• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1997.tde-20210729-013802
Document
Author
Full name
Cláudia de Oliveira
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1997
Supervisor
Title in Portuguese
Dinâmica de funções S-unimodais
Keywords in Portuguese
Sistemas Dinâmicos
Abstract in Portuguese
Neste trabalho estudamos funções S-unimodais f : [-1,1]'SETA'[-1,1] sob vários aspectos da teoria de Sistemas Dinâmicos. Primeiramente, apresentamos a derivada Schwarziana e algumas das suas propriedades. Posteriormente a utilizamos como ferramenta no estudo da dinâmica das funções S-unimodais. Um dos fatos mais relevantes é o Princípio de Köbe, o qual nos dá um controle para a distorção da razão cruzada de intervalos J 'ESTÁ CONTIDO EM' T 'ESTÁ CONTIDO EM' [-1,1] por iteradas de f, e garante também um certo controle para a não-linearidade destas iteradas. No que se refere a estrutura topológica da dinâmica gerada por uma função S-unimodal, mostramos que existe no máximo um atrator periódico e não existem intervalos errantes. Em seguida desenvolvemos a Teoria de Milnor e Thurston a qual emprega dinâmica simbólica para fazer uma classificação topológica destes sistemas. Provamos que a órbita do ponto crítico de uma função S-unimodal determina a sua dinâmica. Finalizamos fazendo um estudo dos aspectos métricos relacionados com a dinâmica de funções S-unimodais. Nos interessamos principalmente pela hiperbolicidade e pela medida de Lebesgue de conjuntos invariantes
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
OliveiraClaudia.pdf (31.73 Mbytes)
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.