock wave into a small, targeted treatment area [Ogden et al. 2001]. This reflector
possesses an elliptical shape, with the source of the shock wave situated at one of
its focal points, while the region of energy concentration is positioned at the second
focus of the ellipse (for further details, see Ogden et al. [2001]). Within the model,
the device is incorporated by specifying different values of the material parameters in
the region occupied by the reflector.

The mechanical therapy aspect is represented by a time-dependent source term that
generates elastic waves within the external medium. While considering the interaction
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between the propagating waves and the tumor model, taking place at the boundary of
the tumor. The external medium is characterized by its elastic, isotropic, and homo-
geneous (without considering the reflector) properties. The linear elastodynamic wave
equations for such media with an additional source term can be expressed as follows:

ρ(x)
∂2ui
∂t2

(x, t) =

3∑

j=1

3∑

k,l=1

Cijkl(x)
∂2uk
∂xj∂xl

+ Fsi(x, t), i = 1, 2, 3, (13)

where ρ is the density, Cijkl are the material stiffness coefficients of the elastic
medium, and ui is the i-th component of the displacement vector.

The parameter F determines the wave amplitude, and the source term si is assumed
to be direction-independent, meaning that s1 = s2 = s3. These source terms only have
non-zero values for small durations in time, and in a small region around the source
position. In the simulations conducted in this work, we considered this region to be a
sphere with a non-dimensional radius of l = 0.2. The signal shape of the source term
is obtained from Ogden et al. [2001] and is illustrated in Figure 2.
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Figure 2. The pattern of the pressure variation of a typical shock wave used in HESW therapy. The shock

wave is composed of a very fast increment in pressure followed by negative pressure and a damping lasting

7 µs.

The system of equations (13) is well-defined for an infinite medium, with a condition
at the tumor boundary obtained from the tumor model. However, numerical solutions
requires a finite domain Ω instead of an infinite one, which introduces challenges at
the external boundaries, where unwanted reflections may appear.

To mitigate the reflections at the outer boundary of the external medium, we employ
an absorbing boundary condition. Various absorbing conditions are documented in the
literature [Randall 1988; Assi and Cobbold 2016; Nataf 2013]. While none of them is
perfect, some exhibit better absorption characteristics than others. We have chosen
the Perfectly Matching Layer (PML), known for its ability to exponentially attenuate
plane waves, irrespective of their frequency and incident angle. A popular choice in
recent publications on wave propagation in finite domains [Tago et al. 2012; Jing et al.
2019; Chern 2019]. Nonetheless, it comes at the cost of being one of the most compu-
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tationally expensive absorbing boundary conditions, as it introduces twelve equations
for auxiliary variables to the system (13). Furthermore, it requires an extension of the
domain boundaries, to form a layer for wave attenuation (see Fig. 1). Following Assi
and Cobbold [2016], it can be expressed through the following system of equations:

ρ

(
∂2ui

∂t2
+ a1(x)

∂ui

∂t
+ a2(x)ui + a3(x)Ui

)
=

3∑

j=1




3∑

k,l=1

Cijkl
∂2uk

∂xj∂xl
+

∂wij

∂xj


+ Fsi(x, t),

(14)

∂wij

∂t
+ γjwij =

3∑

k,l=1

(
C̃ijkl

∂uk

∂xl
+ C̆ijkl

∂Uk

∂xl

)
, x = (x1, x2, x3) ∈ Ω, (15)

∂Ui

∂t
= ui, (16)

where ui is the displacement on the direction xi and the variables wij , Ui are aux-
iliary variables of the PML condition, a1(x) = γ1 + γ2 + γ3, a2(x) = γ1γ2 + γ1γ3 +

γ2γ3, a3(x) = γ1γ2γ3, C̃ijkl = (a1 − γj − γl)Cijkl, C̆ijkl =
a3

γl
Cijkl, are the material co-

efficients of the elastic medium, Ω is the real computational domain, Ω is the extended
computational domain with the PML layer, and the γi are functions defined as

γi(xi) =

{
0, ifxj ∈ Ω,

γ0

(
d(xj ,Ω)

δ

)2
, ifxj /∈ Ω,

(17)

where d(xi,Ω) is the distance from xi to the set Ω, γ0 is a fixed constant, and δ is the
width of the PML layer. The functions γi determine how fast the waves amplitude are
attenuated in the PML domain. Summarizing, the variables of the equations (14)-(16)
are ui, wij , Ui, and the parameters are the density ρ and the material parameters
Cijkl. Since we are using linear elasticity in an isotropic medium the coefficients Cijkl

are expressed as a linear combination of the Lamé parameters, λ and µ, of the external
medium

Cijkl = λδijδkl + µ(δikδjl + δilδjk), (18)

where δij is Dirac’s delta.

Equations (14) and (15) are of hyperbolic nature. Therefore, for the displacement
ui, with 1 ≤ i ≤ 3, beside boundary conditions at ∂Ω (Ω is the region on Fig. 1
excluding the tumor), initial conditions must be given.

