Sobre uma classe de métodos de colocação polinomial para equações integrais de Volterra

Genilson Schunck de Lima

Dissertação apresentada ao Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Mestre em Ciências

Programa: Matemática Aplicada Orientador: Prof. Dr. José Carlos Simon de Miranda

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro do CNPq

São Paulo, Setembro de 2016

Sobre uma classe de métodos de colocação polinomial para equações integrais de Volterra

Esta é a versão original da dissertação elaborada pelo candidato Genilson Schunck de Lima, tal como submetida à Comissão Julgadora.

Agradecimentos

A Deus pelas oportunidades que eu tive e pelas pessoas que me ajudaram.

À minha família pelo apoio, motivação e compreensão.

Ao professor Simon pelas sugestões, incentivo e paciência durante a minha orientação.

Aos professores com quem eu estudei ao longo destes anos.

Aos amigos e colegas que dividiram comigo parte desse caminho.

Ao CNPq pelo suporte financeiro.

Resumo

LIMA, G. S. Sobre uma classe de métodos de colocação polinomial para equações integrais de Volterra. 2016. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo

A teoria sobre colocação polinomial para equações integrais de Volterra apresenta certos resultados que se adaptam sobre diferentes classes de métodos e outros que são mais específicos. Este trabalho considera uma classe de métodos, verifica como alguns resultados disponíveis sobre a análise de convergência podem ser adaptados para ela, e compara as propriedades observadas com o desempenho exibido num conjunto de exemplos. Os resultados indicaram que a classe descrita pode ser usada em equações de primeiro ou segundo tipo, regulares ou com singularidade de Abel, e inclui métodos que apresentam uma ordem de convergência alta quando a solução é regular o bastante.

Palavras-chave: Métodos de colocação polinomial, Equações integrais de Volterra, Equações integrais de Abel, Análise de convergência

Abstract

LIMA, G. S. On a class of polynomial collocation methods for Volterra integral equations. 2016. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo

The theory about polynomial collocation for Volterra integral equations shows some results that can be adapted over different method classes and others that are more particular. This work considers one method class, verifies how some available results about convergence analysis can be adapted to it, and make a comparison between the observed properties and the behavior showed with a set of examples. The results indicated that the described class can be used for equations of first or second kind, regular or with Abel singularity, and includes methods that achieve a high convergence order when the solution is regular enough.

Keywords: Polynomial collocation methods, Volterra integral equations, Abel integral equations, Convergence analysis

Sumário

1	Introdução	1
2	Alguns resultados teóricos	3
	2.1 Equações integrais	3
	2.2 Equações de Volterra de segundo tipo regulares (V2)	4
	2.3 Equações de Volterra de primeiro tipo regulares (V1)	6
	2.4 Equações de Abel (A1)	8
	$2.5~$ Equações de Volterra de segundo tipo com singularidade de Abel $(\mathrm{AV2})$	12
	2.6 Equações de Volterra de primeiro tipo com singularidade de Abel (AV1)	16
3	Métodos de colocação polinomial	21
	3.1 Métodos de colocação polinomial	21
	3.2 Colocação para Volterra de segundo tipo regulares $(CV2)$	23
	3.3 Colocação para Volterra de primeiro tipo regulares $(CV1)$	29
	3.4 Colocação para Volterra de segundo tipo com singularidade de Abel $\left(\mathrm{CAV2}\right)$	35
	3.5 Colocação para Volterra de primeiro tipo com singularidade de Abel (CAV1)	40
4	Uma condição de convergência sobre métodos de colocação para Volterra de primeiro tipo com singularidade de Abel	
	4.1 Convergência para ponto médio produto com $K=1$	45
	4.2 Condição de convergência para outros métodos e outros núcleos	49
	4.3 Comportamento das matrizes C_{N-1}	53
	4.4 Estabilidade numérica ao calcular as matrizes \mathcal{D}_{N-1}	57
5	Resumo dos testes numéricos	61
	5.1 Testes para CV2	61
	5.2 Testes para CV1	62
	5.3 Testes para CAV2	63
	5.4 Testes para CAV1	64
6	Conclusões	67
А	Estimativa de dígitos corretos	69
	A.1 Operações com estimativa de dígitos corretos	69

B Resultados numéricos para CV2	73
B.1 Método (0.5) com o teste V2-T1	73
B.2 Método (0.5) com o teste V2-T2	73
B.3 Método $(0.5, 1)$ com o teste V2-T1	74
B.4 Método $(0.5, 1)$ com o teste V2-T2	74
B.5 Método (G_1, G_2) com o teste V2-T1	75
B.6 Método (G_1, G_2) com o teste V2-T2	76
C Resultados numéricos para CV1	77
C.1 Método $(0.5, 1)$ com o teste V1-T1	77
C.2 Método $(0.5, 1)$ com o teste V1-T2	77
C.3 Método $(0.5,1,0.8,1)$ com o teste V1-T1	78
C.4 Método $(0.5,1,0.8,1)$ com o teste V1-T2	79
C.5 Método ($G_1, G_2, 0.8, 1$) com o teste V1-T1	79
C.6 Método ($G_1, G_2, 0.8, 1$) com o teste V1-T2	80
C.7 Exemplos não convergentes	80
D Resultados numéricos para CAV2	81
D.1 Método (0.5) com o teste AV2-T1	81
D.2 Método (0.5) com o teste AV2-T2	81
D.3 Método $(0.5, 1)$ com o teste AV2-T1	82
D.4 Método $(0.5, 1)$ com o teste AV2-T2	82
D.5 Método (G_1, G_2) com o teste AV2-T1	83
D.6 Método (G_1, G_2) com o teste AV2-T2	83
E Resultados numéricos para CAV1	85
E.1 Método $(0.5, 1)$ com o teste AV1-T1	85
E.2 Método $(0.5, 1)$ com o teste AV1-T2	86
E.3 Método $(0.5, 1)$ com o teste AV1-T3	87
E.4 Método $(0.5, 1, 0.8, 1)$ com o teste AV1-T1	88
E.5 Método $(0.5, 1, 0.8, 1)$ com o teste AV1-T2	89
E.6 Método $(0.5, 1, 0.8, 1)$ com o teste AV1-T3	90
E.7 Método $(G_1, G_2, 0.8, 1)$ com o teste AV1-T1	92
E.8 Método $(G_1, G_2, 0.8, 1)$ com o teste AV1-T2	93
E.9 Método $(G_1, G_2, 0.8, 1)$ com o teste AV1-T3	94
E.10 Exemplos não convergentes	95
Referências Bibliográficas	97

Capítulo 1

Introdução

Equações integrais de Volterra descrevem certos problemas onde a função a ser determinada aparece numa integral que depende da variável livre no intervalo de integração.

Considere por exemplo o seguinte problema:

Dadas
$$K(t,s) \in g(t)$$
, queremos determinar uma $y(s)$ tal que $g(t) = \int_0^t K(t,s)y(s)ds$ para cada $t \in [0,T]$.

A literatura sobre equações integrais de Volterra inclui resultados de existência, unicidade e regularidade da solução, alguns métodos analíticos para obtenção da solução e alguns métodos numéricos para a sua aproximação.

Entre os procedimentos numéricos disponíveis temos os métodos de colocação polinomial, que determinam aproximações dadas por polinômios por trechos satisfazendo a equação numa quantidade finita de pontos.

Considere por exemplo o problema acima com uma aproximação constante por trechos:

(i) Tome uma malha uniforme sobre o intervalo [0,T] dada por $z_n = nh$

 $com \ n = 0, ... N, \ h = T/N.$

(ii) Tome uma aproximação para
ay(s)dada por $u(s) = \sum_{n=0}^{N-1} \, u_n \, \pmb{\chi}_{]z_n, z_{n+1}]}(s)$

com u_n constantes a serem determinadas e χ_A a função indicadora do conjunto A.

(iii) Aplique a equação sobre os pontos z_n usando a expressão da u(s)

$$g(z_n) = \int_0^{z_n} K(z_n, s)u(s)ds = \int_0^{z_n} K(z_n, s) \sum_{i=0}^{N-1} u_i \chi_{]z_i, z_{i+1}]}(s)ds =$$
$$= \sum_{i=0}^{N-1} u_i \int_0^{z_n} K(z_n, s) \chi_{]z_i, z_{i+1}]}(s)ds = \sum_{i=0}^{N-1} u_i \int_{z_i}^{z_{i+1}} K(z_n, s) ds = \sum_{i=0}^{N-1} u_i \beta_{ni} \operatorname{com} n = 1, \dots N$$

(iv) Resolva esse sistema linear obtendo as u_i

A teoria sobre colocação polinomial para equações integrais de Volterra tem alguns resultados que se aplicam a diferentes classes de métodos e outros que são mais restritos.

Ao longo desse trabalho vamos descrever uma classe de métodos, verificar como certos resultados podem ser adaptados para ela e observar o seu comportamento em alguns exemplos.

No capítulo 2 vamos identificar as equações integrais de Volterra de primeiro ou segundo tipo, regulares ou com singularidade de Abel, e observar alguns resultados sobre existência e regularidade da solução.

No capítulo 3 vamos descrever a classe de métodos escolhida e considerar a sua convergência sobre equações de segundo tipo regulares, primeiro tipo regulares e segundo tipo com singularidade de Abel, que são casos com demonstrações bem gerais.

No capítulo 4 vamos considerar uma condição suficiente para a convergência sobre equações de primeiro tipo com singularidade de Abel, usando como referência uma demonstração de caso particular.

No capítulo 5 vamos observar os resultados obtidos em alguns exemplos e compará-los com as proposições vistas no restante do trabalho.

Capítulo 2

Alguns resultados teóricos

Neste capítulo vamos definir as classes de problemas tratadas ao longo do trabalho e observar alguns resultados sobre existência, unicidade e regularidade da solução.

Segundo as informações em [Bru86], a maior parte desses resultados foi estabelecida entre 1820 e 1920, com destaque para os trabalhos de Abel [Abe23], Volterra [Vol96] e Evans [Eva11].

2.1 Equações integrais

Vamos começar com uma definição abrangente e depois passar para situações mais específicas. Essas definições se baseiam em [Lin85], seção 1.1.

Definição 2.1.1: Uma equação integral é dada por

$$F\left(t, y(t), \int_{\alpha(t)}^{\beta(t)} p(t, s) K(t, s, y(s)) ds\right) = g(t)$$

com as seguintes restrições:

(i) $\alpha, \beta: [a, b] \to [a, b]$ contínuas com $\alpha(t) \leq \beta(t)$ para $\forall t \in [a, b]$

(ii) K(t, s, u) contínua sobre $\Omega \times U$, $\Omega = \{(t, s): a \leq t \leq b, \alpha(t) \leq s \leq \beta(t)\}, U \subset \mathbb{R}^n$

(iii) p(t,s) contínua no interior de Ω com p(t,.) integrável sobre $]\alpha(t), \beta(t)[$ para $\forall t \in]a, b[$

(iv) $g: \left] a, b \right[\rightarrow \mathbb{R}^n$ contínua

(v) $F\colon\![a,b]\times U\times \mathbb{R}^n\!\rightarrow\!\mathbb{R}^n$ contínua.

Definição 2.1.2: $y: [a, b] \to \mathbb{R}^n$ é dita solução se

(i) y é contínua em [a, b], (ii) $y([a, b]) \subset U$ e (iii) a equação é satisfeita em $\forall t \in [a, b]$.

É importante observar que a cada instante t_0 temos uma $p(t_0, .)K(t_0, ., y(.))$ diferente sendo integrada sobre um intevalo $]\alpha(t_0), \beta(t_0)[$ diferente.

Como caso particular temos a forma integral de EDOs com valor inicial, que utilizam núcleos G(., y(.)) e intervalos [a, t].

Figura 2.1.3: Intervalo de integração e função integrada num certo \tilde{t}

Figura 2.1.4: Intervalo de integração e função integrada para EDOs com valor inicial

2.2 Equações de Volterra de segundo tipo regulares (V2)

Com essa classe de problemas é possível determinar os resultados sobre existência e unicidade da solução usando aproximações sucessivas e a desigualdade de Gronwall. Essa seção se baseia em [Lin85], capítulos 3 e 4.

Definição 2.2.1: (Equação V2) Uma equação de Volterra de segundo tipo regular é dada por

$$y(t) = g(t) + \int_a^t K(t, s, y(s)) ds$$

com $K: \Omega \times U \to \mathbb{R}^n$, $g: [a, b] \to \mathbb{R}^n$ contínuas, $\Omega = \{(t, s): a \leq s \leq t \leq b\}, U \subset \mathbb{R}^n$.

Definição 2.2.2: $y: [a, b] \to \mathbb{R}^n$ é dita solução se

(i) y é contínua em [a, b], (ii) $y([a, b]) \subset U$ e (iii) a equação é satisfeita em $\forall t \in [a, b]$.

O teorema a seguir tem uma versão para solução local, que pode ser vista em [Lin85], teorema 4.2.

Teorema 2.2.3: (Existência e unicidade para V2) Dada uma equação de Volterra de segundo tipo regular com $U = \mathbb{R}^n$ e K de Lipschitz em u sobre $\Omega \times U$, então a solução existe sobre [a, b] e é única.

Demonstração: (i) Tome a sequência de aproximações sucessivas dada por

$$y_0(t) = g(t), \ y_{n+1}(t) = g(t) + \int_a^t K(t, s, y_n(s)) ds, \text{ para } t \in [a, b]$$
$$U = \mathbb{R}^n \Rightarrow y_n(t) \in U \text{ para } \forall t \in [a, b]$$

K de Lipschitz, $y_n(s) \in U \Rightarrow |K(t,s,y_n(s)) - K(t,s,y_{n-1}(s))| \leq L|y_n(s) - y_{n-1}(s)|$

 $g, K \text{ contínuas}, \Omega \text{ compacto} \Rightarrow \exists M = \max \left\{ |K(t, s, g(s))| : (t, s) \in \Omega \right\}$

Fazendo a diferença entre duas y_n consecutivas, obtemos as seguintes estimativas

$$\begin{aligned} |y_1(t) - y_0(t)| &\leqslant \int_a^t |K(t, s, g(s))| ds \leqslant (t - a)M = \frac{(t - a)^1 L^1}{1!} \frac{M}{L} \\ |y_{n+1}(t) - y_n(t)| &\leqslant \int_a^t |K(t, s, y_n(s)) - K(t, s, y_{n-1}(s))| ds \leqslant L \int_a^t |y_n(s) - y_{n-1}(s)| ds \leqslant L \int_a^t \frac{(s - a)^n L^n}{n!} \frac{M}{L} ds = \frac{(t - a)^{n+1} L^{n+1}}{(n+1)!} \frac{M}{L} \\ t &\in [a, b] \Rightarrow |y_r(t) - y_{r-1}(t)| \leqslant \frac{(b - a)^r L^r}{r!} \frac{M}{L} \text{ para } t \in [a, b] \end{aligned}$$

(ii) Com essas estimativas vamos mostrar que y_n tem limite uniforme y e que ela satisfaz a equação.

Tome $\theta_r(t) = y_r(t) - y_{r-1}(t), \ a_r = \frac{(b-a)^r L^r}{r!} \frac{M}{L}$

$$\frac{|a_{r+1}|}{|a_r|} = \frac{(b-a)L}{r+1} \rightarrow 0$$

Pelo critério da razão, temos que $\sum a_r$ converge

Com o teste de Weierstrass, $\sum \theta_r(t)$ converge uniformemente sobre $t \in [a, b]$ $y_n(t) = y_0(t) + \sum_{r=1}^n \theta_r(t) \Rightarrow y_n(t)$ converge uniformemente sobre $t \in [a, b]$ Pela completude das funções contínuas, $\exists y(t)$ contínua que realiza o limite $y_n \rightarrow y$ uniformemente, K(t, s, .) uniformemente contínua

 $\Rightarrow K(t,s,y_n(s)) \rightarrow K(t,s,y(s)) \text{ uniformemente}$

Usando o limite de integrais, chegamos a

$$\lim_{a} \int_{a}^{t} K(t, s, y_n(s)) ds = \int_{a}^{t} \lim_{s \to t} \inf_{s \to t} K(t, s, y_n(s)) ds = \int_{a}^{t} K(t, s, y(s)) ds$$

A cada n, temos $y_{n+1}(t) = g(t) + \int_a^b K(t, s, y_n(s)) ds$ Logo os limites satisfazem $y(t) = g(t) + \int_a^t K(t, s, y(s)) ds$

(iii) Para mostrar a unicidade, consider
ez(t) com $z(t) = g(t) + \int_a^t K(t, s, z(s))ds$ para $t \in [a, b]$
 $|y(t) - z(t)| \leq 0 + \int_a^t |K(t, s, y(s)) - K(t, s, z(s))|ds \leq L \int_a^t |y(s) - z(s)|ds$

Pela desigual dade de Gronwall, $|y(t)-z(t)|\leqslant 0\,e^{L(t-a)}=0.$

Para a proposição de regularidade sobre V2, vamos derivar a equação da solução algumas vezes usando o lema a seguir.

 \Box

Lema 2.2.4: (Derivar em baixo da integral e no limite de integração) Dada $f: \Omega \to \mathbb{R}^n$, $\Omega = \{(t, s): a \leq s \leq t \leq b\}$, com $f \in \frac{\partial f}{\partial t}$ contínuas sobre Ω ,

então
$$\int_{a}^{t} f(t,s)ds$$
 tem classe C^{1} em $t \in \frac{d}{dt}\int_{a}^{t} f(t,s)ds = f(t,t) + \int_{a}^{t} \frac{\partial f}{\partial t}(t,s)ds$
Demonstração: Considere $F(p,t) = \int_{a}^{p} f(t,s)ds$
Pelo teorema fundamental do cálculo, temos $F \in C^{1}$ em $p \in \frac{\partial}{\partial p}\int_{a}^{p} f(t,s)ds = f(t,p)$
Com a derivada em baixo da integral, $F \in C^{1}$ em $t \in \frac{\partial}{\partial t}\int_{a}^{p} f(t,s)ds = \int_{a}^{p} \frac{\partial f}{\partial t}(t,s)ds$

Usando a regra da Cadeia, chegamos a

$$F(t,t) \in C^1 \text{ em } t \text{ e } \frac{d}{dt} F(t,t) = \frac{\partial F}{\partial p}(t,t) 1 + \frac{\partial F}{\partial t}(t,t) = f(t,t) + \int_a^t \frac{\partial f}{\partial t}(t,s) ds \qquad \Box$$

Proposição 2.2.5: (Regularidade para V2) Dada uma equação de Volterra de segundo tipo regular com solução única sobre $[a, b], g \in C^p$ sobre $[a, b], K \in C^p$ sobre $\Omega \times U, U = \mathbb{R}^n, p \ge 1$

então a solução tem classe C^p sobre $t \in [a, b]$.

Demonstração: Tome y(t) solução da equação

Assim temos y(t) contínua sobre [a, b] e $y(t) = g(t) + \int_a^t K(t, s, y(s)) ds$

Se $g,K\!\in\!C^p,\;p\!\geqslant\!1,$ então

 $g(t)\in C^1,\,K(t,s,y(s))$ contínua
e $\frac{\partial}{\partial t}K(t,s,y(s))=K_t(t,s,y(s))$ contínua Pelo lema acima, obtemos

$$y(t) \in C^1$$
 sobre $[a, b] \in y'(t) = g'(t) + K(t, t, y(t)) + \int_a^t K_t(t, s, y(s)) ds$

Se $g, K \in \mathbb{C}^p, \ p \ge 2$, então

 $g'(t) \in C^1, \ K(t,t,y(t)) \in C^1, \ K_t(t,s,y(s)) \text{ contínua}, \ \frac{\partial}{\partial t} K_t(t,s,y(s)) = K_{tt}(t,s,y(s)) \text{ contínua}$

Aplicando o lema de novo, chegamos a

$$y(t) \in C^2 \text{ sobre } [a, b] \in y''(t) = g''(t) + \frac{d}{dt}K(t, t, y(t)) + K_t(t, t, y(t)) + \int_a^t K_{tt}(t, s, y(s))ds$$
Continuando obtemos $y(t) \in C^p$ e uma certa expressão para $\frac{d^p}{dt^p}y(t)$

2.3 Equações de Volterra de primeiro tipo regulares (V1)

Com essa classe de problemas podemos derivar a equação da solução obtendo um problema de segundo tipo regular equivalente. As referências principais são [Lin85], seção 5.1 e [Bru04], seção 2.1.

Definição 2.3.1: (Equação V1) Uma equação de Volterra de primeiro tipo regular é dada por

$$g(t) = \int_a^t K(t,s) \ y(s) \ ds$$

 $\mathrm{com}\ K\!:\!\Omega \mathop{\rightarrow} M(\mathbb{R},n\times n),\ g\!:\![a,b]\mathop{\rightarrow} \mathbb{R}^n,\ \Omega\!=\!\{(t,s)\!:\!a\!\leqslant\!s\!\leqslant\!t\!\leqslant\!b\},$

 K, K_t, g, g' contínuas, K(t, t) inversível para $\forall t \in [a, b], g(a) = 0.$

Definição 2.3.2: $y: [a, b] \to \mathbb{R}^n$ é dita solução se

(i) y é contínua em [a, b], (ii) $y([a, b]) \subset U$ e (iii) a equação é satisfeita em $\forall t \in [a, b]$.

Proposição 2.3.3: (Equivalência V1-V2) Dada uma equação de Volterra de primeiro tipo regular, ela é equivalente a uma equação de segundo tipo regular $y(t) = K^{-1}(t,t)g'(t) - \int_{a}^{t} K^{-1}(t,t)K_{t}(t,s) y(s) ds$.

Demonstração: (i) Considere y(t) contínua com $g(t) = \int_a^t K(t,s) y(s) ds$,

$$g(t) \in C^1, K(t,s)y(s)$$
 contínua, $\frac{\partial}{\partial t}K(t,s)y(s) = K_t(t,s)y(s)$ contínua

Com o lema de derivar em baixo da integral e no limite de integração (2.2.4), temos

$$g'(t) = K(t,t)y(t) + \int_a^t K_t(t,s)y(s)ds$$

$$K(t,t) \text{ inversivel } \forall t \in [a,b] \Rightarrow K^{-1}(t,t)g'(t) - \int_a^t K^{-1}(t,t)K_t(t,s)y(s)ds = y(t)$$

K(t,t) inversível, [a,b] compacto $\Rightarrow |\det(K(t,t))| > k_0 > 0$

K(t,t) contínua \Rightarrow
 $K_{ij}(t,t)$ contínuas para i,j=1,...,n
e $t\in[a,b]$

 $K_{ij}(t,t)$ contínuas, $|\det(K(t,t))| > k_0 > 0 \Rightarrow K^{-1}(t,t)$ é contínua sobre [a,b]

 $K^{-1}(t,t), g'(t), K_t(t,s)u$ contínuas \Rightarrow temos uma equação de segundo tipo regular.

(ii) Tome y(t) contínua com $g'(t) = K(t,t)y(t) + \int_a^t K_t(t,s)y(s)ds$

Trocando as variáveis, temos $g'(s) = K(s,s)y(s) + \int_a^s K_t(s,r)y(r)dr$

Pelo teorema fundamental do cálculo, $g(t) - g(a) = \int_a^t K(s,s)y(s)ds + \int_a^t ds \int_a^s dr K_t(s,r)y(r)$

Como K_t é contínua sobre Ω , podemos mudar a ordem de integração chegando a

$$g(t) - g(a) = \int_a^t K(s,s)y(s)ds + \int_a^t dr \int_r^t ds K_t(s,r)y(r)$$

Pelo teorema fundamental do cálculo, $\int_{r}^{t} K_{t}(s,r)ds = \int_{r}^{t} \frac{d}{ds} K(s,r) ds = K(t,r) - K(r,r)$

Combinando estas expressões e usando a hipótese de g(a) = 0, concluímos que

$$g(t) = \int_{a}^{t} K(s,s)y(s)ds + \int_{a}^{t} (K(t,r) - K(r,r))y(r)dr = \int_{a}^{t} K(t,r)y(r)dr$$

Para existência e regularidade, vamos usar essa equivalência e as propriedades correspondentes da equação de segundo tipo regular associada.

Teorema 2.3.4: (Existência e unicidade para V1) Dada uma equação de Volterra de primeiro tipo regular, então a solução existe sobre [a, b] e é única.

Demonstração: Considere a equação de segundo tipo regular associada

$$y(t) = K^{-1}(t,t)g'(t) - \int_a^t K^{-1}(t,t)K_t(t,s) y(s) \, ds$$

 $K^{-1}(t,t)K_t(t,s)$ contínua, Ω compacto $\Rightarrow K^{-1}(t,t)K_t(t,s)u$ é de Lipschitz em u sobre $\Omega \times \mathbb{R}^n$

Pelo teorema de existência e unicidade para V2 (2.2.3), temos que

 $\exists y(t)$ solução da equação associda sobre [a, b] e ela é única

Com a equivalência V1-V2 (2.3.3), concluímos que

y(t) é solução da equação original sobre [a, b] e ela é única

Proposição 2.3.5: (Regularidade para V1) Dada uma equação de Volterra de primeiro tipo regular com solução única sobre $[a, b], g \in C^{p+1}$ sobre $[a, b], K \in C^{p+1}$ sobre Ω ,

então a solução tem classe C^p sobre $t \in [a, b]$.

Demonstração: Tome y(t) solução da equação associada

$$\begin{split} y(t) &= K^{-1}(t,t)g'(t) - \int_{a}^{t} K^{-1}(t,t)K_{t}(t,s) \; y(s) \, ds \\ K(t,t) &\in C^{p} \Rightarrow K_{ij}(t,t) \in C^{p} \; \text{para} \; i, j = 1, \dots n \; \text{e} \; t \in [a,b] \\ K_{ij}(t,t) &\in C^{p}, \; |\det(K(t,t))| > k_{0} > 0 \Rightarrow K^{-1}(t,t) \in C^{p} \; \text{sobre} \; [a,b] \\ K^{-1}(t,t) &\in C^{p}, \; g'(t) \in C^{p} \Rightarrow K^{-1}(t,t)g'(t) \in C^{p} \\ K^{-1}(t,t) \in C^{p}, \; K_{t}(t,s) \in C^{p} \Rightarrow K^{-1}(t,t)K_{t}(t,s)u \in C^{p} \end{split}$$

Com a proposição de regularidade para V2 (2.2.5), temos $y(t) \in C^p$

 \Box

2.4 Equações de Abel (A1)

Com esses problemas, a existência e unicidade é obtida exibindo-se a solução de forma analítica. Essa seção se baseia em [Lin85], seção 5.2 e [Hac95], capítulo 6.

