• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2011.tde-18042011-130215
Documento
Autor
Nome completo
Bernardo Gabriel Marques
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2011
Orientador
Banca examinadora
Tal, Fabio Armando (Presidente)
Gomes, Bernardo Paschoarelli Veiga
Zanata, Salvador Addas
Título em português
A conjectura de Boyland para homeomorfismos do anel
Palavras-chave em português
conjectura de Boyland
conjunto de rotação
Homeomorfismos do anel
transitividade
Resumo em português
A ideia deste trabalho é apresentar a conjetura de Boyland para o anel e mostrar algums resultados nessa direção. Tal conjectura diz que: Dado um homeomorfismo irrotacional do anel, que possui uma medida com número de rotação positivo, é verdade que, neste caso, existem pontos com número de rotação negativo? Para dar uma resposta parcial a esta pregunta, nesta dissertação (baseada no estudo do [7]) começamos considerando os homeomorfismos do anel que preservam orientação, as componentes de fronteira, com número de rotação positivos em ambas fronteiras, e que tem un levantamento transitivo (o motivo desta hipoteses vem de [3]), mostrando que neste caso 0 está no interior do conjunto de rotação. Este resultado vai permitir provar a conjetura para os homeomorfismos do anel irrotacionais, sem pontos fixos na fronteira e com um levantamento transitivo. Além disso vai permitir estudar a dinâmica de tais homeomorfismos. No final do trabalho, estendemos algums dos teoremas provados ao longo dos capítulos anteriores a um conjunto maior de homeomorfismos e estudamos o comportamento de tais homeomorfismos com base nestes resultados.
Título em inglês
Boyland's conjecture for annulus homeomorphisms
Palavras-chave em inglês
Boyland´s Conjecture.
Homeomorphisms of the Annulus
rotation set
transitivity
Resumo em inglês
The idea of this work is to present Boyland´s Conjecture for the annulus and show some results in its direction. The conjecture is the following: Given a homeomorphism of the annulus, which has a measure with positive rotation number, is it true that, in this case, there are points with negative rotation number?. To give a partial answer to this question, in this dissertation (based on [7]) we begin considering the homeomorphisms of the annulus that preserve orientation and boundary components, with positive rotation numbers in the boundaries, with has a transitive lift (the reason for this hypothesis is in [3]), and we show that 0 is in the interior of the rotation set. This result will be of help to prove the Boyland´s Conjecture for rotationless homeomorphisms of the annulus, without fixed points in the boundaries and with a transitive lift. In addition, we will be able to study the dynamics of such homeomorphisms. In the end of this work, we extend some of the theorems proved in the previous chapters to a bigger set of homeomorphisms and we study the behavior of such homeomorphisms using these results.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
deposito.pdf (733.32 Kbytes)
Data de Publicação
2011-05-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.