Let ∂Ω1 denote the boundary of Ω, which coincides with the limits of the rectangle
in Fig. 1, and ∂Ω2 corresponding to the boundary that aligns with the spherical shape
of the tumor in the same figure. As ∂Ω1 lies within the absorbing boundary of the
PML domain, conditions can be arbitrarily set. For simplicity, we apply zero Dirichlet
boundary conditions for ui,

ui|∂Ω1
= 0. (19)

Regarding ∂Ω2, the condition pertains to the displacement of the external medium
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from the growth of the tumor,

ui|∂Ω2
= ur|∂Ω2

. (20)

However, due to the potential misalignment of the squared mesh grid with the actual
tumor boundary, a first-order interpolation is employed.

The initial conditions for the wave equation concerning ui are as follows,

ui(x, 0) =

{
(∥x∥ −R0 − 1)2ui0(x), if ∥x∥ < R0 + 1,
0, if ∥x∥ ≥ R0 + 1,

i = 1, 2, 3, (21)

where R0 is initial the tumor radius and ui0(x) is the evaluation of ui at the nearest
point in the tumor boundary of the coordinate x. Condition (21) is only used to ensure
a smooth initial condition, but it does not have any physical meaning. Additionally,
the initial velocity is considered as zero.

The variables wij and Ui of equations (15) and (16) serve exclusively to attenuate
waves at the boundary of the numerical domain. As such, their initial values can be
set to zero, as expressed in the equation below.

wij(x, 0) ≡ 0, Ui ≡ 0, i, j = 1, 2, 3. (22)

The HESW therapy model, as defined by equations (14)-(16) with the proposed initial
and boundary conditions, is well-posed. All the variables have their initial conditions,
and the hyperbolic equations (14) also have their boundary conditions.

2.3. Solution of the joint model

In this section we discuss the algorithms employed to compute the numerical
solution of the coupled model. The growth of the avascular tumor is governed by
equations (3)-(7), together with initial and boundary conditions (8)-(12). The HESW
application, on the other hand, is described by equations (14)-(16), with boundary
and initial conditions (19)-(22).

To calculate the boundary condition (10) for σ+
r from the wave equations model, it

becomes essential to identify the square mesh points delimiting the spherical contour
of the tumor. Then, for each of these points, an interpolated value of the radial stress
at the tumor boundary is determined, and the mean of these values is used to define σ+

r .

Regarding the wave equations, we use second-order centered finite differences in
space and a fourth-order Runge-Kutta method in time. The finite difference scheme
is expressed in Cartesian coordinates with a square mesh grid. However, due to
the tumor spherical shape, the precise representation of the tumor boundary is not
attainable on the square mesh grid of the HESW model. Consequently, this leads to
first-order approximations of the boundary condition in ∂Ω2, connecting both models.

At each time instant, we compute the solution of the tumor model and the wave
equations with PML conditions, sequentially. The tumor model employs a method
outlined in Valdes-Ravelo et al. [2018], which also relies on finite differences. It adopts
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a Lax-Wendroff scheme with moving points for equations (6) and (7), based on the
approximation

β
(
r
(j+1)
i , tj+1

)
= β

(
r
(j)
i + (R(tj+1)−R(tj))i/imáx, tj + k

)

≈ β
(
r
(j)
i , tj

)
+

∂β

∂r
(R(tj+1)−R(tj))

i

imáx
+

∂β

∂t

(
r
(j)
i , tj

)
k

+
∂2β

∂r2
(R(tj+1)−R(tj))

2 i2

2i2máx

+
∂2β

∂r∂t
(R(tj+1)−R(tj))

i

imáx
k

+
∂2β

∂t2

(
r
(j)
i , tj

) k2

2
,

where the time derivatives are replaced by spatial derivatives using the original model

equations, and r
(j+1)
i is the position of the mesh point r

(j)
i after the time step k. For

equations (3), (4), and (5), an explicit Euler method is used, incorporating boundary
values for σ+

r derived from the HESW model. Consequently, when computing the
solution of the tumor model at the time instant tn+1, the value of σ+

r from the
previous time instant tn is utilized.

The assumption that waves propagate within a homogeneous medium is very re-
strictive. This is particularly evident when considering internal tumors, where waves
must traverse different materials. While shock waves can travel through water and soft
tissues with minimal energy loss, at the interfaces between dissimilar materials could
induce tissue damage through phenomena as cavitation and shearing stresses caused
by wave reflections [Serpe et al. 2011]. Nevertheless, there exist certain specific sce-
narios in which our assumption accurately mirrors real-world experimental settings,
such as those described in Gamarra et al. [1993a,b]. In these experiments, it was ap-
plied the HESW therapy to treat cutaneous tumors induced by a melanoma cancer
cell line. Hence, there were no interfaces of soft tissue between the wave and the tu-
mor. Additionally, the propagation medium was composed entirely of water, making
it completely homogeneous.