Definição 2.4.1: (Equação A1) Uma equação de Abel é dada por

$$g(t) = \int_0^t \frac{1}{(t-s)^{\mu}} y(s) ds$$

com $g: [0,T] \to \mathbb{R}^n$ contínua, $\mu \in [0,1[$ fixo.

Definição 2.4.2: $y: [0,T] \to \mathbb{R}^n$ é dita solução se

(i) y é contínua em [0, T] e (ii) a equação é satisfeita em $\forall t \in [0, T]$.

Para o teorema de existência, vamos precisar de alguns resultados preliminares.

Lema 2.4.3: (Continuidade da integral de Abel) Dada
 $F(t) = \int_0^t \frac{1}{(t-s)^{\mu}} G(t,s) ds$ com G contínua sobr
e[0,T]

Demonstração: G limitada, $\frac{1}{(t-s)^{\mu}} \in L^1(]0, t[) \Rightarrow \frac{G(t,s)}{(t-s)^{\mu}} \in L^1(]0, t[)$

Mudando as variáveis com $u = \frac{s}{t}, du = \frac{1}{t}ds$, temos $F(t) = \int_0^1 \frac{G(t, ut)}{(t - ut)^{\mu}} t du = t^{1-\mu} \int_0^1 \frac{G(t, ut)}{(1 - u)^{\mu}} du$ Tome $H(t) = \int_0^1 \frac{G(t, ut)}{(1 - u)^{\mu}} du$

G contínua, $0\leqslant s\leqslant t\leqslant T$ compacto $\Rightarrow G$ é uniformemente contínua

Dado $\varepsilon > 0$, temos $\delta > 0$ tal que $|t_1 - t_2| < \delta$, $|s_1 - s_2| < \delta \Rightarrow |G(t_1, s_1) - G(t_2, s_2)| < \varepsilon$

Com $|t_1-t_2|<\delta,$ também temos $|ut_1-ut_2|=|u||t_1-t_2|<1\delta$

Logo
$$|H(t_1) - H(t_2)| \leq \int_0^1 \frac{|G(t_1, ut_1) - G(t_2, ut_2)|}{(1-u)^{\mu}} du \leq \varepsilon \int_0^1 \frac{1}{(1-u)^{\mu}} du = \varepsilon C_1$$

 $t^{1-\mu}, H(t)$ contínuas em $[0,T] \Rightarrow F$ é contínua em [0,T]

Lema 2.4.4: (Derivada da integral de Abel) Dada $F(t) = \int_0^t \frac{1}{(t-s)^{\mu}} G(t,s) ds$ com $G \in C^1$ sobre $0 \leq s \leq t \leq T$, então $F \in C^1(]0,T]$) e $F'(t) = G(t,0)\frac{1}{t^{\mu}} + \int_0^t \frac{G_t(t,s)}{(t-s)^{\mu}} ds + \int_0^t \frac{G_s(t,s)}{(t-s)^{\mu}} ds$

Demonstração: (i) Da demonstração anterior, temos $F(t) = t^{1-\mu} H(t) \operatorname{com} H(t) = \int_0^1 \frac{G(t, ut)}{(1-u)^{\mu}} du$ Dado $t \in [0, T[$, temos

$$\begin{aligned} G \text{ limitada, } \frac{1}{(1-u)^{\mu}} \in L^{1}(]0,1[) \Rightarrow \frac{G(t,ut)}{(1-u)^{\mu}} \in L^{1}(]0,1[) \\ \frac{G(t,ut)}{(1-u)^{\mu}} \text{ contínua e derivável na variável } t \text{ sobre } u \in]0,1[\\ \left| \frac{\partial}{\partial t} \frac{G(t,ut)}{(1-u)^{\mu}} \right| &= \frac{|G_{t}(t,ut) + G_{s}(t,ut) u|}{(1-u)^{\mu}} \leqslant \frac{1}{(1-u)^{\mu}} (\max |G_{t}| + \max |G_{s}| 1) \in L^{1}(]0,1[) \end{aligned}$$

Com o teorema de derivar em baixo da integral para L^1 , obtemos

$$H'(t) = \int_0^1 \frac{G_t(t, ut) + G_s(t, ut)u}{(1-u)^{\mu}} du$$

Como $G_t(t, ut) + G_s(t, ut)u$ é contínua, pela continuidade da integral de Abel (2.4.3), temos que

H' é contínua sobre [0,T]

$$\begin{split} H &\in C^{1}([0,T]), \ t^{1-\mu} \in C^{1}([0,T]) \Rightarrow F \in C^{1}([0,T]) \ \text{com} \ F'(t) = (1-\mu)t^{-\mu}H(t) + t^{1-\mu}H'(t) \\ F'(t) &= (1-\mu)t^{-\mu} \int_{0}^{1} \frac{G(t,ut)}{(1-u)^{\mu}} du + t^{1-\mu} \int_{0}^{1} \frac{G_{t}(t,ut) + G_{s}(t,ut)u}{(1-u)^{\mu}} du \\ \end{split}$$

(ii) Mudando as variáveis com s = ut, ds = t du, chegamos a

$$F'(t) = (1-\mu)t^{-\mu} \int_0^t \frac{G(t,s)}{\left(1-\frac{s}{t}\right)^{\mu}} \frac{1}{t} ds + t^{1-\mu} \int_0^t \frac{G_t(t,s) + G_s(t,s)\frac{s}{t}}{\left(1-\frac{s}{t}\right)^{\mu}} \frac{1}{t} ds$$

$$F'(t) = (1-\mu)t^{-\mu} \int_0^t \frac{G(t,s)}{(t-s)^{\mu}} \frac{1}{t^{1-\mu}} ds + t^{1-\mu} \int_0^t \frac{G_t(t,s) + G_s(t,s)\frac{s}{t}}{(t-s)^{\mu}} \frac{1}{t^{1-\mu}} ds$$

$$F'(t) = (1-\mu)t^{-1} \int_0^t \frac{G(t,s)}{(t-s)^{\mu}} ds + \int_0^t \frac{G_t(t,s)}{(t-s)^{\mu}} ds + \frac{1}{t} \int_0^t \frac{G_s(t,s)s}{(t-s)^{\mu}} ds$$

Integrando por partes o último termo, temos

$$\int_0^t G_s(t,s) \frac{s}{(t-s)^{\mu}} \, ds = \left[G(t,s) \frac{s}{(t-s)^{\mu}} \right]_0^t - \int_0^t G(t,s) [1(t-s)^{-\mu} + s\mu(t-s)^{-1-\mu}] \, ds$$

Substituindo na expressão anterior, fica

$$\begin{aligned} F'(t) &= \frac{1}{t} \int_0^t \frac{G(t,s)}{(t-s)^{\mu}} ds - \frac{\mu}{t} \int_0^t \frac{G(t,s)}{(t-s)^{\mu}} ds + \int_0^t \frac{G_t(t,s)}{(t-s)^{\mu}} ds + \\ &+ \frac{1}{t} \lim_{s \to t} \left[G(t,s) \frac{s}{(t-s)^{\mu}} \right] - \frac{1}{t} \int_0^t \frac{G(t,s)}{(t-s)^{\mu}} ds - \frac{\mu}{t} \int_0^t \frac{G(t,s)s}{(t-s)^{1+\mu}} ds \end{aligned}$$

Agora cancelamos o primeiro termo com o quinto

$$F'(t) = -\frac{\mu}{t} \int_0^t \frac{G(t,s)}{(t-s)^{\mu}} ds + \int_0^t \frac{G_t(t,s)}{(t-s)^{\mu}} ds + \frac{1}{t} \lim_{s \to t} \left[G(t,s) \frac{s}{(t-s)^{\mu}} \right] - \frac{\mu}{t} \int_0^t \frac{G(t,s)s}{(t-s)^{1+\mu}} ds$$

Vamos tratar os fatores que usam $-\frac{\mu}{t}$

$$-\frac{\mu}{t} \bigg[\int_0^t \frac{G(t,s)}{(t-s)^{\mu}} ds + \int_0^t \frac{G(t,s)s}{(t-s)^{1+\mu}} ds \bigg] = -\frac{\mu}{t} \int_0^t \frac{G(t,s)[(t-s)+s]}{(t-s)^{1+\mu}} ds = -\mu \int_0^t \frac{G(t,s)}{(t-s)^{1+\mu}} ds$$

Integrando por partes, temos

$$\begin{split} &\int_0^t G(t,s)(t-s)^{-1-\mu} \, ds = \left[G(t,s) \frac{(t-s)^{-\mu}}{\mu} \right]_0^t - \int_0^t G_s(t,s) \frac{(t-s)^{-\mu}}{\mu} \, ds \\ \Rightarrow &-\mu \int_0^t \frac{G(t,s)}{(t-s)^{1+\mu}} \, ds = -\left[\frac{G(t,s)}{(t-s)^{\mu}} \right]_0^t + \int_0^t \frac{G_s(t,s)}{(t-s)^{\mu}} \, ds \end{split}$$

Substituindo na expressão da F', chegamos a

$$F'(t) = \int_0^t \frac{G_t(t,s)}{(t-s)^{\mu}} ds + \frac{1}{t} \lim_{s \to t} \left[G(t,s) \frac{s}{(t-s)^{\mu}} \right] - \lim_{s \to t} \left[G(t,s) \frac{1}{(t-s)^{\mu}} \right] + \frac{G(t,0)}{t^{\mu}} + \int_0^t \frac{G_s(t,s)}{(t-s)^{1+\mu}} ds = \int_0^t \frac{G_s(t,s)}{(t-s)^{1+\mu}} ds = \int_0^t \frac{G_s(t,s)}{(t-s)^{\mu}} ds = \int_0^t \frac{G_s(t,s)}{($$

Juntando os limites e usando L'Hopital, terminamos com

$$\lim_{s \to t} \left[\frac{\frac{s}{t} - 1}{(t - s)^{\mu}} \right] = \lim_{s \to t} \frac{\frac{1}{t}}{\mu(t - s)^{\mu - 1}(-1)} = 0$$

Corolário 2.4.5: Se também tivermos G(0,0) = 0, então $F \in C^1$ sobre o [0,T] todo e tem F'(0) = 0Demonstração: O problema se reduz a calcular o limite do primeiro termo.

Usando L'Hopital, temos
$$\lim_{t \to 0} \frac{G(t,0)}{t^{\mu}} = \lim_{t \to 0} \frac{G_t(t,0)}{\mu t^{\mu-1}} = 0$$

Lema 2.4.6: (Integral de Abel conjugada) $\int_{r}^{t} \frac{1}{(t-s)^{1-\mu}(s-r)^{\mu}} ds = \int_{0}^{1} \frac{1}{(1-u)^{1-\mu} u^{\mu}} du = \frac{\pi}{\sin \mu \pi}$

Demonstração: Mudando as variáveis com $u = \frac{s-r}{t-r}, du = \frac{1}{t-r} ds$, temos

$$I = \int_0^1 \frac{1}{(t - (u(t - r) + r))^{1 - \mu} ((u(t - r) + r) - r)^{\mu}} (t - r) \, du =$$
$$= \int_0^1 \frac{1}{((t - r) - u(t - r))^{1 - \mu} (u(t - r))^{\mu}} (t - r) \, du = \int_0^1 \frac{1}{(1 - u)^{1 - \mu} u^{\mu}} \, du$$

Mudando as variáveis com $u={\rm sen}^2 z, du=2\,{\rm sen}\,z\cos z dz,$ fica

$$I = \int_0^{\pi/2} \frac{2 \sec z \cos z}{(\cos^2 z)^{1-\mu} (\sec^2 z)^{\mu}} dz = \int_0^{\pi/2} 2 (\sec z)^{1-2\mu} (\cos z)^{1-(2-2\mu)} dz = \int_0^{\pi/2} 2 \left(\frac{\sec z}{\cos z}\right)^{1-2\mu} dz$$

Para $\mu = 1/2$, temos $I = \int_0^{\pi/2} 2 dz = \pi$
Para $\mu \in]0, 1[$, pode-se mostrar que $I = \frac{\pi}{\sin \mu \pi}$

A demonstração com $\mu \in [0, 1]$ pode ser encontrada em [Hac95], seção 6.3.

Corolário 2.4.7: Invertendo o lugar dos expoentes $1 - \mu \in \mu$, temos o mesmo resultado.

Demonstração: Tome $\theta = 1 - \mu$

$$I = \frac{\pi}{\sin(\theta\pi)} = \frac{\pi}{\sin(1-\mu)\pi} = \frac{\pi}{\sin(-\mu\pi+\pi)} = \frac{\pi}{-\sin(-\mu\pi)} = \frac{\pi}{\sin(\mu\pi)}$$

O teorema seguinte tem uma versão com hipóteses mais fracas, que pode ser vista em [Atk74]. **Teorema 2.4.8:** (Existência e unicidade para A1) Dada uma equação de Abel com $g \in C^1([0,T])$, então entre as funções em $L^1(]0,T[)$ contínuas em]0,T[, a solução existe, é única e é dada por

$$y(t) = \frac{\sin \mu \pi}{\pi} \left(\frac{g(0)}{t^{1-\mu}} + \int_0^t \frac{g'(s)}{(t-s)^{1-\mu}} ds \right)$$

Demonstração: (i) Considere y solução com $y \in L^1(]0, t[)$

$$\begin{split} g(s) &= \int_0^s \frac{1}{(s-r)^{\mu}} y(r) \, dr \Rightarrow \frac{1}{(t-s)^{1-\mu}} g(s) = \int_0^s \frac{1}{(t-s)^{1-\mu}} \frac{1}{(s-r)^{\mu}} y(r) \, dr \\ &\frac{1}{(t-s)^{1-\mu}} \in L^1(]0, t[), \ g \text{ limitada} \Rightarrow \text{ a função do lado esquerdo está em } L^1(]0, t[) \\ &\text{Integrando de 0 a } t, \ \text{fica} \ \int_0^t \frac{1}{(t-s)^{1-\mu}} g(s) \, ds = \int_0^t ds \int_0^s \frac{1}{(t-s)^{1-\mu}} \frac{1}{(s-r)^{\mu}} y(r) \, dr \\ &y \in L^1(]0, t[), \ \int_r^t \frac{1}{(t-s)^{1-\mu}(s-r)^{\mu}} \, ds = \text{cte} \Rightarrow \text{ a função do lado direito está em } L^1(0 < r < s < t) \end{split}$$

Usando Fubini e o lema da integral de Abel conjugada (2.4.6), chegamos a

$$\int_0^t ds \int_0^s \frac{1}{(t-s)^{1-\mu}} \frac{1}{(s-r)^{\mu}} y(r) dr = \int_0^t dr y(r) \int_r^t \frac{1}{(t-s)^{1-\mu}} \frac{1}{(s-r)^{\mu}} ds = \frac{\pi}{\sin \mu \pi} \int_0^t y(r) dr$$
Substituindo, fica
$$\int_0^t \frac{1}{(t-s)^{1-\mu}} g(s) ds = \frac{\pi}{\sin \mu \pi} \int_0^t y(r) dr$$

y contínua sobre $]0,T[\Rightarrow \frac{d}{dt} \int_0^t \frac{1}{(t-s)^{1-\mu}} g(s) \, ds = \frac{\pi}{\sin \mu \pi} y(t)$

Com o lema da derivada da integral de Abel (2.4.4), temos $y(t) = \frac{\sin \mu \pi}{\pi} \left(\frac{g(0)}{t^{1-\mu}} + \int_0^t \frac{g'(s)}{(t-s)^{1-\mu}} ds \right)$

(ii) Considere *y* dada por $y(s) = \frac{\sin \mu \pi}{\pi} \left(\frac{g(0)}{s^{1-\mu}} + \int_0^s \frac{g'(r)}{(s-r)^{1-\mu}} dr \right)$

Multiplicando a singularidade e integrando de 0 a t, fica

$$\int_0^t \frac{y(s)}{(t-s)^{\mu}} ds = \frac{\sin \mu \pi}{\pi} \left(g(0) \int_0^t \frac{1}{(t-s)^{\mu} s^{1-\mu}} ds + \int_0^t ds \int_0^s \frac{g'(r)}{(t-s)^{\mu} (s-r)^{1-\mu}} dr \right)$$

g' contínua, $\int_r^t \frac{1}{(t-s)^{1-\mu}(s-r)^{\mu}} ds = \text{cte} \Rightarrow \text{a função do último termo está em } L^1(0 < r < s < t)$

Usando Fubini e o lema da integral de Abel conjugada (2.4.6), chegamos a

$$\int_0^t ds \int_0^s \frac{g'(r)}{(t-s)^{\mu}(s-r)^{1-\mu}} dr = \int_0^t dr g'(r) \int_r^t \frac{1}{(t-s)^{\mu}(s-r)^{1-\mu}} ds = \frac{\pi}{\sin\mu\pi} \int_0^t g'(r) dr$$

Substituindo, temos

$$\int_0^t \frac{y(s)}{(t-s)^{\mu}} ds = \frac{\sin \mu \pi}{\pi} \left(g(0) \int_0^t \frac{1}{(t-s)^{\mu} s^{1-\mu}} ds + \frac{\pi}{\sin \mu \pi} \int_0^t g'(r) dr \right)$$

Mudando as variáveis com $u\!=\!s/t, du\!=\!ds/t$ no termo do g(0),fica

$$\int_0^t \frac{1}{(t-s)^{\mu} s^{1-\mu}} ds = \int_0^1 \frac{1}{(t-tu)^{\mu} (tu)^{1-\mu}} t du = \int_0^1 \frac{1}{(1-u)^{\mu} (u)^{1-\mu}} du = \frac{\pi}{\sin \mu \pi}$$
Assim concluímos que
$$\int_0^t \frac{y(s)}{(t-s)^{\mu}} ds = \frac{\sin \mu \pi}{\pi} \left(g(0) \frac{\pi}{\sin \mu \pi} + \frac{\pi}{\sin \mu \pi} (g(t) - g(0)) \right) = g(t)$$

Para mostrar a regularidade, vamos usar a derivada da integral de Abel algumas vezes.

Proposição 2.4.9: (Regularidade para A1) Dada uma equação de Abel com $g \in C^{p+1}([0,T])$ e $g(0) = g'(0) = \ldots = g^{(p)}(0) = 0$, então a solução tem classe C^p sobre $t \in [0,T]$.

Demonstração: Como g(0) = 0, pelo teorema de existência e unicidade para A1 (2.4.8), temos

$$y(t) = \frac{\sin \mu \pi}{\pi} \left(\frac{g(0)}{t^{1-\mu}} + \int_0^t \frac{g'(s)}{(t-s)^{1-\mu}} ds \right) = \frac{\sin \mu \pi}{\pi} \int_0^t \frac{g'(s)}{(t-s)^{1-\mu}} ds \text{ contínua sobre } [0,T]$$

Usando o lema de derivada da integral de Abel (2.4.4), e a hipótese de g'(0) = 0, obtemos

$$y'(t) = \frac{\sin \mu \pi}{\pi} \left(\frac{g'(0)}{t^{1-\mu}} + \int_0^t \frac{g''(s)}{(t-s)^{1-\mu}} ds \right) = \frac{\sin \mu \pi}{\pi} \int_0^t \frac{g''(s)}{(t-s)^{1-\mu}} ds \text{ contínua sobre } [0,T]$$

Continuando chegamos a $y^{(p)}(t)$ contínua sobre [0,T]

2.5 Equações de Volterra de segundo tipo com singularidade de Abel (AV2)

Para essa classe de problemas vamos usar aproximações sucessivas de novo, mas com um pouco mais de trabalho. Essa seção se baseia na exposição feita em [Bru04], seção 6.1.

Definição 2.5.1: (Equação AV2) Uma equação de Volterra de segundo tipo com singularidade de Abel é dada por

$$y(t) = g(t) + \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y(s)) ds$$

 $\mathrm{com}\ K:\Omega\times U\to \mathbb{R}^n,\ g:]0,T]\to \mathbb{R}^n\ \mathrm{contínuas},\ \mu\in]0,1[,\ \Omega=\{(t,s): 0\leqslant s\leqslant t\leqslant T\},\ U\subset \mathbb{R}^n.$

Definição 2.5.2: $y: [0, T] \to \mathbb{R}^n$ é dita solução se

(i) y é contínua em]0,T], (ii) $y(]0,T]) \subset U$ e (iii) a equação é satisfeita em $\forall t \in]0,T]$.

Para o teorema de existência, vamos usar o lema a seguir.

Lema 2.5.3: (i)
$$\int_{0}^{t} \frac{s^{p(1-\mu)}}{(t-s)^{\mu}} ds \leq t^{(p+1)(1-\mu)} I_{b(p(1-\mu))}, \text{ com } b(p) = \max \{z \in \mathbb{Z} : z \leq p\} \in I_{b} = \int_{0}^{1} \frac{u^{b}}{(1-u)^{\mu}} du$$

(ii) $I_{0} = \frac{1}{1-\mu}, I_{n} = \frac{n}{n+(1-\mu)} I_{n-1}$ (iii) $\lim I_{n} = 0$

Demonstração: (i) Mudando as variáveis com u = s/t, du = ds/t, temos

$$\begin{split} &\int_{0}^{t} \frac{s^{p(1-\mu)}}{(t-s)^{\mu}} ds = \int_{0}^{1} \frac{(tu)^{p(1-\mu)}}{(t-tu)^{\mu}} t\, du = t^{p(1-\mu)} \frac{t}{t^{\mu}} \int_{0}^{1} \frac{u^{p(1-\mu)}}{(1-u)^{\mu}} ds \\ &p(1-\mu) \geqslant b \geqslant 0, \ u \in [0,1] \Rightarrow u^{p(1-\mu)} \leqslant u^{b} \Rightarrow t^{(p+1)(1-\mu)} \int_{0}^{1} \frac{u^{p(1-\mu)}}{(1-u)^{\mu}} ds \leqslant t^{(p+1)(1-\mu)} \int_{0}^{1} \frac{u^{b}}{(1-u)^{\mu}} ds \\ &\text{(ii)} \ I_{0} = \int_{0}^{1} \frac{1}{(1-u)^{\mu}} du = \left[\frac{(1-u)^{1-\mu}(-1)}{1-\mu} \right]_{0}^{1} = \frac{1}{1-\mu} \end{split}$$

Usando integração por partes na expressão da I_n , obtemos

$$I_{n} = \int_{0}^{1} \frac{1}{(1-u)^{\mu}} u^{n} du = \left[\frac{(1-u)^{1-\mu}(-1)}{1-\mu} u^{n} \right]_{0}^{1} - \int_{0}^{1} \frac{(1-u)^{1-\mu}(-1)}{1-\mu} n u^{n-1} du =$$
$$= 0 + \frac{n}{1-\mu} \int_{0}^{1} (1-u)^{1-\mu} u^{n-1} du = \frac{n}{1-\mu} \int_{0}^{1} \frac{1-u}{(1-u)^{\mu}} u^{n-1} du = \frac{n}{1-\mu} I_{n-1} - \frac{n}{1-\mu} I_{n}$$

Agrupando os termos, fica $\left(1 + \frac{n}{1-\mu}\right)I_n = \frac{n}{1-\mu}I_{n-1} \Rightarrow (1-\mu+n)I_n = nI_{n-1}$

(iii) Tome
$$\beta = 1 - \mu$$
 e $S_n = \sum_{j=1}^n \frac{1}{j}$
Usando a fórmula de recursão, temos $I_0 = \frac{1}{\beta}$, $I_n = I_0 \frac{1}{1+\beta} \frac{2}{2+\beta} \dots \frac{n}{n+\beta}$

Vamos usar indução para determinar uma estimativa desses produtos

$$(1+\beta)(2+\beta) \ge 2+3\beta = 2\left(1+\frac{3}{2}\beta\right) = 2!(1+S_2\beta)$$

$$[(1+\beta)...(n+\beta)](n+1+\beta) \ge [n!(1+S_n\beta)](n+1+\beta) \ge n!(1+S_n\beta)(n+1) + n!1\beta = (n+1)!(1+S_n\beta) + (n+1)!\frac{1}{(n+1)}\beta = (n+1)!(1+S_{n+1}\beta)$$

Aplicando na expressão da I_n , chegamos a

$$I_n = I_0 \frac{n!}{(1+\beta)\dots(n+\beta)} \leqslant I_0 \frac{n!}{n!(1+S_n\beta)} = I_0 \frac{1}{1+S_n\beta} \longrightarrow 0$$

Teorema 2.5.4: (Existência e unicidade para AV2) Dada uma equação de Volterra de segundo tipo com singularidade de Abel com $U = \mathbb{R}^n$, g contínua sobre [0, T] e K de Lipschitz em u sobre $\Omega \times U$,

então a solução existe sobre $\left[a,b\right]$ e é única.

Demonstração: (i) Tome a sequência de aproximações sucessivas dada por

$$\begin{split} y_0(t) &= g(t), \; y_{n+1}(t) = g(t) + \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y_n(s)) ds, \; \text{para} \; t \in [0,T] \\ U &= \mathbb{R}^n \Rightarrow \; y_n(t) \in U \; \text{para} \; \forall t \in [0,T] \end{split}$$

Como g, K, y_n são contínuas, pela continuidade da integral de Abel (2.4.3) temos que y_{n+1} é contínua K de Lipschitz, $y_n(s) \in U \Rightarrow |K(t, s, y_n(s)) - K(t, s, y_{n-1}(s))| \leq L |y_n(s) - y_{n-1}(s)|$ g, K contínuas, Ω compacto $\Rightarrow \exists M = \max \{ |K(t, s, g(s))| : (t, s) \in \Omega \}$

Vamos estimar a diferença entre duas y_n consecutivas.

