• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1994.tde-20210813-161549
Document
Author
Full name
Marcio Santos da Rocha
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1994
Supervisor
Title in Portuguese
Mecânica e geometria
Keywords in Portuguese
Geometria Diferencial
Mecânica Clássica
Abstract in Portuguese
Neste trabalho a mecanica classica e estudada sob o ponto de vista da geometria riemanniana. Um sistema simples e a terna (m,g,v) onde (m,g), sendo m o espaco das configuracoes, e uma variedade riemanniana, cuja metrica e definida pela energia cinetica do sistema, e v e a energia potencial. As trajetorias fisicas de um sistema mecanico simples conservam a energia total. As trajetorias de energia sao dadas como geodesicas de ('M IND.H', 'G IND.H'), onde 'M IND.H' e o espaco das configuracoes possiveis, e 'G IND.H'= 2 (h-v)g. As propriedades geometricas desta variedade sao estudadas atraves de suas curvaturas. Sao dados resultados sobre os sinais das curvaturas nas vizinhancas da fronteira de 'M IND.H' e dos pontos criticos do potencial v. Exemplos classicos da mecanica analitica sao usados para ilustracao, como o problema de kepler, o problema de tres particulas e o pendulo duplo. Um programa de linguagem em c foi usado para obter maiores informacoes sobre as trajetorias fisicas do pendulo duplo
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-08-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.