2.4. Parameters of mechanical models

One of the main difficulties in validating and using mathematical models is a reliable
estimation of the model parameters and the availability of experimental data to
compare the model results. Usually, the most complicated issue is the first part, where
sometimes it does not exist the technique to accurately measure the parameters of
the model, or the parameters’ measurement is so complicated and expensive to be
done, or it is simply impossible. In addition, the parameters of models related to
biological processes are very dependent on the test case, depending on the type of
tissue, the type of damage, and the exact location in the body. This is particularly
true for mechanical models, where accurate measures of the stresses should be done
in the tumor at different instant times to accurately test the stress-deformation
law, but we can only do one measure of the stresses, and it is when the tumor is
cut. Moreover, it is known that the elasticity parameters depend on the type of
tumor cell, but to date, less than twenty measures of different types of tumor have
been reported in the literature. In addition, there are other sets of parameters that
it is impossible to measure and reasonable guesses have to be taken into consideration.
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To assist in this task, we present a concise summary of published data pertaining to
the parameters essential for the continuum mechanics-based tumor model proposed in
this article. This dataset encompasses measurements of physical and elastic constants
for various cell types, with some conversions applied to ensure consistent physical units.
Additionally, we provide references to tumor growth experiments, covering both in vivo
and in vitro scenarios, involving treatments such as HESW therapy and chemother-
apy, and include details on the underlying experimental setups. This information is
systematically organized in Tables C1, C2, and C3 within Appendix C. The data in
Table C1 comprises biological measures of parameters used in a mathematical tumor
model, regardless of its basis in continuum mechanics. Many of these measurements
were reported by Bryan et al. [2014]; McMurtrey [2016]; Palm et al. [2018]. Table C2
provides information on the elastic parameters of thirteen different types of tumors.
Most of this data was extracted from the works of Stylianopoulos et al. [2012]; Vou-
touri et al. [2014], where a mechanical tumor model was also proposed. In Table C3
are referenced fifteen publications where real experiments on growing tumors were
conducted, and tumor volume measurements were recorded. In thirteen out of these
fifteen experiments, High-Energy Shock Wave (HESW) therapy was employed, with
seven of these experiments involving combination therapies.

From this data, we extracted the parameter values for use in the following section.

3. Results

The primary objective of our numerical investigation is to assess the changes of
volumetric stresses inside a tumor produced by the HESW therapy. Moreover, we are
also interested to know whether the proposed model can qualitatively replicate the
observed delay in tumor growth resulting from HESW therapy, as documented in the
experiments described by Russo et al. [1986]; Wörle et al. [1994]; Hoshi et al. [1991].
Additionally, we conduct numerous simulations to identify the parameters within
the HESW therapy that exhibit the most significant influence within our analytical
framework.

In the simulations, we adopted non-dimensional variables for all physical quantities
(please refer to Appendix A for details). Unless otherwise specified, we maintain fixed
parameter values for all simulations, which are presented in Table 2 for reference. To
ensure the reproducibility of our numerical experiments, we provide information on
the spatial arrangement of objects in Fig. 1 in Appendix B.

The parameters ζ1 and ζ2 dictate how tumor proliferation is influenced by the
stresses. The relation between these values is chosen based on in vitro experiments,
which have shown that pressure induces apoptosis in tumor spheroids approximately
100 times less effectively than it inhibits proliferation [Montel et al. 2012]. The
parameters a and ϵ depend on the tumor type. In this model, we assume slight
anisotropy in tumor growth, with a = 0.01, and that tumor cells multiply four times
faster than they die in the absence of stress, represented by ϵ = 0.25.

The parameters ρ, µE , and λE in Table 2 are selected somewhat arbitrarily but
maintain relative magnitudes consistent with physical properties of external media
like gels (see Appendix C). Nonetheless, the most important aspect is that wave prop-
agation velocities in the gel are much faster than in the shock wave device material,
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Parameter Value Definition
R0 1 Initial radius of the tumor
ζ1 0.025 Represents the dependence of tumor cell proliferation

rate from stresses
ζ2 0.00025 Represents the dependence of tumor cell death rate

from stresses
ϵ 0.25 Ratio of the proliferation and death of cellular rates
a 0.001 Positive constant that regulates the anisotropy of the

tumor growth in relation with stresses
ρ 1.1 Density of the external medium
µE 0.9 Shear modulus of the external medium
λE 0.4 First Lamé parameter of external medium
γ0 30 Attenuation of waves at the PML layer
δ 0.5 Thick of the PML layer
µD 0 Shear modulus of the device to generate shock waves
λD 0 First Lamé parameter of the device to generate shock waves
F 1.5 · 1011 Represents the peak amplitude of the generated waves

Table 2. Parameters used in the simulations. The relation of parameters of the tumor model is chosen

accordingly to the work of Valdes-Ravelo et al. [2018], while the other values are set arbitrarily since we are
interested only in the qualitative behavior.

µD and λD, which are both assumed to be zero to simulate a material reflecting all
wave energy. The parameters γ0 and δ do not possess physical interpretations, and
their values are set to avoid spurious reflections at the boundary of the entire model
domain, Ω.

3.1. Effect of HESW therapy on tumor growth

As an initial simulation, we compare a reference tumor growth model (without shock
waves) and one with the application of 200 shock waves at a frequency of 50Hz. The
results are presented in Figure 3.
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Figure 3. Comparison in time of tumor growths without HESW therapy (blue) and with the therapy (red).