Tome $R \in \mathbb{N}$ tal que $R(1-\mu) > 1$. Usando o lema acima, temos

$$|y_{1}(t) - y_{0}(t)| \leq \int_{0}^{t} \frac{1}{(t-s)^{\mu}} |K(t,s,g(s))| ds \leq M \int_{0}^{t} \frac{1}{(t-s)^{\mu}} ds \leq M t^{1-\mu} I_{0} = M L^{0} \cdot t^{(1-\mu)} I_{0}$$

$$(:)$$

$$\begin{aligned} |y_{R+1}(t) - y_R(t)| &\leqslant \int_0^t \frac{1}{(t-s)^{\mu}} L |y_R(s) - y_{R-1}(s)| ds \leqslant \int_0^t \frac{1}{(t-s)^{\mu}} L \left(M L^{R-1} I_0^R \cdot s^{R(1-\mu)} \right) ds \leqslant \\ &\leqslant M L^R I_0^R \int_0^t \frac{s^{R(1-\mu)}}{(t-s)^{\mu}} ds \leqslant M L^R I_0^R \cdot t^{(R+1)(1-\mu)} I_1 \end{aligned}$$
(:)

$$\begin{aligned} |y_{2R+1}(t) - y_{2R}(t)| &\leqslant \int_0^t \frac{1}{(t-s)^{\mu}} L |y_{2R}(s) - y_{2R-1}(s)| ds \leqslant \int_0^t \frac{1}{(t-s)^{\mu}} L \left(ML^{2R-1} I_0^R I_1^R \cdot s^{2R(1-\mu)}\right) ds \leqslant \\ &\leqslant ML^{2R} I_0^R I_1^R \int_0^t \frac{s^{2R(1-\mu)}}{(t-s)^{\mu}} ds \leqslant ML^{2R} I_0^R I_1^R \cdot t^{(2R+1)(1-\mu)} I_2 \end{aligned}$$

Continuando, chegamos a $|y_{jR+m+1}(t) - y_{jR+m}(t)| \leq ML^{jR+m}I_0^R...I_{j-1}^RI_j^{m+1} \cdot t^{(jR+m+1)(1-\mu)}$ $t \in [0,T], \ (jR+m+1)(1-\mu) > 0 \Rightarrow t^{(jR+m+1)(1-\mu)} \leq T^{(jR+m+1)(1-\mu)}$ logo $|y_{jR+m+1}(t) - y_{jR+m}(t)| \leq ML^{jR+m}I_0^R...I_{j-1}^RI_j^{m+1} \cdot T^{(jR+m+1)(1-\mu)}$

(ii) Usando esta estimativa, vamos mostrar que y_n tem limite uniforme y que satisfaz a equação. Tome $\theta_r(t) = y_r(t) - y_{r-1}(t)$ e a_r dado por $a_{jR+m+1} = ML^{jR+m}I_0^R...I_{j-1}^RI_j^{m+1} \cdot T^{(jR+m+1)(1-\mu)}$

$$\begin{aligned} \frac{|a_{r+1}|}{|a_r|} &= \frac{a_{jR+m+1}}{a_{jR+m}} = \frac{ML^{jR+m}I_0^R \dots I_{j-1}^R I_j^{m+1} \cdot T^{(jR+m+1)(1-\mu)}}{ML^{jR+m-1}I_0^R \dots I_{j-1}^R I_j^m \cdot T^{(jR+m)(1-\mu)}} = LI_j T^{1-\mu} \\ I_j &\to 0 \Rightarrow \frac{|a_{r+1}|}{|a_r|} \to 0 \end{aligned}$$

Pelo critério da razão, $\sum a_r$ converge

Com o teste de Weierstrass, $\sum \theta_r(t)$ converge uniformemente sobre $t \in [a, b]$ $y_n(t) = y_0(t) + \sum_{r=1}^n \theta_r(t) \Rightarrow y_n(t)$ converge uniformemente sobre $t \in [a, b]$ Usando a completude das funções contínuas, $\exists y(t)$ contínua sobre [0, T] que realiza o limite Tome $t \in]0, T[$ fixado.

$$\frac{1}{(t-s)^{\mu}}K(t,s,y_n(s)) \xrightarrow[n]{} \frac{1}{(t-s)^{\mu}}K(t,s,y(s)), \text{ logo converge ponto a ponto sobre } s \in]0,t[$$
$$\frac{1}{(t-s)^{\mu}} \in L^1, K(t,s,y_n(s)) \text{ limitada} \Rightarrow \frac{1}{(t-s)^{\mu}}K(t,s,y_n(s)) \in L^1(]0,t[) \text{ para } \forall n$$

 $y \operatorname{contínua\ em} [0,T] \operatorname{compacto} \Rightarrow y([0,T]) \subset B_r(0)$ para um certo r $y_n \to y$ uniformemente $\Rightarrow \exists n_0$ tal que para $n > n_0$ temos $y_n([0,T]) \subset B_{r+1}(0)$ $\operatorname{Com\ } M_2 = \max\{|K(t,s,u)|: 0 \leq s \leq t \leq T, u \in \operatorname{fecho}(B_{r+1}(0))\}, \operatorname{temos}\}$

$$\left|\frac{1}{(t-s)^{\mu}}K(t,s,y_n(s))\right| \leqslant \frac{1}{(t-s)^{\mu}}M_2 \in L^1(]0,t[)$$

Aplicando o teorema de convergência dominada, obtemos

$$\lim \frac{1}{(t-s)^{\mu}} K(t,s,y_n(s)) \in L^1(]0,t[) \text{ e}$$
$$\lim \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y_n(s)) ds = \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y(s)) ds$$

A cada *n*, temos $y_{n+1}(t) = g(t) + \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y_n(s)) ds$

Logo os limites satisfazem $y(t) = g(t) + \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y(s)) ds$

(iii) Para mostrar a unicidade, vamos dividir o intervalo [0, T] numa quantidade finita de subintervalos e estimar o máximo da diferença entre duas soluções.

Considere y, z contínuas sobre [0, T] soluções da equação e L a constante de Lipschitz de K.

$$\begin{split} & \text{Tome } b > 0 \text{ tal } \text{que } \int_{p}^{q} \frac{1}{(t-s)^{\mu}} ds = \frac{(q-p)^{1-\mu}}{1-\mu} < \frac{1/2}{L} \text{ para } q-p < b \\ & \text{Sobre } [0,b], \text{ temos } |y(t)-z(t)| \leqslant \int_{0}^{t} \frac{1}{(t-s)^{\mu}} L|y(s)-z(s)| ds \leqslant L M_{1} \int_{0}^{t} \frac{1}{(t-s)^{\mu}} ds \leqslant M_{1} \frac{1}{2} \\ & M_{1} = \max \left\{ |y(t)-z(t)| : t \in [0,b] \right\} \text{ \'e realizado} \Rightarrow M_{1} \leqslant M_{1} \frac{1}{2} \\ & \text{Se } M_{1} \neq 0, \text{ chegariamos a } 1 \leqslant \frac{1}{2} \text{ (absurdo), logo } y = z \text{ sobre } [0,b] \\ & \text{Sobre } [b,2b], \text{ temos } |y(t)-z(t)| \leqslant 0 + \int_{b}^{t} \frac{1}{(t-s)^{\mu}} L|y(s)-z(s)| ds \leqslant L M_{2} \int_{b}^{t} \frac{1}{(t-s)^{\mu}} ds \leqslant M_{2} \frac{1}{2} \\ & M_{2} = \max \left\{ |y(t)-z(t)| : t \in [b,2b] \right\} \text{ \'e realizado} \Rightarrow M_{2} \leqslant M_{2} \frac{1}{2} \\ & \text{Se } M_{2} \neq 0, \text{ chegariamos a } 1 \leqslant \frac{1}{2} \text{ (absurdo), logo } y = z \text{ sobre } [b,2b] \\ & \text{Continuando obtemos } y = z \text{ sobre } [0,T] \text{ todo.} \end{split}$$

Aparentemente os principais resultados na literatura sobre a regularidade dessa classe de problemas tratam a solução colocando uma potência fracionária de t em evidência.

Esses resultados garantem $y \in C^p$ sobre [0, T], mas para incluir o t = 0 precisaríamos de mais informações sobre o comportamento do fator que multiplica a potência de t.

A demonstração do teorema a seguir está em [HW73], teorema 3.2.

Teorema 2.5.5: Dada uma equação $y(t) = g(t) + \int_0^t \frac{1}{(t-s)^{1/2}} K(t,s,y(s)) ds$ tal que

(i) $g \in C^p([0,T])$

(ii) K(t, s, u) tem p derivadas contínuas em $t, s \in 2p$ derivadas contínuas em u para $0 \leq s \leq t \leq T$ e $u \in \mathbb{R}$ (iii) K(t, s, u) é de Lipschitz em u para $0 \leq s \leq t \leq T$ e $u \in \mathbb{R}$

então a solução pode ser escrita como $y(t) = y_1(t) + y_2(t)t^{1/2}$ com y_1 e y_2 de classe C^p sobre [0,T]

Com as ferramentas que estamos usando, podemos mostrar um resultado de condição necessária para regularidade em [0, T].

Proposição 2.5.6: Dada uma equação de segundo tipo com singularidade de Abel com $K \in C^1$ sobre $0 \leq s \leq t \leq T$, $u \in \mathbb{R}^n$ e $g \in C^1$ sobre [0, T] contínua sobre [0, T]

Se
$$y \in C^1$$
 sobre $[0, T]$, então $\lim_{t \to 0+} \left[g'(t) + K(t, 0, g(0)) \frac{1}{t^{\mu}} \right]$ precisa existir sobre \mathbb{R}^n

Demonstração: Dada y solução, temos $y(t) = g(t) + \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y(s)) ds$ para $t \in [0,T]$

Como $K(t,s,y(s))\in C^1$ sobre $0\leqslant s\leqslant t\leqslant T$ e $g\in C^1$ sobre]0,T], pelo lema da derivada da integral de Abel (2.4.4) obtemos

$$y'(t) = g'(t) + \left[K(t,0,y(0)) \frac{1}{t^{\mu}} + \int_0^t \frac{\frac{\partial}{\partial t} K(t,s,y(s))}{(t-s)^{\mu}} ds + \int_0^t \frac{\frac{\partial}{\partial s} K(t,s,y(s))}{(t-s)^{\mu}} ds \right] \text{ para } t \in [0,T]$$

Como $K(t, s, y(s)) \in C^1$, pela continuidade da integral de Abel (2.4.3), as integrais são contínuas em [0, T] e valem 0 com t = 0

Como K(t, s, y(s)) e g são contínuas, pela continuidade da integral de Abel (2.4.3), y(0) = g(0) + 0

$$y'$$
 contínua em $[0,T] \Rightarrow \lim_{t \to 0+} y'(t)$ existe $\Rightarrow \lim_{t \to 0+} \left[g'(t) + K(t,0,g(0)) \frac{1}{t^{\mu}} + 0 + 0 \right]$ existe

O exemplo seguinte está em [MF71], perto da equação (2).

Exemplo 2.5.7: Considere a equação $y(t) = g(t) + \int_0^t \frac{-1}{(t-s)^{1/2}} y(s) ds$

(i) Com $g(t)=1+2\sqrt{t},$ a solução éy(t)=1

$$g \in C^{1}(]0,T]) \operatorname{com} g'(t) = \frac{1}{t^{1/2}}$$
$$y \in C^{1}([0,T]) \operatorname{com} y'(t) = 0$$
$$g'(t) + K(t,0,g(0))\frac{1}{t^{1/2}} = \frac{1}{t^{1/2}} + (-1)\frac{1}{t^{1/2}} = 0$$

(ii) Com
$$g(t) = 1$$
, a solução é $y(t) = \exp(\pi t) \operatorname{erfc}(\sqrt{\pi t})$
 $g \in C^1([0,T])$ com $g'(t) = 0$
 $y \in C^1([0,T])$ com $y'(t) = \pi \exp(\pi t) \operatorname{erfc}(\sqrt{\pi t}) - \frac{1}{t^{1/2}}$
 $g'(t) + K(t, 0, g(0)) \frac{1}{t^{1/2}} = 0 + (-1) \frac{1}{t^{1/2}} \to -\infty \text{ com } t \to 0 +$

2.6 Equações de Volterra de primeiro tipo com singularidade de Abel (AV1)

Para essa classe de problemas vamos seguir de forma semelhante ao que foi feito para as equações de Abel, obtendo problemas de primeiro tipo regulares equivalentes. A referência principal é [Lin85], seção 5.2.

Definição 2.6.1: (Equação AV1) Uma equação de Volterra de primeiro tipo com singularidade de Abel é dada por

$$g(t) = \int_0^t \frac{1}{(t-s)^\mu} K(t,s) y(s) ds$$

 $\mathrm{com}\ K \colon \Omega \to M(\mathbb{R}, n \times n), \ g \colon]0, T] \to \mathbb{R}^n, \ \mu \in]0, 1[, \ \Omega = \{(t,s) \colon 0 \leqslant s \leqslant t \leqslant T\}.$

 K, K_t, g, g' contínuas, K(t, t) inversível para $\forall t \in [0, T]$.

Definição 2.6.2: $y: [0, T] \to \mathbb{R}^n$ é dita solução se

(i) y é contínua em [0, T] e (ii) a equação é satisfeita em $\forall t \in [0, T]$.

Para mostrar a equivalência, vamos precisar de alguns lemas.

Lema 2.6.3: (Continuidade da integral de Abel conjugada) Dada $\ell(t, r) = \int_{r}^{t} \frac{K(s, r)}{(t-s)^{1-\mu}(s-r)^{\mu}} ds$ com K contínua sobre $0 \leq r \leq s \leq T$,

então ℓ é contínua sobre $0\leqslant r\leqslant t\leqslant T$
e $\ell(t,r)=\int_0^1 \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}}\,du$

Demonstração: K limitada, $\frac{1}{(t-s)^{1-\mu}(s-r)^{\mu}} \in L^1(]r, t[) \Rightarrow \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} \in L^1(]r, t[)$

Mudando as variáveis com $u = \frac{s-r}{t-r}, du = \frac{1}{t-r}ds$, temos

$$\ell(t,r) = \int_0^1 \frac{K((t-r)u+r,r)}{(t-((t-r)u+r))^{1-\mu}(((t-r)u+r)-r)^{\mu}} (t-r)du = \\ = \int_0^1 \frac{K((t-r)u+r,r)}{((t-r)(1-u))^{1-\mu}((t-r)u)^{\mu}} (t-r)du = \int_0^1 \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} du$$

$$\begin{split} &K \mbox{ contínua, } 0 \leqslant s \leqslant t \leqslant T \mbox{ compacto } \Rightarrow K \mbox{ é uniformemente contínua} \\ & \mbox{Dado } \varepsilon > 0, \mbox{ temos } \delta > 0 \mbox{ tal que } |s_1 - s_2| < \delta, \ |r_1 - r_2| < \delta \Rightarrow \ |K(s_1, r_1) - K(s_2, r_2)| < \varepsilon \\ & \mbox{ Com } |t_1 - t_2| < \delta/3, \ |r_1 - r_2| < \delta/3, \mbox{ também temos } \\ & \ |((t_1 - r_1)u + r_1) - ((t_2 - r_2)u + r_2)| \leqslant |(t_1 - r_1)u - (t_2 - r_2)u| + |r_1 - r_2| \leqslant \\ & \ \leqslant |t_1 - t_2| \ |u| + |r_1 - r_2| \ |u| + |r_1 - r_2| < \delta/3 + \delta/3 + \delta/3 \end{split}$$

Logo
$$|\ell(t_1, r_1) - \ell(t_2, r_2)| \leq \int_0^1 \frac{|K((t_1 - r_1)u + r_1, r_1) - K((t_2 - r_2)u + r_2, r_2)|}{(1 - u)^{\mu}u^{\mu}} du \leq \leq \varepsilon \int_0^1 \frac{1}{(1 - u)^{\mu}u^{\mu}} du = \varepsilon C_1$$

Corolário 2.6.4: $\tilde{\ell}(t,r) = \int_0^1 \frac{\tilde{K}((t-r)u+r,r)\theta(u)}{(1-u)^{1-\mu}u^{\mu}} du \operatorname{com} \tilde{K}(t,s)$ contínua sobre $0 \leq s \leq t \leq T$, θ limitada sobre $0 \leq u \leq 1$, então $\tilde{\ell}(t,r)$ é contínua sobre $0 \leq r \leq t \leq T$

Demonstração: Repetindo a parte final da demonstração anterior, obtemos

$$\begin{split} \left| \tilde{\ell}(t_1, r_1) - \tilde{\ell}(t_2, r_2) \right| &\leqslant \int_0^1 \frac{\left| \tilde{K}((t_1 - r_1)u + r_1, r_1) - \tilde{K}((t_2 - r_2)u + r_2, r_2) \right| |\theta(u)|}{(1 - u)^{\mu} u^{\mu}} du \leqslant \\ &\leqslant \int_0^1 \frac{\varepsilon C_1}{(1 - u)^{\mu} u^{\mu}} du = \varepsilon C_1 C_2 \end{split}$$

Lema 2.6.5: (Derivadas da integral de Abel conjugada) Dada $\ell(t,r) = \int_r^t \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} ds$ com $K \in C^1$ sobre $0 \leq r \leq s \leq T$, então

- (i) ℓ_t é contínua sobre $0 \leq r \leq t \leq T$ e $\ell_t(t,r) = \int_0^1 \frac{\partial_1 K((t-r)u+r,r)u}{(1-u)^{1-\mu}u^{\mu}} du$
- (ii) ℓ_r é contínua sobre $0 \leq r \leq t \leq T$ e $\ell_r(t,r) = \int_0^1 \frac{\partial_1 K(...)(1-u)}{(1-u)^{1-\mu} u^{\mu}} du + \int_0^1 \frac{\partial_2 K(...)}{(1-u)^{1-\mu} u^{\mu}} du$

Demonstração: (i) Da demonstração anterior, temos $\ell(t,r) = \int_0^1 \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} du$

Dado $t \in]0, T[$, temos

$$K \text{ limitada}, \ \frac{1}{(1-u)^{\mu}u^{\mu}} \in L^{1}(]0,1[) \Rightarrow \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} \in L^{1}(]0,1[)$$

$$\frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} \operatorname{contínua} e \operatorname{derivável na variável} t \operatorname{sobre} u \in]0,1[$$
$$\left|\frac{\partial}{\partial t} \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}}\right| = \frac{|\partial_1 K((t-r)u+r,r)u|}{(1-u)^{1-\mu}u^{\mu}} \leqslant \frac{1}{(1-u)^{\mu-\mu}} (\max|\partial_1 K|1) \in L^1(]0,1[)$$

 $\left|\frac{\partial t}{\partial t} - \frac{(1-u)^{1-\mu}u^{\mu}}{(1-u)^{1-\mu}u^{\mu}}\right| = \frac{(1-u)^{1-\mu}u^{\mu}}{(1-u)^{1-\mu}u^{\mu}} \leqslant \frac{(1-u)^{\mu}u^{\mu}}{(1-u)^{\mu}u^{\mu}}$

Usando o teorema de derivar em baixo da integral para L^1 , obtemos

$$\ell_t(t,r) = \int_0^1 \frac{\partial_1 K((t-r)u + r,r) \, u}{(1-u)^{1-\mu} u^{\mu}} du$$

Como $\partial_1 K$ é contínua, pela continuidade da integral de Abel conjugada (2.6.3), temos

 $\ell_t(t,r)$ é contínua sobre $0 \leq r \leq t \leq T$

(ii) Para a derivada em r, o final fica

$$\begin{aligned} \left| \frac{\partial}{\partial r} \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} \right| &= \frac{\left| \partial_1 K((t-r)u+r,r)\left(1-u\right) + \partial_2 ((t-r)u+r,r) \right|}{(1-u)^{1-\mu}u^{\mu}} \leqslant \\ &\leqslant \frac{1}{(1-u)^{\mu}u^{\mu}} (\max \left| \partial_1 K \right| 1 + \max \left| \partial_2 K \right|) \in L^1(]0,1[) \end{aligned}$$

Usando o teorema de derivar em baixo da integral para L^1 , obtemos

$$\ell_r(t,r) = \int_0^1 \frac{\partial_1 K((t-r)u+r,r)(1-u)}{(1-u)^{1-\mu}u^{\mu}} du + \int_0^1 \frac{\partial_2 K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} du$$

Como $\partial_1 K$, $\partial_2 K$ são contínuas, pela continuidade da integral de Abel conjugada (2.6.3), temos

 $\ell_r(t,r)$ é contínua sobre $0\leqslant r\leqslant t\leqslant T$

 $\begin{array}{ll} \textbf{Corolário 2.6.6:} & \text{Dada } \ell(t,r) = \int_r^t \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} \, ds \, \operatorname{com} \, K \in C^p \, \text{sobre} \, \, 0 \leqslant r \leqslant s \leqslant T, \\ \text{então } \ell \in C^p \, \text{sobre} \, \, 0 \leqslant r \leqslant t \leqslant T \end{array} \end{array}$

Demonstração: Considere a etapa de passar de ℓ_t para ℓ_{tt} .

Da demonstração anterior, temos $\ell_t(t,r) = \int_0^1 \frac{\partial_1 K((t-r)u+r,r) u}{(1-u)^{1-\mu}u^{\mu}} du$

Dado $t \in (0, T[$, temos

$$\begin{split} &\partial_1 K \text{ limitada, } u \in [0,1], \ \frac{1}{(1-u)^{\mu} u^{\mu}} \in L^1(]0,1[) \Rightarrow \frac{\partial_1 K((t-r)u+r,r)u}{(1-u)^{1-\mu} u^{\mu}} \in L^1(]0,1[) \\ &\frac{\partial_1 K((t-r)u+r,r)u}{(1-u)^{1-\mu} u^{\mu}} \text{ contínua e derivável na variável } t \text{ sobre } u \in]0,1[\\ &\left| \frac{\partial}{\partial t} \frac{\partial_1 K((t-r)u+r,r)u}{(1-u)^{1-\mu} u^{\mu}} \right| = \frac{|\partial_1^2 K((t-r)u+r,r) u^2|}{(1-u)^{1-\mu} u^{\mu}} \leqslant \frac{1}{(1-u)^{\mu} u^{\mu}} (\max |\partial_1^2 K| \, 1) \in L^1(]0,1[) \end{split}$$

Usando o teorema de derivar em baixo da integral para L^1 , obtemos

$$\ell_{tt}(t,r) = \int_0^1 \frac{\partial_1^2 K((t-r)u+r,r) u^2}{(1-u)^{1-\mu} u^{\mu}} du$$

Como $\partial_1^2 K$ é contínua, pela continuidade da integral de Abel conjugada (2.6.3), temos

 $\ell_{tt}(t,r)$ é contínua sobre $0\leqslant r\leqslant t\leqslant T$

As outras combinações são obtidas de forma semelhante.

Teorema 2.6.7: (Equivalência AV1-V1) Dada uma equação de Volterra de primeiro tipo com singularidade de Abel com $g \in C^1([0,T]), g(0) = 0$,

então entre as funções em
$$L^1(]0, T[)$$
 contínuas em $]0, T[$, ela é equivalente a uma equação de primeiro tipo regular $h(t) = \int_0^t \ell(t, r) y(r) dr$, com $h(t) = \int_0^t \frac{g(s)}{(t-s)^{1-\mu}} ds$ e $\ell(t, r) = \int_r^t \frac{K(s, r)}{(t-s)^{1-\mu}(s-r)^{\mu}} ds$

Demonstração: (i) Considere y solução da equação original com $y \in L^1([0, t[)$

$$g(s) = \int_0^s \frac{1}{(s-r)^{\mu}} K(s,r) y(r) \, dr \Rightarrow \frac{1}{(t-s)^{1-\mu}} g(s) = \int_0^s \frac{1}{(t-s)^{1-\mu}} \frac{1}{(s-r)^{\mu}} K(s,r) \, y(r) \, dr$$

 $\frac{1}{(t-s)^{1-\mu}} \in L^1(]0, t[), \ g \text{ limitada} \Rightarrow \text{a função do lado esquerdo está em } L^1(]0, t[)$

Integrando de 0 a t, fica

$$\int_0^t \frac{1}{(t-s)^{1-\mu}} g(s) \, ds = \int_0^t ds \int_0^s \frac{1}{(t-s)^{1-\mu}} \frac{1}{(s-r)^{\mu}} K(s,r) \, y(r) \, dr$$
$$u \in L^1([0,t[)] \quad K \text{ continua em } 0 \le r \le s \le t \quad \int_0^t \frac{1}{(s-r)^{\mu}} \, ds = \text{cte}$$

 $y \in L^1(]0, t[), K$ contínua em $0 \leq r \leq s \leq t, \int_r^t \frac{1}{(t-s)^{1-\mu}(s-r)^{\mu}} ds = \text{cte} \Rightarrow$

 \Rightarrow a função do lado direito está em $L^1(0 < r < s < t)$

Usando Fubini temos $\int_0^t ds \int_0^s \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} y(r) dr = \int_0^t dr y(r) \int_r^t \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} ds$

Assim chegamos a $\int_0^t \frac{1}{(t-s)^{1-\mu}} g(s) \, ds = \int_0^t \left[\int_r^t \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} \, ds \right] y(r) dr$

(ii) Considere y solução sobre $L^1(]0, t[)$ da equação associada

$$y \in L^{1}(]0, t[), K \text{ contínua em } 0 \leqslant r \leqslant s \leqslant t, \int_{r}^{t} \frac{1}{(t-s)^{1-\mu}(s-r)^{\mu}} ds = \text{cte} \Rightarrow C_{r}(t-s)^{1-\mu}(s-r)^{\mu} ds = \text{cte} \Rightarrow C_{r}(s-r)^{\mu} ds = C_{r}(s-r)^{\mu}$$

 \Rightarrow a função do lado direito está em $L^1(0 < r < s < t)$

Usando Fubini temos
$$\int_0^t dr y(r) \int_r^t \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} ds = \int_0^t ds \int_0^s \frac{K(s,r)}{(t-s)^{1-\mu}(s-r)^{\mu}} y(r) dr$$

Agrupando na expressão anterior, fica $\int_0^t \frac{1}{(t-s)^{1-\mu}} \left[g(s) - \int_0^s \frac{1}{(s-r)^{\mu}} K(s,r) y(r) dr \right] ds = 0$ Tome $G(s) = g(s) - \int_0^s \frac{1}{(s-r)^{\mu}} K(s,r) y(r) dr.$

Para o caso em $\mathbbm{R},$ suponha s_0 com $G(s_0)=G_0>0$

$$\begin{split} g, K, y \ \text{contínuas} \Rightarrow G(s) > & \frac{G_0}{2} \ \text{numa vizinhança} \ [s_0 - \delta, s_0 + \delta] \\ & \frac{1}{(t-s)^{1-\mu}} \ \text{contínua sobre} \ [s_0 - \delta, s_0 + \delta] \ \text{e estritamente positiva} \Rightarrow & \frac{1}{(t-s)^{1-\mu}} \ge P_0 > 0 \ \text{em} \ [s_0 - \delta, s_0 + \delta] \\ & \int_{s_0 - \delta}^{s_0 + \delta} \frac{1}{(t-s)^{1-\mu}} G(s) \ ds \ge 2\delta P_0 \frac{G_0}{2} > 0 \end{split}$$

Contradição, pois para 0 < a < b < Ttemos

$$\int_{a}^{b} \frac{1}{(t-s)^{1-\mu}} G(s) \, ds = \int_{0}^{b} \frac{1}{(t-s)^{1-\mu}} G(s) \, ds - \int_{0}^{a} \frac{1}{(t-s)^{1-\mu}} G(s) \, ds = 0 - 0 = 0$$

Para o caso em $\mathbb{R}^n,$ repetimos esse argumento sobre cada coordenada.

