• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2006.tde-20210729-145430
Document
Author
Full name
Paulo Rafael Bösing
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2006
Supervisor
Title in Portuguese
Método de Galerkin descontínuo para equações elípticas de alta ordem
Keywords in Portuguese
Análise Numérica
Equações Diferenciais Parciais Elíticas
Método Dos Elementos Finitos
Abstract in Portuguese
Neste trabalho introduzimos formulações de Galerkin descontínuo com penalização interior aplicado às equações elípticas de alta ordem. Para equação biharmônica, apresentamos as formulações simétrica, não simétrica e duas semi-simétricas, e para todas elas desenvolvemos análise de estabilidade e estimativas de erro a priori na norma da energia. Para as transformações simétrica e semi-simétricas, explicitamos as constantes envolvidas na coercividade da forma bilinear de maneira a obter termos de penalização ótimos. E, para a formulação simétrica, usando o argumento de dualidade de Aubin-Nitsche, derivamos estimativas de erro a priori na norma do espaço 'L ind 2', no espaço de Sobolev particionado 'H POT q', bem como para funcionais lineares da solução. Estas estimativas são ótimas em h(parâmetro de discretização da malha) e subótimas em p(ordem de aproximação polinomial). Todos os resultados teóricos são comprovados por uma série de resultados numéricos. Para uma equação biharmônica com termo advectivo, introduzimos uma formulação de Galerkin descontínuo com penalização interior, e provamos estimativas de erro a priori na norma da energia que são ótimas em h e subótimas em p. Mostramos numericamente que esta formulação mantém as propriedades elípticas do problema para números de Reynolds baixo e apresenta as propriedades advectivas para Reynolds suficientemente grande.
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
BosingPauloRafael.pdf (26.06 Mbytes)
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.