The left panel displays the tumor radius, while the right panel illustrates the radial stresses at the tumor
boundary for both cases.

In both simulations, it is apparent an adjustment of the initial stresses. This is a re-
sult of an unbalanced initial condition, where we assume that the stresses are initially
zero. As we can see for both simulations there is an initial adjustment of the stresses,
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since we are assuming that the stresses are zero as initial conditions. The results
between the reference and treated tumor growth are identical until time t = 4, just
before the shock waves are triggered. As observed in the left panel of Figure 3, follow-
ing the application of HESW therapy, there is a noticeable reduction in tumor growth,
corresponding with findings in experiments [Russo et al. 1986; Wörle et al. 1994;
Hoshi et al. 1991]. On the other hand, examining the right panel, which showcases
radial stresses at the tumor boundary, reveals significant oscillations in the stresses of
the HESW simulation. This phenomenon can be elucidated as follows: As the tumor
size decreases, material response causes the radial stresses to become tensile, leading
to increased velocity. In turn, this produces a compression of stresses due to external
medium pressure. Consequently, the growth velocity decreases once more, leading to a
repetitive cycle (as present in the left graph, which displays slight growth oscillations).

For this simulation, HESW therapy can be perceived as a perturbation of the equilib-
rium between tumor growth and stress. This perturbation is characterized by reduced
tumor growth, with oscillations in growth velocity, and pronounced fluctuations in
radial stresses at the tumor boundary. These insights were primarily focused on ob-
servations at the tumor boundary. Nonetheless, we can also study the internal tumor
mechanisms, serving as validation and providing useful insights.

r (Radial coordenate)
0.5 1 1.5 2

σ
r (

R
ad

ia
l S

tr
es

s)

-10

-5

0

5
t=1.6
t=3.2
t=4.8
t=6.4
t=8
t=1.6
t=3.2
t=4.8
t=6.4
t=8

r (Radial coordenate)
0.5 1 1.5 2

g 
(G

ro
w

th
 fa

ct
or

)

2

3

4

5

6

t=1.6
t=3.2
t=4.8
t=6.4
t=8
t=1.6
t=3.2
t=4.8
t=6.4
t=8

Figure 4. Comparison of stresses and the tumor growth factor (Eq. (6)), without HESW therapy (solid lines)

and with the therapy (dashed lines), at five instants of time. On the left side, the radial stresses inside the

tumor of both simulations are displayed, while on the right side, it is presented the volumetric growth factor
of the tumor.

The radial stresses at five different time instants inside the tumor are presented
in the left panel of Figure 4. The curves corresponding to the simulation with
HESW (dashed lines) have a qualitatively different behavior when compared with
the stresses without the therapy (solid lines). These differences are probably induced
by the oscillations at the tumor boundary, as discussed earlier, and they have a
significant impact on the growth factor (right panel). As depicted in the right panel,
this has a direct effect on volumetric growth. At time instants t = 4.8, ; 6.4, ; 8, which
corresponds to the period following therapy application, the tumor growth factor is
significantly reduced with HESW therapy compared to the untreated scenario. This
supports the previous observation that HESW therapy induces stress oscillations,
which subsequently impact tumor growth.

Having comprehended the basic mechanism of how HESW influences tumor
growth in our model, we can now explore the effects of the HESW therapy on tumor
evolution. This will be done by varying some of its parameters, such as the number
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of waves and their amplitudes.
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Figure 5. Comparison of tumor growth over time with HESW therapy for different numbers of shock waves

(left side) and several peak amplitude (right side: using F = 1.5 · 1011, and 100 shock waves).

Increasing the number of shock waves initially decreases tumor growth, eventually
leading to even a tumor size reduction (Figure 5, left panel). Similarly, elevating the
wave peak amplitudes reduces tumor growth (Figure 5, right panel). These clear trends
indicate that both the number of waves and their amplitudes play a crucial role in the
HESW therapy effectiveness.

On another hand, the distance of the device from the tumor is also an important
element to consider in HESW therapy. Consequently, we conducted simulations with
varied distance units between the device and the tumor, acknowledging that these
non-dimensional distances have a unit of measure comparable to a centimeter.
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Figure 6. Comparison of tumor growth over time by varying the distance between the HESW source and
the tumor center in: 2.6 units (blue curve), 3 units (red curve), and 3.4 units (orange curve).

Figure 6 illustrates that when the distance between the HESW source and the
tumor is smaller, the effect of the therapy is greater. Suggesting that even for more
complex geometries, considering the relative source-tumor position is a valuable factor
when determining the position of the clinical device to produce the HESW. Although
this is a very intuitive result, since the closer the source is, the more concentrated the
energy in the tumor will be. It is very important to notice that our model is able to
represent this.
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Another parameter of the HESW therapy we can analyze is the frequency of the
shock waves. However, in the numerical experiments spanning frequencies from 1Hz
to 300Hz, we observed almost no discernible influence on tumor growth (results not
shown). This could be because our model fails to consider some important mechanics
depending on the HESW frequency that could influence the tumor growth, or that
frequency is not a relevant parameter in this context.