(iii) Resta verificar que a equação associada satisfaz as propriedades de regularidade.

Como $g \in C^1([0,T])$ e g(0) = 0, pela derivada da integral de Abel (2.4.4), $h \in C^1([0,T])$

Com
o $K\in C^1$ sobre $0\leqslant s\leqslant t\leqslant T,$ pela derivada da integral de Abel conjugada (2.6.5),
 $\ell\in C^1$ sobre $0\leqslant r\leqslant t\leqslant T$

Pela definição da h temos h(0) = 0.

Usando a continuidade da integral de Abel conjugada (2.6.3), chegamos a

$$\ell(t,r) = \int_0^1 \frac{K((t-r)u+r,r)}{(1-u)^{1-\mu}u^{\mu}} du \Rightarrow$$

$$\Rightarrow \ell(t,t) = \int_0^1 \frac{K((t-t)u+t,t)}{(1-u)^{1-\mu}u^{\mu}} du = \int_0^1 \frac{1}{(1-u)^{1-\mu}u^{\mu}} du K(t,t) = \frac{\pi}{\sin\mu\pi} K(t,t)$$

 $\frac{\pi}{\sin\mu\pi}\neq 0,\;K(t,t)$ inversível sobre $0\leqslant t\leqslant T \Rightarrow \ell(t,t)$ é inversível sobre $0\leqslant t\leqslant T$

Para existência e regularidade, vamos usar essa equivalência e as propriedades correspondentes para a equação regular de primeiro tipo associada.

Há uma versão desse resultado com hipóteses mais fracas, que pode ser vista em [Atk74].

Corolário 2.6.8: (Existência e unicidade para AV1) Dada uma equação de Volterra de primeiro tipo com singularidade de Abel com $g \in C^1([0,T]), g(0) = 0$,

então a solução existe sobre [0, T] e é única

Demonstração: Considere a equação de primeiro tipo regular associada $h(t) = \int_{0}^{t} \ell(t,r) y(r) dr$

Na demonstração anterior verificamos que

 $h \in C^1 \text{ em } 0 \leq t \leq T \text{ com } h(0) = 0$

 $\ell \in C^1$ em $0 \leqslant r \leqslant t \leqslant T$ com $\ell(t,t)$ inversível para $0 \leqslant t \leqslant T$

Pela existência e unicidade para V1 (2.3.4), temos que

 $\exists y(t)$ solução da equação associada sobre [0,T]e ela é única.

Usando a equivalência AV1-V1 (2.6.7), concluímos que

y(t) é solução da equação original sobre [0,T] e ela é única.

Corolário 2.6.9: (Regularidade para AV1) Dada uma equação de Volterra de primeiro tipo com singularidade de Abel com $g \in C^{p+1}([0,T]), K \in C^{p+1}(0 \le s \le t \le T), g(0) = g'(0) = \ldots = g^{(p)}(0) = 0$ então a solução tem classe C^p sobre $t \in [0,T]$

Demonstração: Considere a equação de primeiro tipo regular associada $h(t) = \int_0^t \ell(t,r) y(r) dr$

Com
o $g\in C^{p+1}([0,T])$ e $g(0)=g'(0)=\ldots=g^{(p)}(0)=0,$ pela derivada da integral de Abel (2.4.4),
 $h\in C^{p+1}$

Como $K \in C^{p+1} (0 \leqslant s \leqslant t \leqslant T),$ pela derivada da integral de Abel conjugada (2.6.3), $\ell \in C^{p+1}$

Usando a regularidade para V1 (2.3.5), temos que a solução da equação associada está em $C^p([0,T])$ Aplicando a equivalência AV1-V1 (2.6.7), concluímos que a solução da equação original está em $C^p([0,T])$

Capítulo 3

Métodos de colocação polinomial

Neste capítulo vamos descrever uma classe de métodos de colocação polinomial e verificar certos resultados que têm demonstrações bem gerais.

Segundo as informações em [Bru86] e [Bru04], boa parte dos resultados atuais sobre métodos polinomiais para equações integrais foi estabelecida entre 1920 e 1990, incluindo trabalhos como

Quadratura: Prasad [Pra24], Mikeladze [Mik35], Krylov [Kry49], Young [You54], Wolkelfelt [Wol82].

Runge-Kutta: Pouzet [Pou63], Beltyukov [Bel65], Brunner, Hairer e Norsett [BHN82], Lubich [Lub83].

Colocação polinomial: Huber [Hub39], Wagner [Wag54], Linz [Lin69], Weiss e Anderssen [WA72], Weiss [Wei72], Rothe [Rot82], Brunner [Bru85].

Projeção ortogonal: Bownds [Bow76], Eggermont [Egg88].

3.1 Métodos de colocação polinomial

Vamos começar com uma descrição ampla e depois tratar com mais detalhes os casos de interesse. Essa seção se baseia em [Bru04], seções 2.2 e 6.2 e em [Lin85], capítulo 8.

Considere os seguintes objetos:

1) uma equação integral dada por

$$F\left(t, y(t), \int_{\alpha(t)}^{\beta(t)} p(t, s) K(t, s, y(s)) ds\right) = g(t)$$
 com certas condições de regularidade

2) um conjunto de pontos sobre [a, b] dados por

uma partição uniforme do intervalo $z_n = a + nh$, h = (b - a)/Npontos para interpolação $t_{ni} = z_n + c_i h \text{ com } 0 \leq c_1 < \ldots < c_m \leq 1$ fixos pontos para colocação $T_{nj} = z_n + d_j h \text{ com } 0 \leq d_1 < \ldots < d_m \leq 1$ fixos

3) aproximações polinomiais por trechos para $y(s) \in K(t, s, y(s))$

$$y(s) \approx u(s) = \sum_{n=0}^{N-1} u_n(s)\chi_{]z_n, z_{n+1}]}(s), \ u_n(s) = \sum_{i=1}^m L_{ni}(s)u_{ni}$$
$$K(t, s, y(s)) \approx R(t, s, u(s)) = \sum_{n=0}^{N-1} R_n(t, s, u(s))\chi_{]z_n, z_{n+1}]}(s), \ R_n(t, s, u(s)) = \sum_{i=1}^m L_{ni}(s)K(t, t_{ni}, u_{ni})$$

onde L_{ni} são os polinômios da base de Lagrange sobre t_{ni} , $i = 1, ...m \in \chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases}$

4) sistema com u_{ni} a serem determinados

de forma que a equação com $u \in R$ seja satisfeita nos pontos de colocação

$$F\left(T_{nj}, u(T_{nj}), \int_{\alpha(T_{nj})}^{\beta(T_{nj})} p(T_{nj}, s) R(T_{nj}, s, u(s)) ds\right) = g(T_{nj})$$

para $n = 0, \dots N - 1$ e $j = 1, \dots m$

Figura 3.1.1: Aproximações $u_n(.) \in R_n(t,.,u(.))$

Figura 3.1.2: Aproximação para as integrais

A literatura sobre colocação polinomial apresenta algumas classes de métodos que são obtidas mudando um pouco os objetos descritos acima.

Usando equações para garantir a regularidade da u(s) na passagem entre os trechos, o método é dito contínuo ou de classe C^p .

Usando as integrais de p(t,s)K(t,s,u(s)) exatas, o método é dito semi-discreto.

Usando p(t, s)R(t, s, u(s)) e pontos auxiliares distribuídos nos intervalos parcialmente utilizados nas integrações, o método é dito totalmente discreto.

Neste trabalho vamos usar as seguintes nomenclaturas:

Usando p(t, s)R(t, s, u(s)) vamos dizer que o método é totalmente discreto.

Usando pontos auxiliares nos intervalos parcialmente utilizados, vamos dizer que o método usa pontos escalonados.

Usando apenas os pontos originais, vamos dizer que o método usa pontos fixados.

Figura 3.1.3: Pontos fixados e pontos escalonados

Usando pontos fixados, algumas coisas ficam mais simples, mas se torna necessário que a K esteja definida numa região um pouco maior.

A maioria dos trabalhos sobre métodos de colocação com ordem alta se dedicam ao caso semi-discreto, mas parte dos resultados podem ser adaptados para outros casos.

Vamos terminar essa seção observando que para certas escolhas da K, os métodos descritos são equivalentes aos métodos semi-discretos e portanto herdam os seus resultados teóricos de forma direta.

Em particular, isso acontece com a equação de Abel (onde temos K(t, s, u) = u).

Lema 3.1.4: Se K(t, s, u) = P(t)u, então os métodos descritos coincidem com os métodos semidiscretos.

Demonstração: Os polinômios dos trechos se escrevem como

$$u_n(s) = \sum_{i=1}^m L_{ni}(s)u_{ni} , R_n(t, s, u(s)) = \sum_{i=1}^m L_{ni}(s)K(t, t_{ni}, u_{ni})$$

Para $s \in [z_n, z_{n+1}]$, temos

u(s) polinômio com grau até $m-1 \Rightarrow P(t)u(s)$ é polinômio em s com grau até m-1

com a forma de Lagrange, fica

$$P(t)u(s) = \sum_{i=1}^{m} L_{ni}(s)P(t)u(t_{ni})$$

logo temos

$$K(t, s, u(s)) = \sum_{i=1}^{m} L_{ni}(s)K(t, t_{ni}, u(t_{ni})) = R(t, s, u(s))$$

3.2 Colocação para Volterra de segundo tipo regulares (CV2)

Com essa classe de problemas obtemos uma extensão natural dos resultados sobre colocação para EDOs com valor inicial. Essa seção se baseia em [Bru04], seções 2.2 e 2.3.

Na primeira parte vamos descrever o método e mostrar que as equações discretas têm solução única para um espaçamento pequeno o bastante na malha.

Considere os seguintes objetos:

1) uma equação de segundo tipo regular

$$y(t) = g(t) + \int_{a}^{t} K(t, s, y(s)) ds$$

com $a \in C^{m}([a, b])$ $K \in C^{m}$ sobre

 $\begin{array}{l} \operatorname{com} \ g \in C^m([a,b]), \ K \in C^m \ \text{sobre} \ \tilde{\Omega} \times \mathbb{R}, \ K \ \text{de Lipschitz em } u \ \text{sobre} \ \tilde{\Omega} \times \mathbb{R}, \\ \\ \tilde{\alpha} \end{array}$

 $\tilde{\Omega} = \{(t,s): a \leqslant t \leqslant b, a \leqslant s \leqslant \min(b,t+h_0)\}$

2) um conjunto de pontos sobre [a, b] dados por

$$h = \frac{b-a}{N}, z_n = a + nh, t_{nj} = z_n + c_j h$$

com $0 \leq c_1 < \ldots < c_m \leq 1$ fixos

3) aproximações polinomiais por trechos para $y(s) \in K(t, s, y(s))$

$$y(s) \approx u(s) = \sum_{n=0}^{N-1} u_n(s)\chi_{]z_n, z_{n+1}]}(s), \ u_n(s) = \sum_{i=1}^m L_{ni}(s)u_{ni}$$
$$K(t, s, y(s)) \approx R(t, s, u(s)) = \sum_{n=0}^{N-1} R_n(t, s, u(s))\chi_{]z_n, z_{n+1}]}(s), \ R_n(t, s, u(s)) = \sum_{i=1}^m L_{ni}(s)K(t, t_{ni}, u_{ni})$$

onde L_{ni} são os polinômios da base de Lagrange sobre t_{ni} , i = 1, ...m e $\chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases}$

4) o conjunto de valores realizados pel
agnos pontos t_{nj}

 $g_{nj} = g(t_{nj})$ para $n = 0 \ldots N-1$ e $j = 1, \ldots m$

Figura 3.2.1: Representação da região $\hat{\Omega}$

Figura 3.2.2: Aproximação para as integrais

Cada integração usa todos os u_{ni} calculados nas etapas anteriores e todos os u_{ni} a serem calculados na etapa atual, apesar do intervalo de integração ir apenas até o t_{nj} .
Figura 3.2.3: Pontos onde K(t, s, u(s)) é avaliada

Para cada t fixado, R(t, s, u(s)) é um polinômio de grau até m - 1 por trechos possivelmente descontínuo na passagem de um trecho para outro.

A rigor temos uma H(t, s) expressa por notação como R(t, s, u(s)).

Lema 3.2.4: (Forma local das R_n)

$$R_n(t, z_n + \sigma h, u(z_n + \sigma h)) = \sum_{i=1}^m \ell_i(\sigma) K(t, t_{ni}, u_{ni}) \operatorname{com} \ell_i(\sigma) = \prod_{k \neq i} \frac{\sigma - c_k}{c_i - c_k}$$

Demonstração: Com a forma de Lagrange, os polinômios dos trechos ficam

$$R_n(t, s, u(s)) = \sum_{i=1}^{m} L_{ni}(s) K(t, t_{ni}, u_{ni})$$

Mudando as variáveis, a dependência do z_n fica apenas na K

$$s = z_n + \sigma h, \ t_{ni} = z_n + c_i h \Rightarrow L_{ni}(z_n + \sigma h) = \prod_{k \neq i} \frac{(z_n + \sigma h) - t_{nk}}{t_{ni} - t_{nk}} = \prod_{k \neq i} \frac{(\sigma - c_k)h}{(c_i - c_k)h}$$

Lema 3.2.5: (Equações para CV2) As equações de colocação são dadas por

$$u_{nj} = g_{nj} + h \sum_{i=1}^{m} \beta_i(1) K(t_{nj}, t_{0i}, u_{0i}) + \dots + h \sum_{i=1}^{m} \beta_i(c_j) K(t_{nj}, t_{ni}, u_{ni})$$

com $\beta_i(c) = \int_0^c \ell_i(\sigma) d\sigma$, para $c \in [0, 1]$

Demonstração: Aplicando a equação num ponto t_{nj} , temos

$$\begin{split} u_{nj} &= g_{nj} + \int_{z_0}^{z_1} R_0(t_{nj}, s, u(s)) ds + \ldots + \int_{z_n}^{t_{nj}} R_n(t_{nj}, s, u(s)) ds \\ u_{nj} &= g_{nj} + \int_{z_0}^{z_1} \sum_{i=1}^m \ell_i \Big(\frac{s - z_0}{h} \Big) K(t_{nj}, t_{0i}, u_{0i}) ds + \ldots + \int_{z_n}^{t_{nj}} \sum_{i=1}^m \ell_i \Big(\frac{s - z_n}{h} \Big) K(t_{nj}, t_{ni}, u_{ni}) ds \\ u_{nj} &= g_{nj} + \sum_{i=1}^m \Big[\int_{z_0}^{z_1} \ell_i \Big(\frac{s - z_0}{h} \Big) ds \Big] K(t_{nj}, t_{0i}, u_{0i}) + \ldots + \sum_{i=1}^m \Big[\int_{z_n}^{t_{nj}} \ell_i \Big(\frac{s - z_n}{h} \Big) ds \Big] K(t_{nj}, t_{ni}, u_{ni}) \\ Mudando as variáveis com \sigma = \frac{s - z_p}{h} d\sigma = \frac{1}{h} ds \text{ cheramos a} \end{split}$$

Mudando as variáveis com $\sigma = \frac{s - z_p}{h}, d\sigma = \frac{1}{h}ds$, chegamos a

$$\int_{z_p}^{z_{p+1}} \ell_i \left(\frac{s-z_p}{h}\right) ds = h \int_0^1 \ell_i(\sigma) d\sigma \ \mathbf{e} \ \int_{z_n}^{t_{nj}} \ell_i \left(\frac{s-z_n}{h}\right) ds = h \int_0^{c_j} \ell_i(\sigma) d\sigma$$

Quando omitirmos um índice, estamos nos referindo ao vetor coluna correspondente.

Por exemplo $u_n = \begin{bmatrix} u_{n1} \\ \vdots \\ u_{nm} \end{bmatrix}$.

Corolário 3.2.6: As equações de colocação se representam de forma vetorial como $u_n = g_n + h F_{n0}(u_0) + \ldots + h F_{nn}(u_n)$ para cada n, com

$$F_{np}(u_p) = \begin{bmatrix} \Sigma_{i=1}^m \beta_i(1) K(t_{n1}, t_{pi}, u_{pi}) \\ \vdots \\ \Sigma_{i=1}^m \beta_i(1) K(t_{nm}, t_{pi}, u_{pi}) \end{bmatrix} \text{ para } p = 0, \dots n - 1 \text{ e}$$
$$F_{nn}(u_n) = \begin{bmatrix} \Sigma_{i=1}^m \beta_i(c_1) K(t_{n1}, t_{ni}, u_{ni}) \\ \vdots \\ \Sigma_{i=1}^m \beta_i(c_m) K(t_{nm}, t_{ni}, u_{ni}) \end{bmatrix}$$

Corolário 3.2.7: As equações de colocação se desacoplam sobre um n por vez

Demonstração: As equações podem ser resolvidas com a seguinte ordem

Tome $b_0 = g_0$ Determine u_0 tal que $u_0 = b_0 + h F_{00}(u_0)$ Tome $b_1 = g_1 + h F_{10}(u_0)$ Determine u_1 tal que $u_1 = b_1 + h F_{11}(u_1)$

E assim por diante.

Lema 3.2.8: (Limitação dos coeficientes) Existe P > 0 tal que $|\ell_i(c)| \leq P$ e $|\beta_i(c)| \leq P$ para $c \in [0, 1]$ Demonstração: ℓ_i contínuas, [0, 1] compacto $\Rightarrow \exists P = \max_i \max_{[0, 1]} |\ell_i(c)|$

$$|\beta_i(c)| \leq \int_0^c |\ell_i(\sigma)| d\sigma \leq cP \leq P$$

Proposição 3.2.9: (Existência e unicidade para CV2) Com K de Lipschitz e h pequeno o bastante, o sistema de cada bloco é uma contração.

Demonstração: Tome $\Phi(.)$ tal que o sistema abaixo represente a equação $u_n = \Phi(u_n)$.

$$\begin{cases} u_{n1} = b_{n1} + h \sum_{i} \beta_{i}(c_{1}) K(t_{n1}, t_{ni}, u_{ni}) \\ \vdots \\ u_{nm} = b_{nm} + h \sum_{i} \beta_{i}(c_{m}) K(t_{nm}, t_{ni}, u_{ni}) \end{cases}$$
$$|\Phi(U) - \Phi(V)|_{1} = \sum_{j} |\Phi_{j}(U) - \Phi_{j}(V)| \leq \sum_{j} \left(0 + h \sum_{i} |\beta_{i}(c_{j})| |K - K| \right) \leq \sum_{j} \left(0 + h \sum_{i} PL |U_{i} - V_{i}| \right) \leq mh PL \sum_{i} |U_{i} - V_{i}| = mh PL |U - V|_{1}$$

mhPL < 1 para h pequeno \Rightarrow o sistema é uma contração para h pequeno.

Algoritmo 3.2.10: (Resolução das equações para CV2)

Tome $u_{-1,m} = g(a)$

Para n=0,...N-1

- . Tome $b_n = g_n + h F_{n0}(u_0) + \ldots + h F_{n,n-1}(u_{n-1})$
- . Determine u_n tal que $u_n = b_n + h F_{nn}(u_n)$

. usando
$$u_{nj}^{(0)} = u_{n-1,m}$$
 para $j = 1, \dots m$ e iterações de ponto fixo

Daqui em diante vamos tratar a consistência e a convergência do método.

Definição 3.2.11: Para cada N,

- (i) $e' = \max_{n,j} |e_{nj}|$ é dito erro global, com $e_{nj} = y(t_{nj}) u_{nj}$
- (ii) $\delta' = \max_{n,j} |\delta_{nj}|$ é dito erro local, com δ_{nj} dados por

$$y(t_{nj}) = g_{nj} + h \sum_{i=1}^{m} \beta_i(1) K(t_{nj}, t_{0i}, y(t_{0i})) + \dots + h \sum_{i=1}^{m} \beta_i(c_j) K(t_{nj}, t_{ni}, y(t_{ni})) + \delta_{nj}$$

Lema 3.2.12: (Forma local da K) Se $K(t, s, y(s)) \in C^m$ sobre $\tilde{\Omega}$ e h é pequeno,

então $K(t, z_n + \sigma h, y(z_n + \sigma h)) = \sum_i \ell_i(\sigma) K(t, t_{ni}, y(t_{ni})) + \rho_n(t, \sigma)$ com $|\rho_n(t, \sigma)| \leq \frac{M}{m!} h^m$ para $\sigma \in [0, 1], n = 0, ... N - 1$ e M independente de h

Demonstração: Dados $t \in [z_n, b]$, $\sigma \in [0, 1]$ e n entre 0 e N - 1, pelo erro do polinômio interpolador, temos

$$K(t, z_n + \sigma h, y(z_n + \sigma h)) = \sum_i \ell_i(\sigma) K(t, t_{ni}, y(t_{ni})) + \frac{\partial^m}{\partial s^m} [K(t, s, y(s))]_{\xi_{t\sigma n}} \frac{(\sigma - c_1)h...(\sigma - c_m)h}{m!}$$

para algum $\xi_{t\sigma n} \in [z_n, z_{n+1}]$

$$K(t, s, y(s)) \in C^m \text{ sobre } \tilde{\Omega} \text{ compacto} \Rightarrow \exists M = \max\left\{\frac{\partial^m}{\partial s^m}[K(t, s, y(s))]: (t, s) \in \tilde{\Omega}\right\}$$
$$|\sigma - c_i| \leq 1 \Rightarrow |\rho_n(t, \sigma)| \leq M \frac{h^m}{m!}$$

Proposição 3.2.13: (Consistência para CV2) Dados $K \in C^m$ sobre $\tilde{\Omega} \times \mathbb{R}$, $g \in C^m$ sobre $[a, b] \in h$ pequeno,

então $|\delta_{nj}|\!\leqslant\! C_1 h^m$ para todo n,je com
 C_1 independente de h

Demonstração: Pela regularidade para V2 (2.2.5), temos $y \in C^m$ sobre [a, b]

$$(t,s) \in \tilde{\Omega} \Rightarrow s \in [a,b]$$

 $y \in C^m \text{ sobre } [a,b], \ K \in C^m \text{ sobre } \tilde{\Omega} \times \mathbb{R} \Rightarrow K(t,s,y(s)) \in C^m \text{ sobre } \tilde{\Omega}$

Com o lema acima, chegamos a

$$K(t, z_n + \sigma h, y(z_n + \sigma h)) = \sum_i \ell_i(\sigma) K(t, t_{ni}, y(t_{ni})) + \rho_n(t, \sigma) \operatorname{com} |\rho_n(t, \sigma)| \leq \frac{M}{m!} h^m$$

Vamos usar essa expressão na equação da solução exata sobre os pontos t_{nj}

$$y(t_{nj}) = g_{nj} + \int_{z_0}^{z_1} K(t_{nj}, s, y(s)) ds + \dots + \int_{z_n}^{t_{nj}} K(t_{nj}, s, y(s)) ds$$

$$\begin{split} y(t_{nj}) &= g_{nj} + \int_{z_0}^{z_1} \sum_{i=1}^m \ell_i \Big(\frac{s - z_0}{h} \Big) K(t_{nj}, t_{0i}, y(t_{0i})) ds + \int_{z_0}^{z_1} \rho_0 \Big(t_{nj}, \frac{s - z_0}{h} \Big) ds + \dots + \\ &+ \int_{z_n}^{t_{nj}} \sum_{i=1}^m \ell_i \Big(\frac{s - z_n}{h} \Big) K(t_{nj}, t_{ni}, y(t_{ni})) ds + \int_{z_n}^{t_{nj}} \rho_n \Big(t_{nj}, \frac{s - z_n}{h} \Big) ds \end{split}$$

Logo δ_{nj} se comportam como

$$\begin{split} \delta_{nj} &= \int_{z_0}^{z_1} \rho_0 + \ldots + \int_{z_n}^{t_{nj}} \rho_n \\ &|\delta_{nj}| \leqslant \int_{z_0}^{z_1} |\rho_0| + \ldots + \int_{z_n}^{t_{nj}} |\rho_n| \leqslant (t_{nj} - z_0) M \frac{h^m}{m!} \leqslant (b - a) M \frac{h^m}{m!} \end{split}$$

