• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1997.tde-20210729-013855
Document
Auteur
Nom complet
Estela Maris Rodrigues
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1997
Directeur
Titre en portugais
Sobre fatores e empacotamentos em grafos
Mots-clés en portugais
Teoria Dos Grafos
Resumé en portugais
Uma generalização de emparelhamentos em grafos pode ser obtida com base na idéia de encontrarmos, em um garfo H = (V(H),A(H)), um subgrafo G tal que os componentes de G sejam isomorfos a membros de uma família fixa F de grafos conexos. Ao grafo G chamamos F-empracotamento de H, e se V (G) = V(H), então G é denominado um F-fator de H. Um de nossos objetivos é o estudo da complexidade dos problemas da forma 'dado um grafo H, decidir se H admite um F-fator'. Chamamos este problema de problema de fatoração definido por F. Os problemas de fatoração definidos por famílias unitárias foram os primeiros a serem estudados. Dentre esses, o problema do emparelhamento perfeito é o único, em essência, que não é NP-completo. Dentre os problemas definidos por famílias não unitárias, são conhecidas algumas classes de problemas polinomiais. Exemplos são os problemas de fatoração por famílias de cliques que contenham o grafo 'K IND.2', e alguns problemas definidos por familias de estrelas. Todos esses problemas são considerados neste trabalho. Também apresentamos exemplos de problemas NP-completos definidos por famílias não unitárias de grafos, por exemplo o problema do {'K IND.3', 'K IND.4',...}-fator e alguns problemas definidos por famílias de grafos bipartidos completos. Atualmente, a maior questão acerca dos problemas de fatoração é a conjectura de Loebl e Poljak, que propõe uma caracterização das famílias de grafos conexos que definem problemas de fatoração polinomiais em termos de matróides. Essa conjectura foi respondida de forma afirmativa para famílias da forma {'K IND.2', F} em que F é um grafo conexo. O caso geral permanece em aberto desde que foi proposto em 1988
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.