It is important to note that these results are highly dependent on the mechanical
properties of the external medium and the tumor itself. If, for instance, the material
properties of the external medium or the tumor were to change, it could lead to
different responses to HESW therapy.
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Figure 7. Comparison of tumor growth over time without HESW therapy (blue curve) and with the therapy

(red curve). On the left, the simulation is the same as in Figure 3, with alterations made to the properties of the
external medium (µE = 0.1 and λE = 0.45). On the right, the change is in the stress-deformation relationship

of the tumor, with values adjusted as follows: ϵ = 0.35, ζ1 = 0.035, and ζ2 = 0.00035.

The influence of material parameters on tumor growth after therapy, as shown in
Figures 7, agrees with the findings of Smits et al. [1991]. Their research suggests that
the impact of HESW therapy is closely tied to the material properties of both the
tumor and the external medium.

3.2. Comparison of the model with real data experiment

In the previous section, we studied the impact of HESW on tumor growth and the
importance of the therapy parameters. It was demonstrated that the model can
qualitatively replicate real-life experiment outcomes. However, these simulations
employed hypothetical parameter values that do not correspond to real-world data.
Consequently, our aim in this section is to replicate tumor growth as reported in
one of the experiment references documented in Table C3, which also provides
measurements for the tumor elasticity constants. Subsequently, we will simulate
HESW therapy in this context, assessing its effects under typical therapy conditions.

Unfortunately, the tumor types for which we possess elastic parameter data do
not coincide with those in the referenced HESW experiments. Nevertheless, we can
still simulate the therapy in a realistic case scenario; however, we will not have the
opportunity to compare our results with real data. Consequently, for the simulations
we will use data from an experiment detailed in Roose et al. [2003], where is measured
tumor growth in mice from the mesenchymal melanoma cell line MU89. The elasticity
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constants for this tumor type can be found in Table C2, and other model parameters
are drawn from Table C1.

(a) Tumor cell line MU89. (b) Tumor cell line MU89.

Figure 8. Comparisson of the tumor model (blue curve) to experimental data of tumor evolution in pre-

clinical experiments in mice (red dots). The model presents a good adjustment to the experimental data.

Figure 8 shows that the model can replicate with a good accuracy the experimental
data.

4. Discussion

We developed a coupled mathematical model of a tumor growth based on continuum
mechanics, with a mathematical formulation to replicate a HESW therapy. The model
is intended to be a prototype that allows a proof of concept towards reproducibility
of HESW treatment. It proposes a different direction for mechanical models of
tumor growth, different from the current existing models, which have not previously
integrated HESW therapy. Moreover, our method is very straightforward to replicate.
Not only can the linear equations (14)-(16) describing HESW be integrated into
any continuum mechanics-based tumor model, but the same can be done for the
non-linear wave propagation equations.

We studied various possible outcomes of tumor growth by using variations of the
HESW therapy parameters. For the therapy parameters, we found that the shock
wave number and the wave peak energy have a higher influence than the wave
frequency on the tumor growth. The distance of the source to the tumor was also
very relevant to the effectiveness of the treatment. Notably, the obtained numerical
solutions are qualitatively similar to the experiments carried out in the works of Russo
et al. [1986]; Wörle et al. [1994]; Hoshi et al. [1991], supporting the validity of these
preliminary results. We also compared the model using data from a real experiment
of tumor growth in vitro, and observed that if we restrict to peak frequencies used in
practical applications, the HESW therapy does not produce any perceptible change in
the tumor evolution. This results suggests that the stress changes within the tumor,
produced by the pressure variation of the HESW, is not a determining element in the
growth of a tumor.

We examined various potential tumor growth outcomes in the model through the
manipulation of HESW therapy parameters. In our analysis, we discovered that the
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shock wave number and the peak energy of the waves wielded a more significant
influence on tumor growth compared to wave frequency. Moreover, the distance
between the wave source and the tumor had a substantial impact on the efficacy of
the treatment. It is worth noting that the numerical solutions we obtained exhibited
qualitative similarities to experiments conducted in previous works, such as those by
Russo et al. [1986]; Wörle et al. [1994]; Hoshi et al. [1991]. Supporting the validity of
these preliminary results.

Furthermore, we conducted a comparison of our model using data from an in vitro
tumor growth experiment. And it was revealed that, when we limit the analysis
to peak frequencies relevant to practical applications, the HESW therapy did not
induce any perceptible alterations in tumor progression. This outcome suggests that
stress changes within the tumor, resulting from pressure fluctuations associated with
HESW, may not be a decisive factor in tumor growth.

A fundamental limitation of our model is that it considers only the volumetric
stresses, which constitute just one element of the mechanisms involved in HESW
therapy. Nevertheless, the model provided valuable insights into how HESW influences
stress dynamics within the tumor. This model can be expanded to encompass other
important elements, making it a valuable tool in the understanding and application
of HESW therapy. Furthermore, our model serves as a base for investigations where
HESW therapy can be simulated in conjunction with other treatment modalities like
chemotherapy, radiotherapy, or immunotherapy. This approach could provide new
strategies for the creation of optimal treatment schemes.