Lema 3.2.14: (Desigualdade de Gronwall discreta) Dada
$$\xi_i$$
, $i = 0, ...N$ satisfazendo
 $|\xi_n| \leq Ah \sum_{i=0}^{n-1} |\xi_i| + B$ para $n = 0, ...N$, com $Ah > 0, B \ge 0$

então $|\xi_n| \leqslant B e^{Ahn}$ para $n = 0, \dots N$

 $\pmb{Demonstração:}$ Primeiro vamos mostrar que $|\xi_i| \leqslant (1+Ah)^i B$

com n=0,temos $|\xi_0|\leqslant 0+B\leqslant (1+A\,h)^0B$

supondo para i = 0, ...n, temos

$$\begin{aligned} |\xi_{n+1}| &\leq Ah \sum_{i=0}^{n} |\xi_i| + B \leq Ah \sum_{i=0}^{n} \left[(1+Ah)^i B \right] + B = B \left[1 + Ah \sum_{i=0}^{n} (1+Ah)^i \right] = \\ &= B \left[1 + Ah \frac{(1+Ah)^{n+1} - 1}{(1+Ah) - 1} \right] = B \left[1 + Ah \frac{(1+Ah)^{n+1} - 1}{Ah} \right] = B(1+Ah)^{n+1} \end{aligned}$$

Para terminar, basta relacionar estas potências com a exponencial

$$\exp\left(Ah\right) = 1 + 1Ah + \exp\left(\eta\right)\frac{(Ah)^2}{2} \ge 1 + Ah \Rightarrow [\exp\left(Ah\right)]^n \ge (1 + Ah)^n \Rightarrow Be^{Ahn} \ge B(1 + Ah)^n$$

Proposição 3.2.15: (Desiguladade de convergência para CV2) Dados K de Lipschitz e h pequeno, então $|e_n|_1 \leq 2mh PL \sum_{p=0}^{n-1} |e_p|_1 + 2m\delta'$ para todo n

 ${\it Demonstração:}$ Com a diferença entre a equação de u_{nj} e a equação de consistência, temos

$$\begin{split} u_{nj} &= g_{nj} + h \sum_{i=1}^{m} \ \beta_i(1) \ K(t_{nj}, t_{0i}, u_{0i}) + \ldots + h \sum_{i=1}^{m} \ \beta_i(c_j) \ K(t_{nj}, t_{ni}, u_{ni}) \\ y(t_{nj}) &= g_{nj} + h \sum_{i=1}^{m} \ \beta_i(1) \ K(t_{nj}, t_{0i}, y(t_{0i})) + \ldots + h \sum_{i=1}^{m} \ \beta_i(c_j) \ K(t_{nj}, t_{ni}, y(t_{ni})) + \delta_{nj} \\ &|e_{nj}| \leqslant 0 + h \sum_{i=1}^{m} \ |\beta_i(1)|L|e_{0i}| + \ldots + h \sum_{i=1}^{m} \ |\beta_i(c_j)|L|e_{ni}| + |\delta_{nj}| \leqslant h \ PL|e_{0}|_{1} + \ldots + h \ PL|e_{n}|_{1} + \delta' \\ &|e_{n}|_{1} \leqslant mh \ PL|e_{0}|_{1} + \ldots + mh \ PL|e_{n}|_{1} + m\delta' \\ &(1 - mh \ PL)|e_{n}|_{1} \leqslant mh \ PL|e_{0}|_{1} + \ldots + mh \ PL|e_{n-1}|_{1} + m\delta' \end{split}$$

Com h pequeno, chegamos a $1 - mhPL > \frac{1}{2}$

$$\frac{1}{2}|e_n|_1 \leqslant m h PL \sum_{p=0}^{n-1} |e_p|_1 + m\delta' \Rightarrow |e_n|_1 \leqslant 2m h PL \sum_{p=0}^{n-1} |e_p|_1 + 2m\delta'$$

Corolário 3.2.16: (Convergência para CV2) Dados K de Lipschitz e h pequeno,

então $e'\!\leqslant\! C_2\delta'$ com C_2 independente de h

Demonstração: Pela proposição anterior, temos

$$|e_n|_1 \leq 2mh PL \sum_{p=0}^{n-1} |e_p|_1 + 2m\delta'$$
 para $n = 0, ...N, \text{ com } 2mh PL > 0 \in 2m\delta' \geq 0$

Pela desigualdade de Gronwall discreta (3.2.14), $|e_n|_1 \leq 2m\delta' \cdot e^{2mhPLn}$ para n = 0, ... N $e^{2mhPLn} \leq e^{2mPLNh} = e^{2mPL(b-a)}$

Com a equivalência de normas em \mathbb{R}^m , concluímos que $|e_n|_{\infty} \leq C_2 \delta'$ para n = 0...N

Para os métodos semi-discretos, com certas escolhas dos c_i chegamos a $e' \leq Ch^{2m-1}$. A demonstração pode ser vista em [Bru04] teorema 2.2.6

3.3 Colocação para Volterra de primeiro tipo regulares (CV1)

Com esses problemas, não temos mais uma estrutura de ponto fixo na equação, mas para compensar o K se separa da y na integral. A referência principal é [Bru04], seção 2.4.

Vamos começar descrevendo o método e mostrando as condições para que as equações discretas tenham solução única com h pequeno.

Considere os seguintes objetos:

1) uma equação de primeiro tipo regular

$$g(t) = \int_{a}^{t} K(t,s)y(s)ds$$

$$\operatorname{com} g \in C^{m+1}([a,b]), \ K \in C^{m+1} \text{ sobre } \tilde{\Omega}, \ g(a) = 0, \ |K(t,t)| \ge k_0 > 0 \text{ para } t \in [a,b]$$

$$\tilde{\Omega} = \{(t,s): a \le t \le b, a \le s \le \min(b, t+h_0)\}$$

2) um conjunto de pontos sobre [a, b] dados por

$$h = \frac{b-a}{N}, \ z_n = a + nh, \ t_{nj} = z_n + c_j h, \ T_{nj} = z_n + d_j h$$

com $0 \leqslant c_1 < \ldots < c_m \leqslant 1$ e $0 < d_1 < \ldots < d_m \leqslant 1$ fixos

3) aproximações polinomiais por trechos para $y(s) \in K(t,s)y(s)$

$$\begin{split} y(s) &\approx u(s) = \sum_{n=0}^{N-1} u_n(s) \chi_{]z_n, z_{n+1}]}(s), \ u_n(s) = \sum_{i=1}^m L_{ni}(s) u_{ni} \\ K(t,s) y(s) &\approx R(t,s) u(s) = \sum_{n=0}^{N-1} R_n(t,s) u(s) \chi_{]z_n, z_{n+1}]}(s), \ R_n(t,s) u(s) = \sum_{i=1}^m L_{ni}(s) K(t, t_{ni}) u_{ni} \\ \text{onde } L_{ni} \text{ são os polinômios da base de Lagrange sobre } t_{ni}, \ i = 1, \dots m \in \chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases} \end{split}$$

4) o conjunto de valores realizados pela g nos pontos T_{nj}

$$g_{nj} = g(T_{nj})$$
 para $n = 0 \dots N - 1$
e $j = 1, \dots m$

Para cada t fixado, R(t, s)u(s) é uma notação para um polinômio de grau até m - 1 por trechos possivelmente descontínuo na passagem de um trecho para outro.

Utilizando o lema da forma local das R_n (3.2.4), temos

$$R_n(t, z_n + \sigma h)u(z_n + \sigma h) = \sum_{i=1}^m \ell_i(\sigma)K(t, t_{ni})u_{ni} \operatorname{com} \ell_i(\sigma) = \prod_{k \neq i} \frac{\sigma - c_k}{c_i - c_k}$$

Lema 3.3.1: (Equações para CV1) As equações de colocação são dadas por

$$g_{nj} = h \sum_{i=1}^{m} \beta_i(1) K(T_{nj}, t_{0i}) u_{0i} + \dots + h \sum_{i=1}^{m} \beta_i(d_j) K(T_{nj}, t_{ni}) u_{ni} \text{ para cada } n, j$$

$$\operatorname{com} \ \beta_i(d) = \int_0^d \ell_i(\sigma) d\sigma, \text{ para } d \in [0, 1]$$

Demonstração: Aplicando a equação num ponto T_{nj} , temos

$$g_{nj} = \int_{z_0}^{z_1} R_0(T_{nj}, s)u(s)ds + \dots + \int_{z_n}^{T_{nj}} R_n(T_{nj}, s)u(s)ds$$

$$g_{nj} = \int_{z_0}^{z_1} \sum_{i=1}^m \ell_i \left(\frac{s-z_0}{h}\right) K(T_{nj}, t_{0i})u_{0i}ds + \dots + \int_{z_n}^{T_{nj}} \sum_{i=1}^m \ell_i \left(\frac{s-z_n}{h}\right) K(T_{nj}, t_{ni})u_{ni}ds$$

$$g_{nj} = \sum_{i=1}^m \left[\int_{z_0}^{z_1} \ell_i \left(\frac{s-z_0}{h}\right) ds \right] K(T_{nj}, t_{0i})u_{0i} + \dots + \sum_{i=1}^m \left[\int_{z_n}^{T_{nj}} \ell_i \left(\frac{s-z_n}{h}\right) ds \right] K(T_{nj}, t_{ni})u_{ni}$$
Mudando as variávais com $\sigma = \frac{s-z_p}{s-z_p} d\sigma = \frac{1}{s} ds$ cheramos a

Mudando as variáveis com $\sigma = \frac{s - z_p}{h}, d\sigma = \frac{1}{h}ds$, chegamos a

$$\int_{z_p}^{z_{p+1}} \ell_i \left(\frac{s-z_p}{h}\right) ds = h \int_0^1 \ell_i(\sigma) d\sigma \ \mathbf{e} \ \int_{z_n}^{T_{nj}} \ell_i \left(\frac{s-z_n}{h}\right) ds = h \int_0^{d_j} \ell_i(\sigma) d\sigma$$

Corolário 3.3.2: As equações de colocação se representam de forma vetorial como $g_n = h A_{n0} u_0 + \ldots + h A_{nn} u_n$ para cada n, com

$$A_{np} = \begin{bmatrix} \beta_1(1) K(T_{n1}, t_{p1}) & \dots & \beta_m(1) K(T_{n1}, t_{pm}) \\ \vdots & & \vdots \\ \beta_1(1) K(T_{nm}, t_{p1}) & \dots & \beta_m(1) K(T_{nm}, t_{pm}) \end{bmatrix} \text{ para } p = 0, \dots n - 1 \text{ e}$$
$$A_{nn} = \begin{bmatrix} \beta_1(d_1) K(T_{n1}, t_{n1}) & \dots & \beta_m(d_1) K(T_{n1}, t_{nm}) \\ \vdots & & \vdots \\ \beta_1(d_m) K(T_{nm}, t_{n1}) & \dots & \beta_m(d_m) K(T_{nm}, t_{nm}) \end{bmatrix}$$

Corolário 3.3.3: As equações de colocação se desacoplam sobre um n por vez **Demonstração:** As equações podem ser resolvidas com a seguinte ordem

Tome $b_0 = g_0$ Determine u_0 tal que $b_0 = h A_{00} u_0$ Tome $b_1 = g_1 - h A_{10} u_0$ Determine u_1 tal que $b_1 = h A_{11} u_1$ E assim por diante.

Pelo lema da limitação dos coeficientes (3.2.8), $\exists P > 0$ tal que $|\beta_i| \leq P$ sobre [0, 1].

Lema 3.3.4: Para h pequeno, temos $A_{nn} = D_n A + h E_n$ com

$$D_n = \begin{bmatrix} K(T_{n1}, T_{n1}) & 0 \\ & \ddots & \\ 0 & K(T_{nm}, T_{nm}) \end{bmatrix}, A = \begin{bmatrix} \beta_1(d_1) & \dots & \beta_m(d_1) \\ \vdots & & \vdots \\ \beta_1(d_m) & \dots & \beta_m(d_m) \end{bmatrix} e |E_n|_{\infty} < C_1 \text{ fixado}$$

Demonstração: A_{nn} tem entradas do tipo $\beta_i(d_j) K(T_{nj}, t_{ni})$

$$\begin{split} & K \in C^1 \text{ sobre } \tilde{\Omega} \Rightarrow K(T_{nj}, t_{ni}) = K(T_{nj}, T_{nj}) + K_s(T_{nj}, \xi_{ij})(t_{ni} - T_{nj}) \text{ com } \xi_{ij} \in [z_n, z_{n+1}] \\ & \text{Com } r_{ij} = K_s(T_{nj}, \xi_{ij}), \text{ fica } K(T_{nj}, t_{ni}) = K(T_{nj}, T_{nj}) + r_{ij}(c_i - d_j)h \end{split}$$

$$A_{nn} = \begin{bmatrix} \beta_1(d_1) \left[K(T_{n1}, T_{n1}) + r_{11}(c_1 - d_1)h \right] & \dots & \beta_m(d_1) \left[K(T_{n1}, T_{n1}) + r_{m1}(c_m - d_1)h \right] \\ \vdots & \vdots \\ \beta_1(d_m) \left[K(T_{nm}, T_{nm}) + r_{1m}(c_1 - d_m)h \right] & \dots & \beta_m(d_m) \left[K(T_{nm}, T_{nm}) + r_{mm}(c_m - d_m)h \right] \end{bmatrix}$$

 $h \text{ pequeno} \Rightarrow \{T_{nj}\} \times [z_n, z_{n+1}] \subset \tilde{\Omega}$

$$K \in C^{1} \text{ sobre } \tilde{\Omega} \text{ compacto} \Rightarrow \exists M_{K_{s}} = \max\left\{ |K_{s}(t,s)| : (t,s) \in \tilde{\Omega} \right\}$$
$$|E_{n}|_{\infty} = \max\sum_{linha} |\beta_{i}(d_{j})| |r_{ij}| |c_{i} - d_{j}| \leq m P M_{K_{s}} 1$$

Proposição 3.3.5: (Existência e unicidade para CV1) Se $|K(t,t)| \ge k_0 > 0$, A é inversível e h é pequeno o bastante, então A_{nn} é inversível e $|A_{nn}^{-1}|_{\infty} < a_0$ fixado.

Demonstração: Com a demonstração anterior chegamos a $|E_n|_{\infty} \leq m P M_{K_s}$

$$D_{n} \text{ diagonal, } |K(t,t)| > k_{0} \Rightarrow \left|D_{n}^{-1}\right|_{\infty} = \max \frac{1}{|K(T_{ni},T_{ni})|} \leq \frac{1}{k_{0}}$$

$$A_{nn} = D_{n}A + hE_{n} = D_{n}A\left(I + hA^{-1}D_{n}^{-1}E_{n}\right)$$

$$|hA^{-1}D_{n}^{-1}E_{n}|_{\infty} \leq h |A^{-1}|_{\infty}|D_{n}^{-1}|_{\infty}|E_{n}|_{\infty} \leq h |A^{-1}|_{\infty}\frac{1}{k_{0}}mPM_{K_{s}} < 1 \text{ para } h \text{ pequeno}$$

$$D_{n} = mutuch = \tilde{a}_{n} + h \text{ densities the densities area}$$

Pela perturbação da identidade, temos que

$$I + h A^{-1} D_n^{-1} E_n \text{ \acute{e} inversivel e } \left| \left(I + h A^{-1} D_n^{-1} E_n \right)^{-1} \right|_{\infty} \leqslant \frac{1}{1 - |h A^{-1} D_n^{-1} E_n|_{\infty}}$$
$$A_{nn}^{-1} = \left(I + h A^{-1} D_n^{-1} E_n \right)^{-1} A^{-1} D_n^{-1} \Rightarrow$$
$$\Rightarrow \left| A_{nn}^{-1} \right|_{\infty} \leqslant \frac{1}{1 - |h A^{-1} D_n^{-1} E_n|_{\infty}} |A^{-1}|_{\infty} |D_n^{-1}|_{\infty} \leqslant \frac{|A^{-1}|_{\infty} \frac{1}{k_0}}{1 - h |A^{-1}|_{\infty} \frac{1}{k_0} m P M_{K_s}}$$

Para $d_1 = 0$, teríamos $\beta_i(d_1) = 0$ e assim A seria não inversível.

Algoritmo 3.3.6: (Resolução das equações para CV1)

Para p = 0, ... N - 1

- . Tome $b_p = g_p h A_{p0} u_0 \dots h A_{p,p-1} u_{p-1}$
- . Resolva o sistema linear $b_p \!=\! h A_{pp} u_p$

Daqui em diante vamos tratar a consistência e convergência do método.

Definição 3.3.7: Para cada N,

- (i) $e' = \max_{n,j} |e_{nj}|$ é dito erro global, com $e_{nj} = y(t_{nj}) u_{nj}$
- (ii) $\delta' = \max_{n,j} |\delta_{nj}|$ é dito erro local, com δ_{nj} dados por

$$g_{nj} = h \sum_{i=1}^{m} \beta_i(1) K(T_{nj}, t_{0i}) y(t_{0i}) + \dots + h \sum_{i=1}^{m} \beta_i(d_j) K(T_{nj}, t_{ni}) y(t_{ni}) + \delta_{nj}$$

Proposição 3.3.8: (Consistência para CV1) Dados $K \in C^{m+1}$ sobre $\tilde{\Omega}, g \in C^{m+1}$ sobre $[a, b], |K(t, t)| \ge k_0 > 0, g(z_0) = 0$ e h pequeno,

então $|\delta_{nj}|\!\leqslant\! C_1 h^m$ para todo n,je com C_1 independente de h

Demonstração: Pela regularidade para V1 (2.3.5), temos $y \in C^m$ sobre [a, b]

$$(t,s) \in \tilde{\Omega} \Rightarrow s \in [a,b]$$

 $y \in C^m$ sobre $[a, b], K \in C^m$ sobre $\tilde{\Omega} \Rightarrow K(t, s)y(s) \in C^m$ sobre $\tilde{\Omega}$

Pelo lema da forma local da K (3.2.12), chegamos a

$$K(t, z_n + \sigma h)y(z_n + \sigma h) = \sum_i \ell_i(\sigma)K(t, t_{ni})y(t_{ni}) + \rho_n(t, \sigma) \operatorname{com} |\rho_n(t, \sigma)| \leq \frac{M}{m!}h^m$$

Vamos usar essa expressão na equação da solução exata sobre os pontos T_{nj}

$$g_{nj} = \int_{z_0}^{z_1} K(T_{nj}, s) y(s) ds + \dots + \int_{z_n}^{T_{nj}} K(T_{nj}, s) y(s) ds$$

$$g_{nj} = \int_{z_0}^{z_1} \sum_{i=1}^m \ell_i \Big(\frac{s - z_0}{h} \Big) K(T_{nj}, t_{0i}) y(t_{0i}) ds + \int_{z_0}^{z_1} \rho_0 \Big(T_{nj}, \frac{s - z_0}{h} \Big) ds + \dots + \int_{z_n}^{T_{nj}} \sum_{i=1}^m \ell_i \Big(\frac{s - z_n}{h} \Big) K(T_{nj}, t_{ni}) y(t_{ni}) ds + \int_{z_n}^{T_{nj}} \rho_n \Big(T_{nj}, \frac{s - z_n}{h} \Big) ds$$

Logo δ_{nj} se comportam como

$$\begin{split} \delta_{nj} &= \int_{z_0}^{z_1} \rho_0 + \ldots + \int_{z_n}^{T_{nj}} \rho_n \\ &|\delta_{nj}| \leqslant \int_{z_0}^{z_1} |\rho_0| + \ldots + \int_{z_n}^{T_{nj}} |\rho_n| \leqslant (T_{nj} - z_0) M \frac{h^m}{m!} \leqslant (b - a) M \frac{h^m}{m!} \end{split}$$

Para o teorema de convergência, vamos precisar de uma estimativa da diferença dos erros locais.

Aplicando o resultado anterior, temos ordem m para a diferença:

Lema 3.3.9: Com as hipóteses acima, se h é pequeno, então $|\delta_{nj} - \delta_{n-1,m}| \leq 2\delta' \leq 2C_1 h^m$ para todo n, j

Usando hipóteses mais fortes, temos ordem m+1 para a diferença:

Proposição 3.3.10: (Diferença dos erros locais para CV1) Dados $K \in C^{m+2}$ sobre $\tilde{\Omega}$, $g \in C^{m+2}$ sobre [a, b], $d_m = 1$ e h pequeno,

então $|\delta_{nj}-\delta_{n-1,m}|\leqslant C_2h^{m+1}$ para todo n,je com C_2 independente de h

Demonstração: Usando a demonstração anterior, $\delta_{nj} \in \delta_{n-1,m}$ são dados por

$$d_{m} = 1 \Rightarrow T_{n-1,m} = z_{n-1} + 1h = z_{n}$$

$$\delta_{nj} = \int_{z_{0}}^{z_{1}} \rho_{0}(T_{nj}, .) + ... + \int_{z_{n-1}}^{z_{n}} \rho_{n-1}(T_{nj}, .) + \int_{z_{n}}^{T_{nj}} \rho_{n}(T_{nj}, .)$$

$$\delta_{n-1,m} = \int_{z_{0}}^{z_{1}} \rho_{0}(z_{n}, .) + ... + \int_{z_{n-1}}^{z_{n}} \rho_{n-1}(z_{n}, .)$$

Fazendo a diferença, temos

$$\delta_{nj} - \delta_{n-1,m} = \int_{z_0}^{z_1} \left[\rho_0(T_{nj}, .) - \rho_0(z_n, .) \right] + ... + \int_{z_{n-1}}^{z_n} \left[\rho_{n-1}(T_{nj}, .) - \rho_{n-1}(z_n, .) \right] + \int_{z_n}^{T_{nj}} \rho_n(T_{nj}, .)$$

Pela demonstração do lema da forma local da K (3.2.12), temos

$$\begin{split} \rho_p(t,\sigma) &= \frac{\partial^m}{\partial s^m} [K(t,s)y(s)]_{(t,\theta)} \frac{(\sigma-c_1)...(\sigma-c_m)h^m}{m!} \operatorname{com} \theta \in [z_p, z_{p+1}] \\ \text{Considere } F(t,s) &= \frac{\partial^m}{\partial s^m} [K(t,s)y(s)] \in G(\sigma) = \frac{(\sigma-c_1)...(\sigma-c_m)h^m}{m!} \\ \rho_p(T_{nj},\sigma) &= F(T_{nj},\xi)G(\sigma), \operatorname{com} \xi \in [z_p, z_{p+1}] \\ \rho_p(z_n,\sigma) &= F(z_n,\eta)G(\sigma), \operatorname{com} \eta \in [z_p, z_{p+1}] \end{split}$$

$$\begin{split} F(T_{nj},\xi) - F(z_n,\eta) &= F(T_{nj},\xi) - F(T_{nj},\eta) + F(T_{nj},\eta) - F(z_n,\eta) \\ K, y \in C^{m+1} \Rightarrow F \in C^1 \text{ sobre } \tilde{\Omega} \\ F \in C^1 \Rightarrow F(T_{nj},\xi) - F(z_n,\eta) &= F_s(T_{nj},\theta)(\xi-\eta) + F_t(\lambda,\eta)(T_{nj}-z_n) \text{ com } \theta \text{ entre } \xi \in \eta \in \lambda \in [z_n,T_{nj}] \\ F \in C^1, \tilde{\Omega} \text{ compacto } \Rightarrow \end{split}$$

$$\Rightarrow \exists M_{s} = \max\left\{ \left| \frac{\partial}{\partial s} \frac{\partial^{m}}{\partial s^{m}} [K(t,s)y(s)] \right| : (t,s) \in \tilde{\Omega} \right\} \in \exists M_{t} = \max\left\{ \left| \frac{\partial}{\partial t} \frac{\partial^{m}}{\partial s^{m}} [K(t,s)y(s)] \right| : (t,s) \in \tilde{\Omega} \right\}$$

$$|F(T_{nj},\xi) - F(z_{n},\eta)| \leqslant M_{s}(\xi - \eta) + M_{t}(T_{nj} - z_{n}) \leqslant M_{s}h + M_{t}h$$

$$|\rho_{p}(T_{nj},\sigma) - \rho_{p}(z_{n},\sigma)| = |F(T_{nj},\xi) - F(z_{n},\eta)| |G(\sigma)| \leqslant (M_{s} + M_{t})h \frac{h^{m}}{m!} = \frac{C_{0}h^{m+1}}{m!}$$

$$|\delta_{nj} - \delta_{n-1,m}| \leqslant \int_{z_{0}}^{z_{1}} \frac{C_{0}h^{m+1}}{m!} + \dots + \int_{z_{n-1}}^{z_{n}} \frac{C_{0}h^{m+1}}{m!} + \int_{z_{n}}^{T_{nj}} \frac{Mh^{m}}{m!}$$

$$\leqslant (z_{n} - z_{0}) \frac{C_{0}h^{m+1}}{m!} + h \frac{Mh^{m}}{m!} \leqslant (b - a) \frac{C_{0}h^{m+1}}{m!} + \frac{Mh^{m+1}}{m!} = C_{2}h^{m+1}$$

Proposição 3.3.11: (Desiguladade de convergência para CV1) Dados $K \in C^1$, $|A_{nn}^{-1}|_{\infty} < a_0$, $|\delta_{nj} - \delta_{n-1,m}| < D'$, $d_m = 1$ e h pequeno,

então
$$|e_n|_{\infty} \leq h a_0 C_3 \sum_{p=0}^{n-1} |e_p|_{\infty} + \frac{a_0 D'}{h}$$
 para todo $n \in \text{com } C_3$ independente de h

 $\boldsymbol{Demonstração:}$ A equação de u_{nj} e a equação de consistência são

$$g_{nj} = h \sum_{i=1}^{m} \beta_i(1) K(T_{nj}, t_{0i}) u_{0i} + \dots + h \sum_{i=1}^{m} \beta_i(d_j) K(T_{nj}, t_{ni}) u_{ni}$$

$$g_{nj} = h \sum_{i=1}^{m} \ \beta_i(1) \ K(T_{nj}, t_{0i}) y(t_{0i}) + \ldots + h \sum_{i=1}^{m} \ \beta_i(d_j) \ K(T_{nj}, t_{ni}) y(t_{ni}) + \delta_{nj} y(t_{ni}) + \delta_{nj} y(t_{ni}) + \delta_{nj} y(t_{ni}) y(t_{ni}) + \delta_{nj} y(t_{ni}) y(t_{ni}) + \delta_{nj} y(t_{ni}) y(t_{ni}) y(t_{ni}) + \delta_{nj} y(t_{ni}) y(t_{ni$$

