• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2009.tde-20220712-123157
Document
Auteur
Nom complet
Sinuê Dayan Barbero Lodovici
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2009
Directeur
Titre en portugais
Imersões que preservam G-estruturas e aplicações
Mots-clés en portugais
G-Estruturas
Geometria Diferencial
Resumé en portugais
Apresentamos neste trabalho diversos de teoremas de imersão isométrica obtidos a partir do teorema de imersões afins que preservam G-estrutura proposto por P. Piccione e D. Tausk em [18]. Descreemos, assim, os clássicos teoremas de imersão em formas espaciais, bem como resultados recentes sobre imersões, como os expostos em [5] e [6]. Apresentamos, então, um teorema de imersão em grupos de Lie munidos de uma 1-estrutura, o qual tem como corolário um resultado de imersão isométrica no grupo Sol, uma das oito estruturas geométricas tridimencionais descritas por Thurston (ver [21]). Descrevemos, também, um teorema de imersão isométrica no grupo Heisenberg-Lorentz, um dos quatro modelos da recente classificação de geometrias lorentzianas tridimensionais proposta por Dumitrescu e Zeghib em [7]. Este resultado, obtido em conjnto com F. Manfio (ver [15]) e que aqui apresentamos, compreende também um resultado de rigidez neste espaço. A seguir, provamos teoremas de imersão isométrica em variedades sub-riemannianas de contato. Finalmente, como aplicação do teorema de imersão afim proposto em [18], apresentamos um teorema sobre a existência de famílias associadas a uma superfície mínima imersa em uma variedade afim com G-estrutura e inner torsion nula
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2022-07-13
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.