Extensions of the model to consider chemotherapy and immunotherapy can be car-
ried out with the introduction of a vascular network within the tumor. This network
would facilitates the passage of the drugs to the interior of the tumor. A starting point
for this extension is the work of Araujo and McElwain [2006], where a vascular tumor
is considered while conserving spherical symmetry.In such a framework, stresses hold
immense significance, given the inherent instability of tumor vessels, largely influenced
by the volumetric stresses acting on the tumor [Stylianopoulos et al. 2013]. Further-
more, the incorporation of the non-linear wave propagation equations [Fagnan et al.
2014] can simulate effects such as cavitation and cell permeability accurately [Tanguay
2004]. Additionally, the inclusion of radiotherapy can be performed by the addition of
the therapy term proposed by Liu et al. [2014] in the model equations. These paths
represent compelling directions for the future development of our present study.
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Appendix A. Non-dimensionalization of the HESW therapy equations

To solve the coupled model, the quantities appearing in the equations governing
the external medium must be non-dimensional, as in the case equations (3)-(7),
corresponding to growing tumor model.

Using asterisks to identify the dimensionless variables

x∗i =
xi
L
, t∗ =

t

T
, u∗i =

u∗i
L
, U∗

i =
Ui

TL
, w∗

ij = wijE, γ∗i = γiT, (A1)

F ∗ =
F

E
, s∗i = Lsi, ρ∗ =

L2

ET 2
ρ, (A2)
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where the constants L, T and E has the physical magnitudes

L = [L], T = [T ], E =
[M ]

[L][T ]2
,

with [L], [T ] and [M ] representing Longitude, Time and Mass, respectively. Therefore,
the new variables (Eq. (A1)-(A2)) are non-dimensional. Replacing the original vari-
ables of the system (14)-(16) with the expressions from (A1)-(A2), and removing the
asterisks for simplicity, we obtain the exact same expression of system (14)-(16),with
the only difference of being dimensionless.

Although the mathematical expression of the system (14)-(16) remains the same, the
transformation of non-dimensionalization is critical when turning back to the original
physical quantities of the system solution.

Appendix B. Spatial specifications of the combined model

Now we are going to describe the spatial location and specifications of the objects in
Fig. 1 used in the simulations.

The domain is a cube of dimensions 8 × 8 × 8, centred at the origin, with sides
orthogonal to the axes. The tumor is centred at zero and begins with R0 as initial
radius. The source term is positioned at (x0, y0, z0) = (3, 0, 0), its zero for all points
outside the ball centered at (3, 0, 0) with radius 0.2, and inside the ball, its time
variation term (see Fig. 2), which is multiplied, for spatial energy decay, by the factor

e
∥x∥

0.2−∥x∥ . The device to generate de shock waves (see Fig. 1) is positioned on the right
of the domain and oriented toward the tumor been symmetric in relation the axis x.
We define the device height as 1.2 (beginning in x = 3.6 and ending in x = 2.4),
and its shape is defined so the focus where the waves are accumulated is at center
of the tumor, (0, 0, 0). The ellipse with focus at the source generation point and at
the centere of the tumor was defined with a semi-major axis length of 2 and a linear
eccentricity of 1.5.

Appendix C. Datasets for tumor models based in continuum mechanics

1We converted the original measure (mol/(cell · s)) on the physical units cm3/(Kg · s), using that

mol(O2) = NA·2·16·u· 1

1.429g/L
= 6.02214076·1023·32·1.6605390666·10−27Kg·10

6cm3/Kg

1.249
= 0.256204963883·105cm3.

Substituting the cell density of cancer cells from Bryan et al. [2014] results

mol(O2)

cell
=

0.256204963883 · 105cm3

0.1 · 10−11Kg
= 0.256204963883 · 1017cm3/Kg

2We repeat the same calculation of the above footnote, but using instead the density of the normal cell from

Bryan et al. [2014]. Thus,

mol(O2)

cell
=

0.256204963883 · 105cm3

0.32 · 10−11Kg
= 0.800640512 · 1016cm3/Kg.
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Model parameters

Parameter Description Value Material Reference

Dc
diffusion
coefficient

(1 · 10−6, 2.5 · 10−5) cm2/s soft tissue and hydrogel McMurtrey [2016]

(1.2, 1.97) · 10−5 cm2/s DS-Cacinosarcoma Grote et al. [1977]

Ac/ρ
nutrient
consumption

(0.729) (0.609, 0.889) cm3/(Kg · s) DLD1 human colorectal cancer Grimes et al. [2014]

(3.7 · 10−18, 5.5 · 10−15) mol/(cell · s)
varius cancer cell types

McMurtrey [2016]
(9.5 · 10−2, 1.4 · 102) cm3/(Kg · s)

(
1
)

(8.3 · 10−19, 10−15) mol/(cell · s)
normal cells of different tissues

(6.6 · 10−3, 8) cm3/(Kg · s)
(
2
)

∼ 1 cm3/(Kg · s)
(
3
)

