• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1997.tde-20210729-013417
Document
Auteur
Nom complet
Paulo Jose da Silva e Silva
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1996
Directeur
Titre en portugais
Metodo de ponto proximal e separadores
Mots-clés en portugais
Programação Matemática
Programação Não Linear
Resumé en portugais
Esta dissertacao e centrada em metodos de ponto proximal (mpp), vistos como algoritmos para programacao convexa. A importancia destes algoritmos para programacao matematica esta, em parte, associada a sua conexao com metodos de multiplicadores, como lagrangianos aumentados ou o metodo exponencial de multiplicadores [11, 4]. O mpp e caracterizado pela solucao de uma sequencia de problemas auxiliares, cujas funcoes objetivo sao a soma da funcao objetivo original com um termo de regularizacao. Os primeiros trabalhos [17, 20] usavam um multiplo do quadrado da norma euclidiana como funcao de regularizacao. Neste texto, apresentam-se resultados de convergencia para algoritmos que usam uma generalizacao de regularizacao euclidiana. Basicamente, mostra-se que o mpp converge usando a composicao de funcoes estritamente convexas com normas, sob hipoteses minimas de diferenciabilidade do termo estritamente convexo. Isto e feito utilizando as ideias de separadores introduzidas por eaves e zangwill [9]. Mostra-se ainda que, quando a norma euclidiana e empregada, a propriedade de fejer monotonicidade se mantem. Alem destes resultados, que formam a parte central da dissertacao, e feita uma revisao de alguns topicos de convexidade e subdiferenciabilidade e uma breve excursao ao caso em que a regularizacao e uma distancia de bregman
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.