Fazendo a diferença delas em T_{nj} e depois em $T_{n-1,m}\!=\!z_n,$ temos

$$0 = h \sum_{i=1}^{m} \beta_i(1) K(T_{nj}, t_{0i}) e_{0i} + \dots + h \sum_{i=1}^{m} \beta_i(d_j) K(T_{nj}, t_{ni}) e_{ni} + \delta_{nj}$$

$$0 = h \sum_{i=1}^{m} \beta_i(1) K(z_n, t_{0i}) e_{0i} + \dots + h \sum_{i=1}^{m} \beta_i(1) K(z_n, t_{n-1,i}) e_{n-1,i} + \delta_{n-1,m}$$

Subtraindo chegamos a

$$0 = h \sum_{i=1}^{m} \beta_i(1) \left[K(T_{nj}, t_{0i}) - K(z_n, t_{0i}) \right] e_{0i} + \dots + h \sum_{i=1}^{m} \beta_i(d_j) K(T_{nj}, t_{ni}) e_{ni} + (\delta_{nj} - \delta_{n-1,m})$$

 $K \in C^1 \Rightarrow K(T_{nj}, t_{pi}) - K(z_n, t_{pi}) = K_t(\xi_{njpi}, t_{pi})d_jh \text{ com } \xi_{njpi} \in [z_n, z_{n+1}]$

$$\text{Tome } \gamma_{njpi} = \beta_i(1) K_t(\xi_{njpi}, t_{pi}) d_j, \ \Gamma_{np} = \begin{bmatrix} \gamma_{n1p1} & \dots & \gamma_{n1pm} \\ \vdots & \vdots \\ \gamma_{nmp1} & \dots & \gamma_{nmpm} \end{bmatrix}$$

$$0 = h^2 \sum_{i=1}^m \gamma_{nj0i} e_{0i} + \dots + h \sum_{i=1}^m \beta_i(d_j) K(T_{nj}, t_{ni}) e_{ni} + (\delta_{nj} - \delta_{n-1,m})$$

$$\text{Tome } D_{nj} = \delta_{nj} - \delta_{n-1,m} \text{ para } n = 1 \dots N \text{ e } j = 1 \dots m$$

$$0 = h^2 \Gamma_{n0} e_0 + \dots + h A_{nn} e_n + D_n$$

$$e_n = -h A_{nn}^{-1} \Gamma_{n0} e_0 - \dots - h A_{nn}^{-1} \Gamma_{n,n-1} e_{n-1} - \frac{A_{nn}^{-1}}{h} D_n$$

$$K \in C^1 \text{ sobre } \tilde{\Omega} \text{ compacto } \Rightarrow \exists M_{K_t} = \max \left\{ |K_t(t,s)| : (t,s) \in \tilde{\Omega} \right\}$$

$$|\Gamma_{np}|_{\infty} = \max \sum_{linha} |\beta_i(1)| |K_t(\xi_{njpi}, t_{pi})| d_j \leqslant m \left(\max_i |\beta_i(1)| \right) M_{K_t} 1 = C_3$$

$$|e_n|_{\infty} \leqslant h a_0 C_3 |e_0|_{\infty} + \dots + h a_0 C_3 |e_{n-1}|_{\infty} + \frac{a_0}{h} D'$$

Corolário 3.3.12: (Convergência para CV1) Dados $K \in C^1$, $|A_{nn}^{-1}|_{\infty} < a_0$, $|\delta_{nj} - \delta_{n-1,m}| < D'$, $d_m = 1$ e h pequeno, então $e' \leq C_4 \frac{D'}{h}$ com C_4 independente de h

Demonstração: Pela proposição anterior, temos

$$|e_n|_{\infty} \leq h a_0 C_3 \sum_{p=0}^{n-1} |e_p|_{\infty} + \frac{a_0 D'}{h} \text{ para } n = 0, \dots N \text{ com } h a_0 C_3 > 0 \text{ e } \frac{a_0 D'}{h} \geq 0$$

Com a desigualdade de Gronwall discreta (3.2.14), chegamos a $|e_n|_{\infty} \leq \frac{a_0 D'}{h} \cdot e^{ha_0 C_3 n}$ para $n = 0, \dots N$ $e^{ha_0 C_3 n} \leq e^{a_0 C_3 Nh} = e^{a_0 C_3 (b-a)}$

Pode-se mostrar que para colocação semi-discreta, esses resultados sobre convergência continuam valendo com $d_m < 1$, contanto que tenhamos $\prod_j \frac{1-d_j}{d_j} \leq 1$. A demonstração pode ser encontrada em [Bru04], teorema 2.4.2.

3.4 Colocação para Volterra de segundo tipo com singularidade de Abel (CAV2)

Com essa classe de problemas conseguimos resultados semelhantes ao caso regular, mas utilizando uma versão mais forte da desigualdade de Gronwall discreta. Essa seção se baseia em [Bru04], seção 6.2 e [Lin85], capítulo 8.

Vamos começar descrevendo o método e mostrando as condições para os problemas discretos terem solução.

Considere os seguintes objetos:

1) uma equação de segundo tipo com singularidade de Abel

$$y(t) = g(t) + \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s,y(s)) ds$$

com g contínua sobre $[0,T], K \in C^m$ sobre $\tilde{\Omega} \times \mathbb{R}, K$ de Lipschitz em u sobre $\tilde{\Omega} \times \mathbb{R}$,

$$\mu \in [0, 1[$$
 fixo, $\tilde{\Omega} = \{(t, s): 0 \leq t \leq T, 0 \leq s \leq \min(T, t + h_0)\}$ e tais que $y \in C^m([0, T])$

2) um conjunto de pontos sobre [0, T] dados por

$$h = \frac{T}{N}, \ z_n = nh, \ t_{nj} = z_n + c_j h$$

 $\operatorname{com} 0 \leq c_1 < \ldots < c_m \leq 1$ fixos

3) aproximações polinomiais por trechos para $y(s) \in K(t, s, y(s))$

$$y(s) \approx u(s) = \sum_{n=0}^{N-1} u_n(s)\chi_{]z_n, z_{n+1}]}(s), \ u_n(s) = \sum_{i=1}^m L_{ni}(s)u_{ni}$$
$$K(t, s, y(s)) \approx R(t, s, u(s)) = \sum_{n=0}^{N-1} R_n(t, s, u(s))\chi_{]z_n, z_{n+1}]}(s), \ R_n(t, s, u(s)) = \sum_{i=1}^m L_{ni}(s)K(t, t_{ni}, u_{ni})$$

onde L_{ni} são os polinômios da base de Lagrange sobre t_{ni} , i = 1, ...m e $\chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases}$

4) o conjunto de valores realizados pela g nos pontos t_{nj}

$$g_{nj} = g(t_{nj})$$
 para $n = 0...N - 1$ e $j = 1, ...m$

Para cada t fixado, R(t, s, u(s)) é uma notação para um polinômio de grau até m - 1 por trechos possivelmente descontínuo na passagem de um trecho para outro.

Utilizando o lema da forma local das R_n (3.2.4), temos

$$R_n(t, z_n + \sigma h, u(z_n + \sigma h)) = \sum_{i=1}^m \ell_i(\sigma) K(t, t_{ni}, u_{ni}) \operatorname{com} \ell_i(\sigma) = \prod_{k \neq i} \frac{\sigma - c_k}{c_i - c_k}$$

Lema 3.4.1: (Equações para CAV2) As equações de colocação são dadas por

$$u_{nj} = g_{nj} + h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(t_{nj}, t_{0i}, u_{0i}) + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(t_{nj}, t_{ni}, u_{ni})$$

$$\operatorname{com} \beta_{njpi} = \int_{0}^{1} \frac{1}{((n-p) + (c_j - \sigma))^{\mu}} \ell_i(\sigma) d\sigma, \text{ para } p = 0, \dots n-1 \text{ e } \beta_{njni} = \int_{0}^{c_j} \frac{1}{(0 + (c_j - \sigma))^{\mu}} \ell_i(\sigma) d\sigma$$

Demonstração: Aplicando a equação num ponto t_{nj} , temos

$$u_{nj} = g_{nj} + \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} R_0(t_{nj}, s, u(s)) ds + \dots + \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} R_n(t_{nj}, s, u(s)) ds$$

$$\begin{split} u_{nj} &= g_{nj} + \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} \sum_{i=1}^m \ell_i \Big(\frac{s - z_0}{h} \Big) K(t_{nj}, t_{0i}, u_{0i}) ds + \dots + \\ &+ \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} \sum_{i=1}^m \ell_i \Big(\frac{s - z_n}{h} \Big) K(t_{nj}, t_{ni}, u_{ni}) ds \\ u_{nj} &= g_{nj} + \sum_{i=1}^m \left[\int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} \ell_i \Big(\frac{s - z_0}{h} \Big) ds \right] K(t_{nj}, t_{0i}, u_{0i}) + \dots + \\ &+ \sum_{i=1}^m \left[\int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} \ell_i \Big(\frac{s - z_n}{h} \Big) ds \right] K(t_{nj}, t_{ni}, u_{ni}) \end{split}$$

Mudando as variáveis com $\sigma = \frac{s-z_p}{h}, d\sigma = \frac{1}{h}ds$, chegamos a

$$\int_{z_p}^{z_p+ch} \frac{1}{(t_{nj}-s)^{\mu}} \ell_i \left(\frac{s-z_p}{h}\right) ds = h \int_0^c \frac{1}{(t_{nj}-(\sigma h+z_p))^{\mu}} \ell_i(\sigma) d\sigma =$$
$$= \frac{h}{h^{\mu}} \int_0^c \frac{1}{((n+c_j)-(\sigma+p))^{\mu}} \ell_i(\sigma) d\sigma$$

Observe que apesar da notação com 4 índices, os β_{njpi} são determinados por 3 argumentos (n - p, j, i). **Corolário 3.4.2:** As equações de colocação se representam de forma vetorial como $u_n = g_n + h^{1-\mu} F_{n0}(u_0) + \ldots + h^{1-\mu} F_{nn}(u_n)$ para cada n, com

 $-\mu$

$$F_{np}(u_p) = \begin{bmatrix} \Sigma_{i=1}^m \beta_{n1pi} K(t_{n1}, t_{pi}, u_{pi}) \\ \vdots \\ \Sigma_{i=1}^m \beta_{nmpi} K(t_{nm}, t_{pi}, u_{pi}) \end{bmatrix} \text{ para } p = 0, \dots n$$

Corolário 3.4.3: As equações de colocação se desacoplam sobre um n por vez

Demonstração: As equações podem ser resolvidas com a seguinte ordem

Tome $b_0 = g_0$ Determine u_0 tal que $u_0 = b_0 + h^{1-\mu} F_{00}(u_0)$ Tome $b_1 = g_1 + h^{1-\mu} F_{10}(u_0)$ Determine u_1 tal que $u_1 = b_1 + h^{1-\mu} F_{11}(u_1)$ E assim por diante.

Lema 3.4.4: (Limitação dos coeficientes com singularidade de Abel) $\exists P > 0$ tal que

(i)
$$|\ell_i(\sigma)| \leq P$$

(ii) $|\beta_{njni}| \leq \frac{P}{1-\mu}$
(iii) se $c_1 > 0$, então $|\beta_{njpi}| \leq P \frac{1}{c_1^{\mu}} \frac{1}{(n-p)^{\mu}}$ para $p = 0, ...n - 1$
Demonstração: (i) ℓ_i contínuas, $[0,1]$ compacto $\Rightarrow \exists P = \max_i \max_{[0,1]} |\ell_i(c)|$
(ii) $|\beta_{njni}| \leq \int_0^{c_j} \frac{1}{(c_j - \sigma)^{\mu}} |\ell_i(\sigma)| d\sigma \leq P \int_0^{c_j} \frac{1}{(c_j - \sigma)^{\mu}} d\sigma = P \left[\frac{(c_j - \sigma)^{1-\mu}(-1)}{1-\mu} \right]_0^{c_j} = P \frac{-0 + c_j^1}{1-\mu}$

 $c_j \leq 1, \ z^{1-\mu} \text{ crescente} \Rightarrow c_j^{1-\mu} \leq 1 \Rightarrow |\beta_{njni}| \leq P \frac{1}{1-\mu}$

$$\begin{split} \text{(iii)} & |\beta_{njpi}| \leqslant \int_{0}^{1} \frac{1}{((n-p)+(c_{j}-\sigma))^{\mu}} |\ell_{i}(\sigma)| d\sigma \leqslant P \int_{0}^{1} \frac{1}{((n-p)+(c_{j}-\sigma))^{\mu}} d\sigma = \\ & = P \bigg[\frac{(n-p+c_{j}-\sigma)^{1-\mu}(-1)}{1-\mu} \bigg]_{0}^{1} = P \frac{-(n-p+c_{j}-1)^{1-\mu}+(n-p+c_{j})^{1-\mu}}{1-\mu} \\ n-p \geqslant 1, \ 0 < c_{1} \leqslant c_{j} \leqslant c_{m} \Rightarrow z^{1-\mu} \in C^{1} \text{ sobre } [n-p+c_{1}-1, n-p+c_{m}] \\ z^{1-\mu} \in C^{1} \Rightarrow (n-p+c_{j})^{1-\mu} - (n-p+c_{j}-1)^{1-\mu} = (1-\mu)\xi^{-\mu}1 \text{ com } \xi \in [n-p+c_{1}-1, n-p+c_{m}] \\ z^{-\mu} \text{ positiva decrescente } \Rightarrow \xi^{-\mu} \leqslant (n-p+c_{1}-1)^{-\mu} \\ & |\beta_{njpi}| \leqslant \frac{P}{1-\mu}(1-\mu)(n-p+c_{1}-1)^{-\mu} = P(n-p)^{-\mu}\frac{(n-p+c_{1}-1)^{-\mu}}{(n-p)^{-\mu}} = P(n-p)^{-\mu} \bigg(1+\frac{c_{1}-1}{n-p}\bigg)^{-\mu} \\ & n-p \geqslant 1 \Rightarrow \frac{1}{n-p} \leqslant 1 \Rightarrow \frac{c_{1}-1}{n-p} \geqslant c_{1} - 1 \Rightarrow 1 + \frac{c_{1}-1}{n-p} \geqslant c_{1} \\ z^{-\mu} \text{ decrescente } \Rightarrow \bigg(1+\frac{c_{1}-1}{n-p}\bigg)^{-\mu} \leqslant c_{1}^{-\mu} \\ & \Box \end{split}$$

Proposição 3.4.5: (Existência e unicidade para CAV2) Com K de Lipschitz e h pequeno o bastante, o sistema de cada bloco é uma contração.

Demonstração: Tome $\Phi(.)$ tal que o sistema abaixo se escreva como $u_n = \Phi(u_n)$.

$$\begin{cases} u_{n1} = b_{n1} + h^{1-\mu} \sum_{i} \beta_{n1ni} K(t_{n1}, t_{ni}, u_{ni}) \\ \vdots \\ u_{nm} = b_{nm} + h^{1-\mu} \sum_{i} \beta_{nmni} K(t_{nm}, t_{ni}, u_{ni}) \end{cases}$$

$$|\Phi(U) - \Phi(V)|_{1} = \sum_{j} |\Phi_{j}(U) - \Phi_{j}(V)| \leq \sum_{j} \left(0 + h^{1-\mu} \sum_{i} |\beta_{njni}| |K - K| \right) \leq \sum_{j} \left(0 + h^{1-\mu} \sum_{i} \frac{P}{1-\mu} L |U_{i} - V_{i}| \right) \leq mh^{1-\mu} \frac{P}{1-\mu} L \sum_{i} |U_{i} - V_{i}| = mh^{1-\mu} \frac{P}{1-\mu} L |U - V|_{1}$$

$$mh^{1-\mu} = P \quad L \leq 1 \text{ pare } h \text{ permute} \Rightarrow 0 \text{ sintemp } h \text{ permute}$$

 $mh^{1-\mu} \frac{P}{1-\mu} L < 1$ para h pequeno \Rightarrow o sistema é uma contração para h pequeno.

Algoritmo 3.4.6: (Resolução das equações para CAV2)

Tome $u_{-1,m} = g(0)$ Para n = 0, ..., N - 1

. Tome
$$b_n = g_n + h^{1-\mu} F_{n0}(u_0) + \ldots + h^{1-\mu} F_{n,n-1}(u_{n-1})$$

- . Determine u_n tal que $u_n = b_n + h^{1-\mu} F_{nn}(u_n)$
- . usando $u_{nj}^{(0)} = u_{n-1,m}$ para $j = 1, \dots m$ e iterações de ponto fixo

Continuando, vamos tratar a consistência e convergência do método.

Definição 3.4.7: Para cada N,

(i) $e' = \max_{n,j} |e_{nj}|$ é dito erro global, com $e_{nj} = y(t_{nj}) - u_{nj}$

(ii) $\delta' = \max_{n,j} |\delta_{nj}|$ é dito erro local, com δ_{nj} dados por

$$y(t_{nj}) = g_{nj} + h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(t_{nj}, t_{0i}, y(t_{0i})) + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(t_{nj}, t_{ni}, y(t_{ni})) + \delta_{nj} K(t_{nj}, t_{ni}, y(t_{ni}, y(t_{ni})) + \delta_{nj} K(t_{nj}, t_{ni}, y(t_{ni}, y(t_{n$$

Proposição 3.4.8: (Consistência para CAV2) Se $K \in C^m$ sobre $\tilde{\Omega} \times \mathbb{R}$, $y \in C^m$ sobre [0, T] e h é pequeno,

então $|\delta_{nj}|\!\leqslant\! C_1 h^m$ para todo n,je com C_1 independente de h

Demonstração: $(t,s) \in \tilde{\Omega} \Rightarrow s \in [0,T]$

 $y \in C^m$ sobre $[0,T], K \in C^m$ sobre $\tilde{\Omega} \times \mathbb{R} \Rightarrow K(t,s,y(s)) \in C^m$ sobre $\tilde{\Omega}$

Pelo lema da forma local da K (3.2.12), chegamos a

$$K(t, z_n + \sigma h, y(z_n + \sigma h)) = \sum_i \ell_i(\sigma) K(t, t_{ni}, y(t_{ni})) + \rho_n(t, \sigma) \operatorname{com} |\rho_n(t, \sigma)| \leq \frac{M}{m!} h^m$$

Vamos usar essa expressão na equação da solução exata sobre os pontos t_{nj}

$$\begin{split} y(t_{nj}) &= g_{nj} + \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} K(t_{nj}, s, y(s)) ds + \ldots + \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} K(t_{nj}, s, y(s)) ds \\ y(t_{nj}) &= g_{nj} + \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} \Biggl[\sum_{i=1}^m \ell_i \Bigl(\frac{s - z_0}{h} \Bigr) K(t_{nj}, t_{0i}, y(t_{0i})) + \rho_0 \Bigl(t_{nj}, \frac{s - z_0}{h} \Bigr) \Biggr] ds + \ldots + \\ &+ \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} \Biggl[\sum_{i=1}^m \ell_i \Bigl(\frac{s - z_n}{h} \Bigr) K(t_{nj}, t_{ni}, y(t_{ni})) + \rho_n \Bigl(t_{nj}, \frac{s - z_n}{h} \Bigr) \Biggr] ds \end{split}$$

Logo δ_{nj} se comportam como

$$\begin{split} \delta_{nj} &= \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} \rho_0 + \ldots + \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} \rho_n \\ &|\delta_{nj}| \leqslant \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} |\rho_0| + \ldots + \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} |\rho_n| \leqslant \\ &\leqslant \frac{M}{m!} h^m \int_{z_0}^{z_1} \frac{1}{(t_{nj} - s)^{\mu}} ds + \ldots + \frac{M}{m!} h^m \int_{z_n}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} ds \leqslant \frac{M}{m!} h^m \int_{z_0}^{t_{nj}} \frac{1}{(t_{nj} - s)^{\mu}} ds = \\ &= \frac{M}{m!} h^m \bigg[\frac{(t_{nj} - s)^{1-\mu}}{1-\mu} (-1) \bigg]_0^{t_{nj}} = \frac{M}{m!} h^m \frac{t_{nj}^{1-\mu}}{1-\mu} \leqslant \frac{MT^{1-\mu}}{m!(1-\mu)} h^m \end{split}$$

Para mostrar a convergência, vamos usar uma versão da desigualdade de Gronwall discreta que funciona com potências fracionárias em h.

 \square

A seguir vamos exibir o enunciado dessa versão e descrever as funções que ela utiliza. A demonstração do teorema pode ser vista em [DM86], teorema 6.1.

Definição 3.4.9: As funções de Mittag-Leffler clássicas são dadas por

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\alpha + 1)} \text{ com } \alpha \in \mathbb{C} \text{ e } z \in \mathbb{C} \text{ onde a série converge}$$

Lema 3.4.10: (Mittag-Leffler com parâmetro positivo) Dado $\alpha \in \mathbb{R}$, $\alpha > 0$

(i) a série converge uniformemente sobre qualquer compacto

(ii) o limite é uma função contínua

$$\begin{split} \mathbf{Demonstração:} \text{ (i) } & \frac{|f_{n+1}(z)|}{|f_n(z)|} = \frac{|z^{n+1}|}{\Gamma((n+1)\alpha+1)} \cdot \frac{\Gamma(n\alpha+1)}{|z^n|} = |z| \frac{\Gamma(n\alpha+1)}{\Gamma(n\alpha+1+\alpha)} \\ & \text{Com } t \to \infty \text{ temos } \frac{\Gamma(t+\alpha)}{\Gamma(t)} \approx t^{\alpha}, \log o \ \frac{|f_{n+1}(z)|}{|f_n(z)|} \approx |z| \frac{1}{(n\alpha+1)^{\alpha}} \to 0 \end{split}$$

Pelo critério da razão, a série converge ponto a ponto para todo z.

Esta é uma série de potências com raio de convergência $R = \infty$, logo ela converge uniformemente sobre qualquer compacto.

(ii) Dado X compacto, temos f_n contínuas e uniformemente convergentes sobre $z \in X$.

Pela completude das funções contínuas, $\exists f$ contínua que realiza o limite.

Teorema 3.4.11: (Desigualdade de Gronwall discreta com $h^{1-\mu}$) Dada ξ_i , i = 0, ...N satisfazendo

$$\begin{split} |\xi_n| &\leqslant A h^{1-\mu} \sum_{i=0}^{n-1} \frac{|\xi_i|}{(n-i)^{\mu}} + B \text{ para } n = 0, \dots N, \text{ com } A > 0, B \geqslant 0 \text{ e } 0 < \mu < 1 \\ \text{então } |\xi_n| &\leqslant B E_{1-\mu} (A \Gamma (1-\mu) (nh)^{1-\mu}) \text{ para } n = 0, \dots N \end{split}$$

Com $\mu = 0$, a função de Mittag-Leffler é a exponencial

$$E_{1-\mu}(z) = E_1(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n+1)} = \sum_{n=0}^{\infty} \frac{z^n}{n!} = \exp(z)$$

Com $\mu = 0$, esse teorema volta para a versão regular

$$Ah^{1-\mu}\sum_{i=0}^{n-1}\frac{|\xi_i|}{(n-i)^{\mu}} + B = Ah^1\sum_{i=0}^{n-1}\frac{|\xi_i|}{1} + B, BE_{1-\mu}(A\Gamma(1-\mu)(nh)^{1-\mu}) = B\exp\left(A1(nh)^1\right)$$

Proposição 3.4.12: (Desiguladade de convergência para CAV2) Com K de Lipschitz, $c_1 > 0$ e h pequeno,

então
$$|e_n|_1 \leq 2mh^{1-\mu} \frac{P}{c_1^{\mu}} L \sum_{p=0}^{n-1} \frac{|e_p|_1}{(n-p)^{\mu}} + 2m\delta'$$
 para $n = 0, \dots N$

Demonstração: Com a diferença entre a equação de u_{nj} e a equação de consistência, temos

$$\begin{split} u_{nj} &= g_{nj} + h^{1-\mu} \sum_{i=1}^{m} \,\beta_{nj0i} \,K(t_{nj}, t_{0i}, u_{0i}) + \ldots + h^{1-\mu} \sum_{i=1}^{m} \,\beta_{njni} \,K(t_{nj}, t_{ni}, u_{ni}) \\ y(t_{nj}) &= g_{nj} + h^{1-\mu} \sum_{i=1}^{m} \,\beta_{nj0i} \,K(t_{nj}, t_{0i}, y(t_{0i})) + \ldots + h^{1-\mu} \sum_{i=1}^{m} \,\beta_{njni} \,K(t_{nj}, t_{ni}, y(t_{ni})) + \delta_{nj} \\ &|e_{nj}| \leqslant 0 + h^{1-\mu} \sum_{i=1}^{m} \,|\beta_{nj0i}|L|e_{0i}| + \ldots + h^{1-\mu} \sum_{i=1}^{m} \,|\beta_{njni}|L|e_{ni}| + |\delta_{nj}| \leqslant \\ &\leqslant h^{1-\mu} \frac{P}{c_{1}^{\mu}(n-0)^{\mu}} \,L|e_{0}|_{1} + \ldots + h^{1-\mu} \frac{P}{1-\mu} \,L|e_{n}|_{1} + \delta' \\ &|e_{n}|_{1} \leqslant m h^{1-\mu} \frac{P}{c_{1}^{\mu}(n-0)^{\mu}} \,L|e_{0}|_{1} + \ldots + m h^{1-\mu} \frac{P}{1-\mu} \,L|e_{n}|_{1} + m\delta' \\ &\left(1 - m h^{1-\mu} \frac{P}{1-\mu} \,L\right) |e_{n}|_{1} \leqslant \sum_{p=0}^{n-1} \,m h^{1-\mu} \frac{P}{c_{1}^{\mu}(n-p)^{\mu}} \,L|e_{p}|_{1} + m\delta' \end{split}$$

Com h pequeno, chegamos a $1 - m h^{1-\mu} \frac{P}{1-\mu} L > \frac{1}{2}$

$$\frac{1}{2}|e_n|_1 \leqslant \sum_{p=0}^{n-1} mh^{1-\mu} \frac{P}{c_1^{\mu}(n-p)^{\mu}} L|e_p|_1 + m\delta' \Rightarrow |e_n|_1 \leqslant 2mh^{1-\mu} \frac{P}{c_1^{\mu}} L\sum_{p=0}^{n-1} \frac{|e_p|_1}{(n-p)^{\mu}} + 2m\delta'$$

Corolário 3.4.13: (Convergência para CAV2) Com K de Lipschitz, $c_1 > 0$ e h pequeno,

então $e' \leq C_2 \delta'$ com C_2 independente de h

Demonstração: Pela proposição anterior, temos

$$|e_n|_1 \leqslant \frac{2mPL}{c_1^{\mu}} h^{1-\mu} \sum_{p=0}^{n-1} \frac{|e_p|_1}{(n-p)^{\mu}} + 2m\delta' \text{ para } n = 0, \dots N, \text{ com } \frac{2mPL}{c_1^{\mu}} > 0 \text{ e } 2m\delta' \ge 0$$

Usando a desigualdade de Gronwall discreta com $h^{1-\mu}$ (3.4.11), chegamos a

$$|e_n|_1 \leq 2m\delta' E_{1-\mu} \left(\frac{2mPL}{c_1^{\mu}} \Gamma(1-\mu)(nh)^{1-\mu} \right)$$
 para $n = 0, \dots N$

Pela propriedade de Mittag-Leffler com parâmetro positivo (3.4.10), temos $E_{1-\mu}(z)$ contínua sobre compactos.