(author assumption of typical values) Ambrosi and Mollica [2004]

ρ cell density
(1.05, 1.07) · 10−3 Kg/cm3 L1210 mouse lymphocytic leukemia

Bryan et al. [2014]

(1.038, 1.064) · 10−3Kg/cm3 normal human lung tissue

− cell volume
(0.9) (0.55, 1.65) · 10−9cm3 L1210 mouse lymphocytic leukemia

(2.6) (1.4, 7) · 10−9cm3 normal human lung tissue

− cell weight
(1)(0.65, 2.95)10−12Kg L1210 mouse lymphocytic leukemia

(3.2)(1.5, 7.6)10−12Kg normal human lung tissue

α
rate of cell
proliferation

4.17 · 10−2/h K562 human leukemia stem cells
Palm et al. [2018]

5.26 · 10−2/h K562 human leukemia differentiated cells

(0.903− 1.87) · 10−2/h MDA-MP-231 human breast adenocarcinoma Wong and Searson [2017]

(1.736)(1.1574, 2.3148) · 10−2/h breast cancer cell lines Hafner et al. [2016]

ρg
density of
agarose gel

1.04 · 10−3 Kg/cm3 - Albro et al. [2008]

Table C1. Parameters values required for the tumor model in our study, obtained from experimental data

reported in the literature.

3Calculated dividing its consumption rate by the density 10−3cm3/Kg. Assuming that the consumption term
is proportional to the nutrient concentration.
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Elastic parameters

Type of tumor Bulk modulus κ Shear modulus µ Reference

epithelial breast MCaIV, 4T1, E0771 6.7 kPa 5 kPa

Stylianopoulos
et al. [2012]

epithelial colon LS147T 4 kPa 3 kPa

mesenchymal melanoma MU89, B16F10 2.5 kPa 1.9 kPa

mesenchymal glioma U89 26.7 kPa 20 kPa

breast MCF10CA1a 8.6 kPa 6.5 kPa Voutouri et al.
[2014]colon SW620 8.1 kPa 6.1 kPa

human sarcoma HSTS26T 40 kPa 30 kPa

Roose et al. [2003]

human glioblastoma U87 26.7 kPa 20 kPa

human colon carcinoma LS174T 4 kPa 3 kPa

mouse mamary carcinoma McaIV 6.7 kPa 5 kPa

0.5% type VII agarose gel 0.12 kPa 0.1 kPa

1% type VII agarose gel 0.33 kPa 0.15 kPa

Table C2. Parameters essential for mathematical models based on continuum mechanics: the bulk and shear

moduli of various tumor cell lines, and agarose gel utilized in in vitro experiments.
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Table C3. References of growing tumor experiments, covering both in vitro and in vitro scenarios, involving
treatments such as HESW therapy and chemotherapy. Details of the main features of the experiments are
summarized.
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Chapter 5

Conclusions

The primary objective of this thesis is to explore the capabilities and limitations of

explicit exponential integrators in addressing linear wave equations with ABC. To achieve

this, we have studied one of the most well-known exponential integrators, the Chebyshev

polynomials. More specifically, its generalisation, the Faber polynomials, to overcome the

limitations encountered when considering ABC.

In the second chapter, we addapted an explicit exponential integrator based on Faber

polynomials, described in Bergamaschi, Caliari, et al. (2003), to solve the wave prop-

agation equations. Using the method state-of-the-art as starting point, we explored its

key features for optimal application into our specific equations. First, analyzing how to

implement an adaptative scheme into Faber method, we improved a previous reported

error bound of its approximation. Moreover, through numerical examples, we illustrated

that the ellipse with minimum capacity enclosing the eigenvalues of the matrix operator is

not always the optimal conic for ensuring the fastest convergence of Faber series, different

to what was suggested in Bergamaschi, Caliari, et al. (2003). We also highlighted the

importance of a good estimation of the convex envelope of the operator spectrum, for

the convergence of the method. In this direction, we proposed a strategy to estimate the

convex envelope by computing the spectrum in operators of a much smaller size, signifi-

cantly reducing the required computations. Additionally, we examined the dispersion and

dissipation properties of Faber polynomials using a Von Neumann analysis, and studied

convergence and computational efficiency through various numerical experiments. We

observed that increasing the order of the approximation implies a larger CFL number, and

solutions calculated for larger time steps maintain high accuracy. From the computational

efficiency results, we also concluded that, at least for Faber polynomials applied to seismic

waves, higher polynomial degrees are computationally more efficient than lower-order

polynomials.

Next, to determine the real potential of Faber polynomials for practical applications, we

compared it with other explicit exponential integrators and classical numerical methods.

This is the subject of Chapter 3, where numerical tests were conducted, using four distinct

velocity fields, including both realistic and sharp interface fields. We also, studied the main

numerical features: stability, dispersion, convergence, computational cost, and memory
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consumption. Remarkably, our results proved to be consistent and robust across both types

of errors and all four numerical experiments. Furthermore, the Krylov method had the

largest time step size in all tests, and for all high-order methods, higher approximation

degrees allowed for larger time steps, significantly impacting the number of saved vectors

needed for solving the inverse problem. Nevertheless, in terms of computational efficiency,

the Leap-frog method proved to be the most efficient.

