• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2002.tde-20210729-125441
Document
Auteur
Nom complet
Jair Donadelli Junior
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2001
Directeur
Titre en portugais
Resultados de Ramsey e de densidade para grafos pseudo-aleatórios esparsos
Mots-clés en portugais
Teoria Dos Grafos
Resumé en portugais
Neste trabalho estudamos problemas do tipo ramsey e do tipo densidade para grafos e grafos orientados esparsos. Começamos dedicando o primeiro capítulo a uma das principais ferramentas no ataque aos problemas: o Lema de Regularidade de Szemerédi. Na seqüência, provamos uma generalização de um lema de contagem devido a Kohayakawa e Kreuter (1997). Com esse resultado, aplicamos um método inventado por Furedi para provar que quase certamente Gp ->1/2+B Cl para qualquer B>0, onde Gp é o grafo orientado aleatório binomial de ordem n e densidade p = e(Gp)/n2 = An-1+1/(l-1), e A = A(B) > 0 é uma constante suficientemente grande e G ->1/2+B Cl significa que todo subgrafo J C G com e(J)> ou = (1/2+B) e (G) contém o circuito Cl. Como conseqüência disso obtemos uma família infinita de contra-exemplos para uma generalização de uma conjectura de Woodall. Depois, usamos o lema de contagem de circuitos para mostrar que para todo grafo H de uma família apropriada de grafos 2-conexos e para todo n suficientemente grande, existem grafos In tais que In -> (Cl, H) e In é minimal com respeito a essa propriedade. O símbolo In -> (Cl, H) significa que para qualquer 2-coloração de E(In) com as cores vermelha e azul, ou teremos uma cópia monocromática vermelha de Cl ou uma cópia monocromática azul de H contida em In. Finalmente, demonstramos que para qualquer grafo H, se subdividimos suas arestas s vezes, onde C1 log n < ou = s < ou = C2n, então o número de ramsey para aresta para grafo resultante é O(n). Esse resultado está relacionado com uma conjectura recente de Igor Pak
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.