Como $nh \in [0,T]$ compacto, podemos tomar

$$C_1 = \max\left\{ E_{1-\mu} \left(\frac{2mPL}{c_1^{\mu}} \Gamma(1-\mu)(t)^{1-\mu} \right) : t \in [0,T] \right\}$$

Assim obtemos $|e_n|_1 \leq 2mC_1 \delta'$

Com a equivalência de normas em \mathbb{R}^m , concluímos que $|e_n|_{\infty} \leq C_2 \delta'$ para n = 0, ... N

3.5 Colocação para Volterra de primeiro tipo com singularidade de Abel (CAV1)

Para essa classe de problemas, podemos seguir como no caso regular mostrando que o método está bem definido e que tem uma certa ordem de consistência. No entanto os resultados sobre sua convergência são mais delicados. As referências principais são [Bru04], seção 6.3 e [Lin85], capítulo 10.

Considere os seguintes objetos:

1) uma equação de primeiro tipo com singularidade de Abel

$$g(t) = \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s) y(s) ds$$

com $g \in C^{m+1}([0,T]), K \in C^{m+1}$ sobre $\tilde{\Omega}, g(0) = g'(0) = \dots = g^{(m)}(0) = 0,$
 $|K(t,t)| \ge k_0 > 0$ para $t \in [0,T], \tilde{\Omega} = \{(t,s): 0 \le t \le T, 0 \le s \le \min(T, t+h_0)\}, \mu \in]0, 1[$ fixo

2) um conjunto de pontos sobre [0, T] dados por

$$h = \frac{T}{N}, z_n = nh, t_{nj} = z_n + c_j h, T_{nj} = z_n + d_j h$$

com $0 \leqslant c_1 < \ldots < c_m \leqslant 1$ e $0 < d_1 < \ldots < d_m \leqslant 1$ fixos

3) aproximações polinomiais por trechos para $y(s) \in K(t,s)y(s)$

$$y(s) \approx u(s) = \sum_{n=0}^{N-1} u_n(s)\chi_{]z_n, z_{n+1}]}(s), \ u_n(s) = \sum_{i=1}^m L_{ni}(s)u_{ni}$$
$$K(t, s)y(s) \approx R(t, s)u(s) = \sum_{n=0}^{N-1} R_n(t, s)u(s)\chi_{]z_n, z_{n+1}]}(s), \ R_n(t, s)u(s) = \sum_{i=1}^m L_{ni}(s)K(t, t_{ni})u_{ni}$$

onde L_{ni} são os polinômios da base de Lagrange sobre t_{ni} , $i = 1, ...m \in \chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases}$

4) o conjunto de valores realizados pel
agnos pontos T_{nj}

$$g_{nj} = g(T_{nj})$$
 para $n = 0...N - 1$
e $j = 1, ...m$

Para cada t fixado, R(t, s)u(s) é uma notação para um polinômio de grau até m - 1 por trechos possivelmente descontínuo na passagem de um trecho para outro.

Utilizando o lema da forma local das R_n (3.2.4), temos

$$R_n(t, z_n + \sigma h)u(z_n + \sigma h) = \sum_{i=1}^m \ell_i(\sigma)K(t, t_{ni})u_{ni} \operatorname{com} \ell_i(\sigma) = \prod_{k \neq i} \frac{\sigma - c_k}{c_i - c_k}$$

Lema 3.5.1: (Equações para CAV1) As equações de colocação são dadas por

$$g_{nj} = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) u_{0i} + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) u_{ni} \text{ para cada } n, j$$

$$\operatorname{com} \beta_{njpi} = \int_{0}^{1} \frac{1}{((n-p) + (d_j - \sigma))^{\mu}} \ell_i(\sigma) d\sigma \text{ para } p = 0, \dots n-1 \text{ e } \beta_{njni} = \int_{0}^{d_j} \frac{1}{(0 + (d_j - \sigma))^{\mu}} \ell_i(\sigma) d\sigma$$

Demonstração: Aplicando a equação num ponto T_{nj} , temos

$$\begin{split} g_{nj} &= \int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} R_0(T_{nj}, s) u(s) ds + \ldots + \int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} R_n(T_{nj}, s) u(s) ds \\ g_{nj} &= \int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} \sum_{i=1}^{m} \ell_i \Big(\frac{s - z_0}{h} \Big) K(T_{nj}, t_{0i}) u_{0i} ds + \ldots + \\ &+ \int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} \sum_{i=1}^{m} \ell_i \Big(\frac{s - z_n}{h} \Big) K(T_{nj}, t_{ni}) u_{ni} ds \\ g_{nj} &= \sum_{i=1}^{m} \left[\int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} \ell_i \Big(\frac{s - z_0}{h} \Big) ds \right] K(T_{nj}, t_{0i}) u_{0i} + \ldots + \\ &+ \sum_{i=1}^{m} \left[\int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} \ell_i \Big(\frac{s - z_n}{h} \Big) ds \right] K(T_{nj}, t_{0i}) u_{0i} + \ldots + \\ \end{split}$$

Mudando as variáveis com $\sigma = \frac{s - z_p}{h}, d\sigma = \frac{1}{h}ds$, obtemos

$$\int_{z_p}^{z_p+dh} \frac{1}{(T_{nj}-s)^{\mu}} \ell_i \left(\frac{s-z_p}{h}\right) ds = h \int_0^d \frac{1}{(T_{nj}-(\sigma h+z_p))^{\mu}} \ell_i(\sigma) d\sigma =$$
$$= \frac{h}{h^{\mu}} \int_0^d \frac{1}{((n+d_j)-(\sigma+p))^{\mu}} \ell_i(\sigma) d\sigma$$

Corolário 3.5.2: As equações de colocação se representam de forma vetorial como

 $g_n = h^{1-\mu} A_{n0} u_0 + \ldots + h^{1-\mu} A_{nn} u_n$ para cada n, com

$$A_{np} = \begin{bmatrix} \beta_{n1p1} K(T_{n1}, t_{p1}) & \dots & \beta_{n1pm} K(T_{n1}, t_{pm}) \\ \vdots & & \vdots \\ \beta_{nmp1} K(T_{nm}, t_{p1}) & \dots & \beta_{nmpm} K(T_{nm}, t_{pm}) \end{bmatrix} \text{ para } p = 0, \dots n$$

Observe que apesar da notação com 4 índices, os β_{njpi} são determinados por 3 argumentos (n-p, j, i). Se K(t, s) = 1, então A_{np} é dado em função de (n-p).

Corolário 3.5.3: As equações de colocação se desacoplam sobre um n por vez

Demonstração: As equações podem ser resolvidas com a seguinte ordem

Tome $b_0 = g_0$ Determine u_0 tal que $b_0 = h^{1-\mu} A_{00} u_0$ Tome $b_1 = g_1 - h^{1-\mu} A_{10} u_0$ Determine u_1 tal que $b_1 = h^{1-\mu} A_{11} u_1$

E assim por diante.

Pelo lema de limitação dos coeficientes com singularidade de Abel (3.4.4), $\exists P > 0$ tal que $|\beta_{njni}| \leq \frac{P}{1-\mu}$.

Lema 3.5.4: Para h pequeno, temos $A_{nn} = D_n A + h E_n$ com

$$D_n = \begin{bmatrix} K(T_{n1}, T_{n1}) & 0 \\ & \ddots & \\ 0 & K(T_{nm}, T_{nm}) \end{bmatrix}, A = \begin{bmatrix} \beta_{n1n1} & \dots & \beta_{n1nm} \\ \vdots & & \vdots \\ \beta_{nmn1} & \dots & \beta_{nmnm} \end{bmatrix} e \mid E_n \mid_{\infty} < C_1 \text{ fixado}$$

Demonstração: A_{nn} tem entradas do tipo $\beta_{njni} K(T_{nj}, t_{ni})$

$$\begin{split} & K \in C^{1} \text{ sobre } \tilde{\Omega} \Rightarrow K(T_{nj}, t_{ni}) = K(T_{nj}, T_{nj}) + K_{s}(T_{nj}, \xi_{ij})(t_{ni} - T_{nj}) \text{ com } \xi_{ij} \in [z_{n}, z_{n+1}] \\ & \text{Com } r_{ij} = K_{s}(T_{nj}, \xi_{ij}), \text{ fica } K(T_{nj}, t_{ni}) = K(T_{nj}, T_{nj}) + r_{ij}(c_{i} - d_{j})h \\ & A_{nn} = \begin{bmatrix} \beta_{n1n1}[K(T_{n1}, T_{n1}) + r_{11}(c_{1} - d_{1})h] & \dots & \beta_{n1nm}[K(T_{n1}, T_{n1}) + r_{m1}(c_{m} - d_{1})h] \\ & \vdots & \vdots \\ & \beta_{nmn1}[K(T_{nm}, T_{nm}) + r_{1m}(c_{1} - d_{m})h] & \dots & \beta_{nmnm}[K(T_{nm}, T_{nm}) + r_{mm}(c_{m} - d_{m})h] \end{bmatrix} \\ h \text{ pequeno} \Rightarrow \{T_{nj}\} \times [z_{n}, z_{n+1}] \subset \tilde{\Omega} \end{split}$$

 $K \in C^1$ sobre $\tilde{\Omega}$ compacto $\Rightarrow \exists M_{K_s} = \max \{ |K_s(t,s)| : (t,s) \in \tilde{\Omega} \}$

$$|E_n|_{\infty} = \max \sum_{linha} |\beta_{njni}| |r_{ij}| |c_i - d_j| \leq m \frac{P}{1 - \mu} M_{K_s} 1$$

Proposição 3.5.5: (Existência e unicidade para CAV1) Se $|K(t, t)| \ge k_0 > 0$, A é inversível e h é pequeno o bastante, então A_{nn} é inversível e $|A_{nn}^{-1}|_{\infty} < a_0$ fixado para n = 0, ...N

Demonstração: Pela demonstração anterior, chegamos a $|E_n|_{\infty} \leq \frac{mPM_{K_s}}{1-\mu}$ D_n diagonal, $|K(t,t)| > k_0 \Rightarrow |D_n^{-1}|_{\infty} = \max \frac{1}{|K(T_{nj},T_{nj})|} \leq \frac{1}{k_0}$ $A_{nn} = D_n A + h E_n = D_n A (I + h A^{-1} D_n^{-1} E_n)$

$$\left| hA^{-1}D_n^{-1}E_n \right|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \left| D_n^{-1} \right|_{\infty} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{mPM_{K_s}}{1-\mu} < 1 \text{ para } h \text{ pequeno} \right|_{\infty} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{mPM_{K_s}}{1-\mu} < 1 \text{ para } h \text{ pequeno} |E_n|_{\infty} \leq 1 \text{ para } h \text{ pequeno} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{mPM_{K_s}}{1-\mu} < 1 \text{ para } h \text{ pequeno} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{mPM_{K_s}}{1-\mu} < 1 \text{ para } h \text{ pequeno} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{mPM_{K_s}}{1-\mu} < 1 \text{ para } h \text{ pequeno} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{1}{k_0} \frac{mPM_{K_s}}{1-\mu} < 1 \text{ para } h \text{ pequeno} |E_n|_{\infty} \leqslant h \; |A^{-1}|_{\infty} \frac{1}{k_0} \frac{1$$

Usando a perturbação da identidade, temos que

$$\begin{split} I + h A^{-1} D_n^{-1} E_n & \text{\acute{e} inversivel e} \left| \left(I + h A^{-1} D_n^{-1} E_n \right)^{-1} \right|_{\infty} \leqslant \frac{1}{1 - |h A^{-1} D_n^{-1} E_n|_{\infty}} \\ A_{nn}^{-1} &= \left(I + h A^{-1} D_n^{-1} E_n \right)^{-1} A^{-1} D_n^{-1} \Rightarrow \\ \Rightarrow \left| A_{nn}^{-1} \right|_{\infty} \leqslant \frac{1}{1 - |h A^{-1} D_n^{-1} E_n|_{\infty}} |A^{-1}|_{\infty} |D_n^{-1}|_{\infty} \leqslant \frac{|A^{-1}|_{\infty} \frac{1}{k_0}}{1 - h |A^{-1}|_{\infty} \frac{1}{k_0} \frac{m P M_{K_s}}{1 - \mu}} \end{split}$$

Para $d_1 = 0$, teríamos $\beta_{n1ni} = 0$ e assim A seria não inversível.

Algoritmo 3.5.6: (Resolução das equações para CAV1)

Para n = 0, ... N - 1

- . Tome $b_n = g_n h^{1-\mu} A_{n0} u_0 \dots h^{1-\mu} A_{n,n-1} u_{n-1}$
- . Resolva o sistema linear $b_n = h^{1-\mu} A_{nn} u_n$

Daqui em diante vamos tratar a consistência do método.

Definição 3.5.7: Para cada N,

- (i) $e' = \max_{n,j} |e_{nj}|$ é dito erro global, com $e_{nj} = y(t_{nj}) u_{nj}$
- (ii) $\delta' = \max_{n,j} |\delta_{nj}|$ é dito erro local, com δ_{nj} dados por

$$g_{nj} = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) y(t_{0i}) + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) y(t_{ni}) + \delta_{nj} k(T_{nj}, t_{ni}) y(t_{ni}) y(t_{ni}) + \delta_{nj} k(T_{nj}, t_{ni}) y(t_{ni}) + \delta_{nj} k(T_{nj},$$

Proposição 3.5.8: (Consistência para CAV1) Dados $K \in C^{m+1}$ sobre $\tilde{\Omega}, g \in C^{m+1}$ sobre [0, T], $|K(t, t)| \ge k_0 > 0, g(0) = g'(0) = \ldots = g^{(m)}(0) = 0$ e h pequeno,

então $|\delta_{n\,j}|\,{\leqslant}\,C_1 h^m$ para todo n,je com C_1 independente de h

Demonstração: Pela regularidade para AV1 (2.6.9), temos $y \in C^m$ sobre [0, T]

$$(t,s) \in \tilde{\Omega} \Rightarrow s \in [0,T]$$

 $y \in C^m$ sobre $[0,T], K \in C^m$ sobre $\tilde{\Omega} \Rightarrow K(t,s)y(s) \in C^m$ sobre $\tilde{\Omega}$

Pelo lema da forma local da K (3.2.12), chegamos a

$$K(t, z_n + \sigma h)y(z_n + \sigma h) = \sum_i \ell_i(\sigma)K(t, t_{ni})y(t_{ni}) + \rho_n(t, \sigma) \operatorname{com} |\rho_n(t, \sigma)| \leq \frac{M}{m!}h^m$$

Vamos usar essa expressão na equação da solução exata sobre os pontos ${\cal T}_{nj}$

$$\begin{split} g_{nj} &= \int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} K(T_{nj}, s) y(s) ds + \ldots + \int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} K(T_{nj}, s) y(s) ds \\ g_{nj} &= \int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} \Biggl[\sum_{i=1}^m \ell_i \Bigl(\frac{s - z_0}{h} \Bigr) K(T_{nj}, t_{0i}) y(t_{0i}) + \rho_0 \Bigl(T_{nj}, \frac{s - z_0}{h} \Bigr) \Biggr] ds + \ldots + \\ &+ \int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} \Biggl[\sum_{i=1}^m \ell_i \Bigl(\frac{s - z_n}{h} \Bigr) K(T_{nj}, t_{ni}) y(t_{ni}) + \rho_n \Bigl(T_{nj}, \frac{s - z_n}{h} \Bigr) \Biggr] ds \end{split}$$

Logo δ_{nj} se comportam como

$$\begin{split} \delta_{nj} &= \int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} \rho_0 + \ldots + \int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} \rho_n \\ |\delta_{nj}| &\leqslant \int_{z_0}^{z_1} \frac{1}{(T_{nj} - s)^{\mu}} |\rho_0| + \ldots + \int_{z_n}^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} |\rho_n| \leqslant \frac{M}{m!} h^m \int_0^{T_{nj}} \frac{1}{(T_{nj} - s)^{\mu}} ds = \\ &= \frac{M}{m!} h^m \frac{T_{nj}^{1-\mu}}{1-\mu} \leqslant \frac{MT^{1-\mu}}{m!(1-\mu)} h^m \end{split}$$

Lema 3.5.9: Os erros globais e locais se relacionam por

$$0 = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) e_{0i} + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) e_{ni} + \delta_{nj} \text{ para } n = 0, \dots N \text{ e } j = 1, \dots m$$

Demonstração: Vamos fazer a diferença entre a equação de consistência e a equação das u_{ni} .

$$g_{nj} = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) y(t_{0i}) + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) y(t_{ni}) + \delta_{nj}$$

$$g_{nj} = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) u_{0i} + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) u_{ni}$$

$$0 = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) e_{0i} + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) e_{ni} + \delta_{nj}$$

Corolário 3.5.10: As equações de relação entre os erros se representam de forma vetorial como $0 = h^{1-\mu}A_{n0}e_0 + \ldots + h^{1-\mu}A_{nn}e_n + \delta_n$ para cada n.

O estudo da convergência de métodos de colocação para essa classe de problemas parece se restringir a resultados parciais.

Nós vamos continuar com esse assunto no próximo capítulo.

Capítulo 4

Uma condição de convergência sobre métodos de colocação para Volterra de primeiro tipo com singularidade de Abel

Os resultados disponíveis sobre a convergência de métodos de colocação para esses problemas parecem se restringir a métodos específicos ou a propriedades parciais.

Como exemplo, podemos citar as seguintes referências:

Em [WA72] mostra-se que o método com ponto médio produto (m = 1, u descontínua) tem $e \leq Ch$ se $y \in C^2$ sobre [0,T].

Em [Bru74] mostra-se que os métodos semi-discretos com m variando, u contínua e $d_{nj} = j/m$ têm $e \leq Ch^m$ sobre os pontos z_n se $y \in C^{m+1}$ sobre [0, T].

Em [Bru04], teorema 6.3.2, mostra-se que os métodos semi-discretos com m variando e u descontínua têm $e \leq Ch^{m-1+\mu}$ se garantirmos que a u converge uniformemente para a y e que mais algumas condições são satisfeitas.

Neste capítulo vamos observar uma demonstração particular e utilizar algumas das suas ideias para descrever o restante da classe que estamos considerando.

Com isso vamos obter uma condição suficiente de convergência que pode ser parcialmente verificada através de um procedimento numérico.

4.1 Convergência para ponto médio produto com K = 1

A demonstração que vamos considerar está em [Lin85], seção 10.4, com referência para o trabalho de Eggermont [Egg81].

Considere os seguintes objetos:

1) uma equação de Abel

$$g(t) = \int_0^t \frac{1}{(t-s)^{\mu}} y(s) ds$$

com $g \in C^2([0,T]), \; g(0) = g'(0) = 0, \; \mu \in \,]0,1[$ fixo

2) um conjunto de pontos sobre [0,T] dados por

$$h = \frac{T}{N}, z_n = nh, t_n = z_n + \frac{1}{2}h, T_n = z_n + 1h$$

3) uma aproximação constante por trechos para y(s)

$$y(s) \approx u(s) = \sum_{n=0}^{N-1} u_n \chi_{]z_n, z_{n+1}]}(s), \text{ com } \chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases}$$

4) o conjunto de valores realizados pela g
 nos pontos ${\cal T}_n$

$$g_n = g(T_n)$$

Aplicando o capítulo anterior, chegamos aos seguintes resultados:

1) As equações de colocação são dadas por

 $g_n = h^{1-\mu} \beta_{n0} u_0 + \dots + h^{1-\mu} \beta_{nn} u_n \text{ para cada } n$ $\operatorname{com} \ \beta_{np} = \int_0^1 \frac{1}{((n-p)+(1-\sigma))^{\mu}} d\sigma \text{ para } p = 0, \dots n$

 $\int_{0}^{\infty} ((n-p) + (1-\sigma))^{\mu \otimes \sigma} p \otimes \sigma p \otimes \sigma p$ (como $d_{1} = 1$, o β_{nn} também tem esta forma)

2) Com matrizes fica do mesmo jeito, já que m=1

$$g_n = h^{1-\mu} A_{n0} u_0 + \dots + h^{1-\mu} A_{nn} u_n$$
 para cada n

$$\operatorname{com} A_{np} = \beta_{np} \operatorname{para} p = 0, \dots n$$

3) As equações são inversíveis, já que ${\cal A}_{nn}$ é diferente de zero

$$A_{nn} = \beta_{nn} = \int_0^1 \frac{1}{(0 + (1 - \sigma))^{\mu}} d\sigma = \left[\frac{(1 - \sigma)^{1 - \mu}(-1)}{1 - \mu}\right]_0^1 = \frac{1}{1 - \mu}$$

4) Os erros globais e_n e erros locais δ_n são dados por

$$e' = \max_{n} |e_{n}| \operatorname{com} e_{n} = y(t_{n}) - u_{n}$$

$$\delta' = \max_{n} |\delta_{n}| \operatorname{com} g_{n} = h^{1-\mu}\beta_{n0} y(t_{0}) + \dots + h^{1-\mu}\beta_{nn} y(t_{n}) + \delta_{n}$$

5) A relação entre os dois tipos de erro é descrita por

$$0 = h^{1-\mu}\beta_{n0} e_0 + \ldots + h^{1-\mu}\beta_{nn} e_n + \delta_n$$

6) Se $g \in C^2([0,T])$ eg(0) = g'(0) = 0,

então $|\delta_n| \leqslant Ch$ para todo n com C independente de h

Daqui em diante vem a parte nova.

Lema 4.1.1: (Matrizes para ponto médio com K = 1)

(i) Juntando as equações de relação entre os erros, chegamos a $C_{N-1}E_{N-1} = \Delta_{N-1}$ com os seguintes objetos:

$$\mathcal{C}_{N-1} = \begin{bmatrix} 1 & & & \\ Y_1 & 1 & & \\ Y_2 & Y_1 & 1 & \\ \vdots & \vdots & \ddots & \\ Y_{N-1} & Y_{N-2} & \cdots & Y_1 & 1 \end{bmatrix}, E_{N-1} = \begin{bmatrix} e_0 \\ e_1 \\ e_2 \\ \vdots \\ e_{N-1} \end{bmatrix}, \Delta_{N-1} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{N-1} \end{bmatrix}, X_{n-p} = A_{np}, Y_n = \frac{X_n}{X_0} \in \theta_n = \frac{-\delta_n}{X_0 h^{1-\mu}}$$

(ii) A inversa de C_{N-1} tem a forma

$$\mathcal{D}_{N-1} = \begin{bmatrix} 1 & & \\ Z_1 & 1 & & \\ Z_2 & Z_1 & 1 & \\ \vdots & \vdots & \ddots & \\ Z_{N-1} & Z_{N-2} & \cdots & Z_1 & 1 \end{bmatrix}$$

Demonstração: (i) Para cada n, temos

$$\begin{split} 0 &= h^{1-\mu} X_n \, e_0 + \ldots + h^{1-\mu} X_1 \, e_{n-1} + h^{1-\mu} X_0 \, e_n + \delta_n \Rightarrow \\ \Rightarrow 0 &= \frac{X_n}{X_0} e_0 + \ldots + \frac{X_1}{X_0} e_{n-1} + 1 e_n + \frac{\delta_n}{h^{1-\mu} X_0} \Rightarrow \theta_n = Y_n \, e_0 + \ldots + Y_1 e_{n-1} + 1 e_n \end{split}$$

(ii) Basta mostrar que existem $Z_1, \dots Z_{N-1}$ tais que a forma proposta satizfaz o sistema de inversão

$$\begin{bmatrix} 1 & & & \\ Y_1 & 1 & & \\ Y_2 & Y_1 & 1 & \\ \vdots & \vdots & \ddots & \\ Y_{N-1} & Y_{N-2} & \cdots & Y_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ Z_1 & 1 & & \\ Z_2 & Z_1 & 1 & \\ \vdots & \vdots & \ddots & \\ Z_{N-1} & Z_{N-2} & \cdots & Z_1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

A primeira coluna pode ser resolvida como

$$Z_0 = 1$$

determinar Z_1 tal que $Y_1Z_0 + Y_0Z_1 = 0$, (...)

determinar Z_{N-1} tal que $Y_{N-1}Z_0 + Y_{N-2}Z_1 + \dots + Y_1Z_{N-2} + Y_0Z_{N-1} = 0$

Para as outras colunas, as equações obtidas são repetições destas.