On the other hand, the need for computing efficient solutions to wave propagation

equations is not exclusive to seismic imaging problems. To this end, we developed a coupled

mathematical model of tumor growth based on continuum mechanics, that incorporates a

mathematical formulation to replicate shock wave therapy, proposing a different direction

for mechanical models of tumor growth (see Chapter 4). In this therapy, the high frequency

of wave applications and the specific shape of the wave signal induces the use of very small

time steps, significantly inreasing the cost to compute the solution. With this model, we

explored various possible outcomes of tumor growth by varying HESW therapy parameters.

And the obtained numerical solutions are qualitatively similar to experiments conducted

in the works of Russo et al., 1986;Wörle et al., 1994; Hoshi et al., 1991, supporting the
validity of these preliminary results. The mathematical model is intended to be a prototype

that allows a proof of concept towards reproducibility of HESW treatment.

Through this research, we studied the properties of exponential integrators when

applied to solve linear wave propagation equations with absorbing boundary conditions.

This research aims to fill a gap in the scientific literature where several works mention

the capabilities of exponential integrators to solve this kind of problem (Kole, 2003;

Hochbruck and Ostermann, 2010;Moler and Van Loan, 2003;Mossaiby et al., 2015),
but none analyze in detail their performance and real potential in this kind of problem. In

conclusion, we observed that increasing the order of the approximations not only serves

to reduce the approximation error but also increases the Courant number in the CFL

condition, allowing larger time steps while maintaining good accuracy. This could lead to

other strategies to solve the inverse problem in seismic imaging, and it may be useful in

other applications.

Regarding to the simulation of HESW therapy in a growing tumor. It represents a novel

application of the wave propagation equations, incorporating the mechanical effects of

therapy on soft tissue, where efficient algorithms to compute the wave equations while

accurately representing shock waves are needed.

This research should not be seen as the definitive answer to the use of explicit exponen-

tial integrators in solving linear wave equations with ABC, but rather as a first approach

to the subject. The methodology used can be refined, leading to more comprehensive and

accurate results. With this in mind, we aim to highlight the main limitations of this study

and suggest possible ways to overcome them.

Future work

1. As illustrated in Section 2.2.2 of Chapter 2, it is unclear whether the optimal conic

shape is indeed the ellipse of minimum capacity, as suggested by Bergamaschi,
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Caliari, et al., 2003. Consequently, a study to determine the optimal conic shape,

aiming to enhance accuracy and broaden the convergence region, is necessary.

Achieving results in this direction would significantly enhance the efficiency of the

Faber method.

2. From the work ofMoler and Van Loan (2003), it is clear that algorithms approx-

imating the exponential of non-normal matrices must exercise extreme caution

when dealing with the "hump" phenomenon of the matrix exponential norm. This

feature indicates that an adaptive time-step strategy is the most suitable approach for

high-order exponential integrators. Such a strategy has already been implemented

for exponential integrators like the Krylov subspace method (Gaudreault et al.,
2021), the Leja interpolation points scheme (Pranab J Deka et al., 2023), and Padé

rational approximations (Higham, 2005). However, as mentioned in Pranab Jyoti

Deka and Einkemmer (2022), and supported by the works of Gaudreault et al.
(2021), Pranab J Deka et al. (2023), and Higham (2005), implementing adaptive steps

requires a precise estimation of the approximation error. Unfortunately, as discussed

in Section 2.2.1 of Chapter 2, estimating the Faber series error for non-normal matrix

operators remains an open problem.

Nevertheless, if a theoretical error estimation is not feasible, it does not negate the

possibility of an empirical estimate. We could exhaustively apply an adaptive time-

step through trial and error, seeking correlations with quantities used in previous

research on exponential integrators to bound the approximation error. This brute

force approach will not only tell us about the feasibility of an adaptive time-step

algorithm for Faber polynomials, but also hints at a potential relationship between

the optimal time-step and other metrics, such as the matrix norm. Moreover, it could

be used in assessing whether the adaptive time-step algorithms reported for other

exponential integrators are optimal and to suggest paths for improvement.

3. We can also expand the repertoire of methods for comparison, providing a broader

perspective on the results achieved with exponential integrators.

4. In the numerical experiments, in order to consider the source term, we used an

approximation in Taylor series of the signal, and computed the matrix exponential

in a sligthly large matrix. However, this is not the only approach for incorporating

the source term with the exponential integrator. As demonstrated in Kole (2003),

we can expand the source function in the basis used by the exponential integrator

and simultaneously computing the two matrix exponentials. This approach could

reveal new features of the methods.

5. In relation to the mathematical model of applying HESW therapy to a growing

tumor, we could gradually expand the model to simulate other action mechanisms

reported in the literature for the therapy. In addition, to enhance the accuracy of the

numerical experiments and formulate more reliable complex processes, we could

employ better geometries than a square finite difference grid to precisely represent

the shape of the tumor and the device generating the HESW.
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