• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1997.tde-20210729-014408
Document
Author
Full name
Luis Antônio Fernandes de Oliveira
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1997
Supervisor
 
Title in Portuguese
Teoria do controle ótimo para equações integrais lineares do tipo Volterra-Stieltjes: um princípio do máximo
Keywords in Portuguese
Funções Especiais
Abstract in Portuguese
Neste trabalho estudamos existência de controles ótimos para um sistema governado por uma Equação Integral Linear de Volterra-Stieljes agindo em espaços de Banach X com estados e controles no conjunto das funções regradas de [0,T] em X, e considerando funcionais do tipo linear no seu espaço dual. A integral considerada é do tipo Dushinik e o núcleo de Volterra K pertence ao espaço de todos os operadores de semivariação uniformemente limitada em X que são fracamente regrados. Também levamos em conta uma restrição linear nas soluções, que têm uma representação integral. Uma caracterização geométrica precisa dos conjuntos de atingibilidade leva-nos a um Princípio do Máximo. Finalmente , fazemos aplicações deste resultado
 
Title in English
not available
Abstract in English
In this work we study the existence of optimal controls for a system driven by a Volterra-Stieltjes Linear Integral equation acting on Banach spaces X with states and controls maps racing in the set of all regulated functions from [0,T] into X, and considering functional of linear in its dual space. The integral considered is the Dushinik type and the Volterra's kernel belongs to the space of all uniformly bounded semivariatiopn operators in X that are weakly regulated. We are also taking on consideration a linear constraint on the solution set which is represented in a integral profile. The precise characterization of the attainable sets in the processs will lead us to the synthesis of a Maximum Principle. Finally, applications of the result are take on care
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.