Proposição 4.1.2: (Decaimento das Y_n para ponto médio com K = 1)

(i)
$$Y_n = (n+1)^{1-\mu} - n^{1-\mu}$$

(ii) $Y_n \approx (1-\mu)n^{-\mu}$ para *n* grande

(iii)
$$1 = Y_0 > \ldots > Y_{N-1} > 0$$

(iv)
$$\frac{Y_{n+1}}{Y_n} \ge \frac{Y_n}{Y_{n-1}}$$

 $Demonstração: (i) \ \beta_{n0} = \int_0^1 \frac{1}{(n+(1-\sigma))^{\mu}} d\sigma = \left[\frac{(n+1-\sigma)^{1-\mu}(-1)}{1-\mu}\right]_0^1 = \frac{-n^{1-\mu}+(n+1)^{1-\mu}}{1-\mu}$ $Y_n = \frac{X_n}{1-\mu} = \frac{[(n+1)^{1-\mu}-n^{1-\mu}]/[1-\mu]}{1-\mu}$

$$Y_n = \frac{X_n}{X_0} = \frac{[(n+1)^{1-\mu} - n^{1-\mu}]/[1-\mu]}{1/[1-\mu]}$$

(ii) Considere $f(t) = t^{1-\mu}$

Usando Taylor, chegamos a

$$f \in C^2$$
 longe de $t = 0 \Rightarrow$

$$\Rightarrow f(n+1) = f(n) + f'(n)1 + f''(\xi)\frac{1}{2} \Rightarrow (n+1)^{1-\mu} = n^{1-\mu} + (1-\mu)n^{-\mu} + (1-\mu)(-\mu)\xi^{-1-\mu}\frac{1}{2} \cos \xi \in [n, n+1]$$

(iii, iv) Até um certo $n_0,$ podemos testar numericamente. Par
angrande usamos o termo dominante.
 $Y_n\approx (1-\mu)n^{-\mu}$

 $n^{-\mu}$ positiva decrescente $\Rightarrow (1-\mu)n^{-\mu} > (1-\mu)(n+1)^{-\mu} > 0$

_	_

$$\frac{Y_{n+1}}{Y_n} \approx \frac{(n+1)^{-\mu}}{n^{-\mu}} = \left(1 + \frac{1}{n}\right)^{-\mu}$$

$$1 + \frac{1}{n} \text{ decrescente} \Rightarrow \left(1 + \frac{1}{n}\right)^{-\mu} \text{ crescente} \Rightarrow \frac{(n+1)^{-\mu}}{n^{-\mu}} \ge \frac{n^{-\mu}}{(n-1)^{-\mu}}$$

Em geral o comportamento dominante não demora muito pra ser atingido.

Por exemplo com $\mu = \frac{1}{2}$ e n = 100, o termo principal é $\frac{1}{2n^{1/2}} = \frac{1}{20}$ e o resto fica $\frac{1}{8\xi^{3/2}} \approx \frac{1}{8000}$. **Proposição 4.1.3:** (Decaimento da Z_n para ponto médio com K = 1)

(i) $Z_n < 0$ para n = 1, ... N - 1(ii) $\sum_{i=1}^{N-1} |Z_n| < 1$ para qualquer h

Demonstração: (i) Vamos utilizar as equações do sistema de inversão $C_{N-1}D_{N-1} = I$

 $\begin{array}{l} \mbox{Para } n=1, \mbox{ temos } Y_11+1Z_1=0 \Rightarrow Z_1=-Y_1<0 \\ \\ \mbox{Para } n\geqslant 2, \mbox{ vamos associar as equações em } n \mbox{ e } n-1 \\ \\ Y_nZ_0+\ldots+Y_0Z_n=0 \mbox{ e } Y_{n-1}Z_0+\ldots+Y_0Z_{n-1}=0 \\ \\ Y_{n-1}(-Y_nZ_0)=Y_n(-Y_{n-1}Z_0) \Rightarrow \\ \\ \Rightarrow Y_{n-1}(Y_{n-1}Z_1+\ldots+Y_0Z_n)=Y_n(Y_{n-2}Z_1+\ldots+Y_0Z_{n-1}) \Rightarrow \\ \\ \Rightarrow Y_{n-1}Y_0Z_n=Y_n(Y_{n-2}Z_1+\ldots+Y_0Z_{n-1})-Y_{n-1}(Y_{n-1}Z_1+\ldots+Y_1Z_{n-1}) \Rightarrow \\ \\ \Rightarrow Y_{n-1}Y_0Z_n=(Y_nY_{n-2}-Y_{n-1}Y_{n-1})Z_1+\ldots+(Y_nY_0-Y_{n-1}Y_1)Z_{n-1} \end{array}$

Resta verificar o sinal de cada parte

$$\frac{Y_n}{Y_{n-1}} \ge \frac{Y_{n-1}}{Y_{n-2}} \Rightarrow Y_n Y_{n-2} - Y_{n-1} Y_{n-1} \ge 0, (\dots)$$
$$\frac{Y_n}{Y_{n-1}} \ge \dots \ge \frac{Y_1}{Y_0} \Rightarrow Y_n Y_0 - Y_{n-1} Y_1 \ge 0$$

 $Y_{n-1}Y_0 > 0$ e pela hipótese de indução $Z_1, \ldots Z_{n-1} < 0$

(ii) Com a equação do N-1, temos

Demonstração: Para cada N, temos

$$Y_{N-1}Z_0 + Y_{N-2}Z_1 + \dots + Y_0Z_{N-1} = 0 \Rightarrow Y_{N-1}Z_0 = Y_{N-2}(-Z_1) + \dots + Y_0(-Z_{N-1}) \Rightarrow$$
$$\Rightarrow Y_{N-1}Z_0 > Y_{N-1}(-Z_1) + \dots + Y_{N-1}(-Z_{N-1}) \Rightarrow 1 > (-Z_1) + \dots + (-Z_{n-1})$$

Corolário 4.1.4: (Convergência para ponto médio com K = 1) $e' \leq \frac{2}{|X_0|} \frac{\delta'}{h^{1-\mu}}$

$$C_{N-1}E_{N-1} = \Delta_{N-1} \Rightarrow E_{N-1} = \mathcal{D}_{N-1}\Delta_{N-1} \Rightarrow |E_{N-1}|_{\infty} \leq |\mathcal{D}_{N-1}|_{\infty} |\Delta_{N-1}|_{\infty}$$
$$|E_{N-1}|_{\infty} = \max |e_n| = e'$$
$$|\mathcal{D}_{N-1}|_{\infty} = \max \sum_{linha} |a_{ij}| = |Z_{N-1}| + \dots + |Z_1| + 1 < 1 + 1$$
$$|\Delta_{N-1}|_{\infty} = \max \frac{|\delta_n|}{|X_0|h^{1-\mu}} = \frac{\delta'}{|X_0|h^{1-\mu}}$$

4.2 Condição de convergência para outros métodos e outros núcleos

Nesta seção vamos observar como a estrutura empregada no item anterior pode ser aplicada sobre a classe de métodos considerada, fornecendo uma condição suficiente para sua convergência.

Considere os seguintes objetos:

1) uma equação de primeiro tipo com singularidade de Abel

$$g(t) = \int_0^t \frac{1}{(t-s)^{\mu}} K(t,s) y(s) ds$$

com $g \in C^{m+1}([0,T]), K \in C^{m+1}$ sobre $\tilde{\Omega}, g(0) = g'(0) = \dots = g^{(m)}(0) = 0,$
 $|K(t,t)| \ge k_0 > 0$ para $t \in [0,T], \tilde{\Omega} = \{(t,s): 0 \le t \le T, 0 \le s \le \min(T, t+h_0)\}, \mu \in]0,1[$ fixo

2) um conjunto de pontos sobre [0,T] dados por

$$h = \frac{T}{N}, z_n = nh, t_{nj} = z_n + c_j h, T_{nj} = z_n + d_j h$$

com $0 \leqslant c_1 < \ldots < \! c_m \leqslant 1$ e $0 < d_1 < \ldots < \! d_m \leqslant 1$ fixos

3) aproximações polinomiais por trechos para $y(s) \in K(t,s)y(s)$

$$\begin{split} y(s) &\approx u(s) = \sum_{n=0}^{N-1} u_n(s) \chi_{]z_n, z_{n+1}]}(s), \ u_n(s) = \sum_{i=1}^m L_{ni}(s) u_{ni} \\ K(t,s) y(s) &\approx R(t,s) u(s) = \sum_{n=0}^{N-1} R_n(t,s) u(s) \chi_{]z_n, z_{n+1}]}(s), \ R_n(t,s) u(s) = \sum_{i=1}^m L_{ni}(s) K(t, t_{ni}) u_{ni} \\ \text{onde } L_{ni} \text{ são os polinômios da base de Lagrange sobre } t_{ni}, \ i = 1, \dots m \in \chi_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases} \end{split}$$

4) o conjunto de valores realizados pela g nos pontos T_{nj}

 $g_{nj} = g(T_{nj})$ para $n = 0, \ldots N-1$ e $j = 1, \ldots m$

Com o capítulo anterior, chegamos a esses resultados:

0) A aproximação R(t,s)u(s) é dada por

$$\begin{split} R(t,s)u(s) &= \sum_{n=0}^{N-1} \, R_n(t,s)u(s)\chi_{]z_n,z_{n+1}]}(s) \text{ com} \\ R_n(t,z_n+\sigma h)u(z_n+\sigma h) &= \sum_{i=1}^m \, \ell_i(\sigma)K(t,t_{ni})u_{ni}, \, \ell_i(\sigma) = \prod_{k\neq i} \, \frac{\sigma-c_k}{c_i-c_k} \neq \chi_A(s) = \left\{ \begin{array}{l} 1,s \in A \\ 0,s \notin A \end{array} \right. \end{split}$$

1) As equações de colocação são

$$g_{nj} = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) u_{0i} + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) u_{ni} \text{ para cada } n, j$$

$$\operatorname{com} \beta_{njpi} = \int_{0}^{1} \frac{1}{((n-p) + (d_j - \sigma))^{\mu}} \ell_i(\sigma) d\sigma \text{ para } p = 0, \dots n - 1 \text{ e } \beta_{njni} = \int_{0}^{d_j} \frac{1}{(0 + (d_j - \sigma))^{\mu}} \ell_i(\sigma) d\sigma$$

$$\operatorname{Pres} \ell_i = 0$$

2) Em forma matricial fica

$$g_n = h^{1-\mu} A_{n0} u_0 + \dots + h^{1-\mu} A_{nn} u_n \text{ para cada } n, \text{ com}$$
$$A_{np} = \begin{bmatrix} \beta_{n1p1} K(T_{n1}, t_{p1}) & \dots & \beta_{n1pm} K(T_{n1}, t_{pm}) \\ \vdots & \vdots \\ \beta_{nmp1} K(T_{nm}, t_{p1}) & \dots & \beta_{nmpm} K(T_{nm}, t_{pm}) \end{bmatrix} \text{ para } p = 0, \dots n$$

3) Se A é inversível e h é pequeno o bastante,

então A_{nn} é inversível e $\left|A_{nn}^{-1}\right|_{\infty} < a_0$ fixado para $n=0,\ldots N,$ onde

$$A = \begin{bmatrix} \beta_{n1n1} & \dots & \beta_{n1nm} \\ \vdots & & \vdots \\ \beta_{nmn1} & \dots & \beta_{nmnm} \end{bmatrix}$$

4) Os erros globais e_{nj} e erros locais δ_{nj} são dados por

$$e' = \max_{n,j} |e_{nj}| \operatorname{com} e_{nj} = y(t_{nj}) - u_{nj}$$

$$\delta' = \max_{n,j} |\delta_{nj}| \operatorname{com} g_{nj} = h^{1-\mu} \sum_{i=1}^{m} \beta_{nj0i} K(T_{nj}, t_{0i}) y(t_{0i}) + \dots + h^{1-\mu} \sum_{i=1}^{m} \beta_{njni} K(T_{nj}, t_{ni}) y(t_{ni}) + \delta_{nj}$$

5) A relação entre os erros é descrita por

$$\begin{split} 0 = h^{1-\mu} &\sum_{i=1}^{m} \ \beta_{nj0i} \, K(T_{nj}, t_{0i}) e_{0i} + \ldots + h^{1-\mu} &\sum_{i=1}^{m} \ \beta_{njni} \, K(T_{nj}, t_{ni}) e_{ni} + \delta_{nj} \\ \text{para} \ n = 0, \ldots N \ \text{e} \ j = 1, \ldots m \end{split}$$

6) Se $K \in C^{m+1}$ sobre $\tilde{\Omega}, g \in C^{m+1}$ sobre $[0,T], |K(t,t)| \ge k_0 > 0$,

$$g(0) = g'(0) = \dots = g^{(m)}(0) = 0 e h$$
 pequeno,

então $|\delta_{nj}|\!\leqslant\! C_1 h^m$ para todo n,je com C_1 independente de h

Lema 4.2.1: (Matrizes associadas a um método)

(i) Juntando as equações de relação entre os erros, chegamos a $C_{N-1}E_{N-1} = \Delta_{N-1}$ com os seguintes objetos em blocos:

$$\mathcal{C}_{N-1} = \begin{bmatrix} I & & & & \\ C_{10} & I & & & \\ C_{20} & C_{21} & I & & \\ \vdots & \vdots & \ddots & \\ C_{N-1,0} & C_{N-1,1} & \cdots & C_{N-1,N-2} & I \end{bmatrix}, E_{N-1} = \begin{bmatrix} e_0 \\ e_1 \\ e_2 \\ \vdots \\ e_{N-1} \end{bmatrix}, \Delta_{N-1} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_{N-1} \end{bmatrix}, C_{N-1} = \begin{bmatrix} e_{n1} \\ \vdots \\ h^{n-1} \end{bmatrix}, C_{np} = A_{nn}^{-1} A_{np}, \theta_n = \frac{-A_{nn}^{-1} \delta_n}{h^{1-\mu}}, \delta_n = \begin{bmatrix} \delta_{n1} \\ \vdots \\ \delta_{nm} \end{bmatrix} e e_n = \begin{bmatrix} e_{n1} \\ \vdots \\ e_{nm} \end{bmatrix}$$

(ii) A inversa da C_{N-1} se escreve como

$$\mathcal{D}_{N-1} = \begin{bmatrix} I & & & \\ D_{10} & I & & \\ D_{20} & D_{21} & I & & \\ \vdots & \vdots & & \ddots & \\ D_{N-1,0} & D_{N-1,1} & \cdots & D_{N-1,N-2} & I \end{bmatrix}$$

Demonstração: (i) Para cada n, temos

$$\begin{split} 0 &= h^{1-\mu} A_{n0} e_0 + \ldots + h^{1-\mu} A_{n,n-1} e_{n-1} + h^{1-\mu} A_{nn} e_n + \delta_n \Rightarrow \\ \Rightarrow 0 &= A_{nn}^{-1} A_{n0} e_0 + \ldots + A_{nn}^{-1} A_{n,n-1} e_{n-1} + I e_n + \frac{A_{nn}^{-1} \delta_n}{h^{1-\mu}} \Rightarrow \\ \Rightarrow \theta_n &= C_{n0} e_0 + \ldots + C_{n,n-1} e_{n-1} + I e_n \end{split}$$

(ii) Basta mostrar que existem D_{np} tais que a forma proposta satizfaz o sistema de inversão $C_{N-1}D_{N-1}=I$.

Para a primeira coluna, temos

$$\begin{bmatrix} I & & & & \\ C_{10} & I & & & \\ C_{20} & C_{21} & I & & \\ \vdots & \vdots & \ddots & \\ C_{N-1,0} & C_{N-1,1} & \cdots & C_{N-1,N-2} & I \end{bmatrix} \begin{bmatrix} I & \\ D_{10} & \\ D_{20} & \\ \vdots & \\ D_{N-1,0} \end{bmatrix} = \begin{bmatrix} I & & \\ 0 & & \\ \vdots & \\ D_{N-1,0} \end{bmatrix}$$

Que pode ser resolvido assim

 $D_{00} = I$

determinar D_{10} tal que $C_{10}D_{00} + C_{11}D_{10} = 0$,

(...)

determinar $D_{N-1,0}$ tal que $C_{N-1,0}D_{00} + C_{N-1,1}D_{10} + \dots + C_{N-1,N-1}D_{N-1,0} = 0$

As outras colunas podem ser tratadas de forma semelhante

Observando o comportamento da norma das \mathcal{D}_{N-1} , vamos obter limitantes para a perda de ordem entre a consistência e a convergência.

É importante notar que mesmo que $|\mathcal{D}_{N-1}|_{\infty}$ não seja convergente, ainda obtemos informações relevantes.

Lema 4.2.2: (Convergência com norma limitada) Se $|\mathcal{D}_{N-1}|_{\infty} < C_1$ então com qualquer g temos $e' \leq C_2 \frac{\delta'}{h^{1-\mu}}$ para h pequeno.

Demonstração: Para cada N, temos

$$\begin{aligned} \mathcal{C}_{N-1}E_{N-1} &= \Delta_{N-1} \Rightarrow E_{N-1} = \mathcal{D}_{N-1}\Delta_{N-1} \Rightarrow |E_{N-1}|_{\infty} \leqslant |\mathcal{D}_{N-1}|_{\infty} |\Delta_{N-1}|_{\infty} \\ |E_{N-1}|_{\infty} &= \max_{n} |e_{n}|_{\infty} = e' \\ |\mathcal{D}_{N-1}|_{\infty} &< C_{1} \\ |\Delta_{N-1}|_{\infty} &\leqslant \max_{n} \frac{|A_{nn}^{-1}|_{\infty} |\delta_{n}|_{\infty}}{h^{1-\mu}} \leqslant \frac{a_{0} \, \delta'}{h^{1-\mu}} \\ \text{Substituindo, chegamos a} \end{aligned}$$

$$e' \leqslant C_1 \frac{a_0 \delta'}{h^{1-\mu}}$$

Lema 4.2.3: (Convergência com norma limitada por uma função linear)

Se $|\mathcal{D}_{N-1}|_{\infty} < C_1 N$ então com qualquer g temos $e' \leq C_2 \frac{\delta'}{h^{2-\mu}}$ para h pequeno.

Demonstração: Seguindo a demonstração acima, chegamos a

$$e' \leqslant C_1 N \frac{a_0 \delta'}{h^{1-\mu}} = C_1 \frac{T}{h} \frac{a_0 \delta'}{h^{1-\mu}}$$

Lema 4.2.4: (Convergência com norma limitada por um logarítmo)

Se $|\mathcal{D}_{N-1}|_{\infty} < C_1 \ln(N)$ então com qualquer g e qualquer $0 < \varepsilon < \varepsilon_0$, temos $e' \leq C_2 \frac{\delta'}{h^{1-\mu+\varepsilon}}$ para h pequeno.

Demonstração: Seguindo a demonstração acima, chegamos a

$$e' \leqslant C_1 \ln\left(N\right) \frac{a_0 \, \delta'}{h^{1-\mu}} = C_1 \frac{\ln\left(N\right)}{h^{-\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \frac{\ln\left(N\right)}{(T/N)^{-\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{a_0 \, \delta'}{h^{1-\mu+\varepsilon}} = C_1 \, T^{\varepsilon} \, \frac{\ln\left(N\right)}{N^{\varepsilon}} \frac{h^{\varepsilon}}{h^{1-\mu+\varepsilon}} \frac{$$

Para concluir, vamos verificar que $f(z) = \ln(z) z^{-\varepsilon}$ é limitada sobre $[1, \infty[$

$$f'(z) = \frac{1}{z} z^{-\varepsilon} + \ln(z)(-\varepsilon) z^{-1-\varepsilon} = \frac{1-\varepsilon \ln(z)}{z^{1+\varepsilon}}$$
$$f'(z_0) = 0 \Rightarrow 1-\varepsilon \ln(z_0) = 0 \Rightarrow z_0 = \exp(1/\varepsilon)$$

f é positiva sobre $[1, \infty[$, crescente em $[1, z_0[$ e decrescente em $]z_0, \infty[$

Logo nesse intervalo temos $0 \leq f(z) \leq f(z_0)$, com $f(z_0) = \frac{1}{\varepsilon} (e^{1/\varepsilon})^{-\varepsilon} = \frac{1/\varepsilon}{e}$

Figura 4.2.5: Gráfico de $\ln(z) z^{0.1}$

Para terminar essa seção, vamos descrever uma classe de problemas onde as matrizes C_{N-1} e D_{N-1} são constantes por diagonal de blocos. Essa propriedade nos permite obter algoritmos mais eficientes.

Definição 4.2.6: Dada uma equação de Volterra de primeiro tipo com singularidade de Abel,

Ké um núcleo-diferença seK(t,s) = k(t-s)para alguma $k\colon [0,T] \to \mathbb{R}$

Corolário 4.2.7: (Estrutura com núcleo-diferença) Se K é um núcleo-diferença, então

(i)
$$A_{np} = X_{n-p}$$
 com

$$X_{n-p} = \begin{bmatrix} \beta_{n1p1} k((n-p+d_1-c_1)h) & \dots & \beta_{n1pm} k((n-p+d_1-c_m)h) \\ \vdots & & \vdots \\ \beta_{nmp1} k((n-p+d_m-c_1)h) & \dots & \beta_{nmpm} k((n-p+d_m-c_m)h) \end{bmatrix}$$

(observe que $\beta_{n\,j\,p\,i}$ sempre depende apenas de $n-p,\,j$ e i)

(ii) \mathcal{C}_{N-1} é dada por

$$\mathcal{C}_{N-1} = \begin{bmatrix} I & & & \\ Y_1 & I & & \\ Y_2 & Y_1 & I & \\ \vdots & \vdots & \ddots & \\ Y_{N-1} & Y_{N-2} & \cdots & Y_1 & I \end{bmatrix} \text{ com } Y_{n-p} = X_0^{-1} X_{n-p}$$

(iii) \mathcal{D}_{N-1} tem a forma

$$\mathcal{D}_{N-1} = \begin{bmatrix} I & & \\ Z_1 & I & & \\ Z_2 & Z_1 & I & \\ \vdots & \vdots & \ddots & \\ Z_{N-1} & Z_{N-2} & \cdots & Z_1 & I \end{bmatrix}$$

L	
L	

Demonstração: (i) As entradas da A_{np} têm a forma $\beta_{njpi} K(T_{nj}, t_{pi})$.

$$K(t,s) = k(t-s) \Rightarrow K(T_{nj}, t_{pi}) = k(T_{nj} - t_{pi}) = k(nh + d_jh - ph - c_ih) = k((n-p+d_j - c_i)h)$$

(ii) $C_{np} = A_{nn}^{-1}A_{np} = X_0^{-1}X_{n-p}$

(iii) Basta testar essa estrutura em blocos.

Daqui em diante vamos usar essas notações para as matrizes:

 $A_{np}, C_{np} \in D_{np}$ descrevem o caso geral $A_{np} = X_{n-p}, C_{np} = Y_{n-p} \in D_{np} = Z_{n-p}$ ocorrem para K(t,s) = k(t-s) $A_{np} = X_{n-p}, C_{np} = Y_{n-p} \in D_{np} = Z_{n-p}$ ocorrem para K = 1

4.3 Comportamento das matrizes C_{N-1}

Vamos começar comparando as matrizes obtidas no caso geral e no caso com K = 1.

Lema 4.3.1: (Relação entre $A_{np} \in \mathbb{X}_{n-p}$) Se $K \in C^1$ sobre $\tilde{\Omega} \in h$ é pequeno, então $A_{np} \approx K(z_n, z_p) \mathbb{X}_{n-p}$ com

 $\mathbb{X}_{n-p} = \begin{bmatrix} \beta_{n1p1} & \dots & \beta_{n1pm} \\ \vdots & & \vdots \\ \beta_{nmp1} & \dots & \beta_{nmpm} \end{bmatrix} \text{ matrizes relacionadas ao caso com } K = 1$

(observe que β_{njpi} sempre depende apenas de $n - p, j \in i$)

Demonstração: A_{np} tem entradas do tipo $\beta_{njpi} K(T_{nj}, t_{pi})$

Usando Taylor, temos

$$K \in C^1 \text{ sobre } \tilde{\Omega} \Rightarrow K(T_{nj}, t_{pi}) = K(z_n, t_{pi}) + K_t(\xi, t_{pi})d_jh$$
$$K \in C^1 \text{ sobre } \tilde{\Omega} \Rightarrow K(z_n, t_{pi}) = K(z_n, z_p) + K_s(z_n, \eta)c_ih$$

 $K \in C^1$, $\tilde{\Omega}$ compacto $\Rightarrow K_s(t,s)c_i \in K_t(t,s)d_j$ são limitados $\Rightarrow K(T_{nj}, t_{pi}) = K(z_n, z_p) + \mathcal{O}(h)$

Pela limitação dos coeficientes com singularidade de Abel (3.4.4), temos

$$|\beta_{njpi}| \leqslant \frac{P}{d_1^{\mu}} \frac{1}{(n-p)^{\mu}} \leqslant \frac{P}{d_1^{\mu}} \text{ com } p = 0, \dots n-1 \text{ e } |\beta_{njni}| \leqslant \frac{P}{1-\mu}$$

Logo as entradas das A_{np} se comportam como

 $\beta_{njpi}K(T_{nj}, t_{pi}) = \beta_{njpi}K(z_n, z_p) + \beta_{njpi}\mathcal{O}(h) = \beta_{njpi}K(z_n, z_p) + \mathcal{O}(h)$

Corolário 4.3.2: (Relação entre $C_{np} \in \mathbb{Y}_{n-p}$)

(i) Se
$$K = 1$$
, então

$$\mathcal{C}_{N-1} = \begin{bmatrix} I & & \\ \mathbb{Y}_1 & I & & \\ \mathbb{Y}_2 & \mathbb{Y}_1 & I & \\ \vdots & \vdots & \ddots & \\ \mathbb{Y}_{N-1} & \mathbb{Y}_{N-2} & \cdots & \mathbb{Y}_1 & I \end{bmatrix} \quad \text{com } \mathbb{Y}_{n-p} = \mathbb{X}_0^{-1} \mathbb{X}_{n-p}$$

- 6		
1		
1		

(ii) Se $K \in C^1$ e h é pequeno, então

$$C_{N-1} \approx \begin{bmatrix} I & & & & \\ \gamma_{10} \mathbb{Y}_{1} & I & & & \\ \gamma_{20} \mathbb{Y}_{2} & \gamma_{21} \mathbb{Y}_{1} & I & & & \\ \vdots & \vdots & & \ddots & & \\ \gamma_{N-1,0} \mathbb{Y}_{N-1} & \gamma_{N-1,1} \mathbb{Y}_{N-2} & \cdots & \gamma_{N-1,N-2} \mathbb{Y}_{1} & I \end{bmatrix}$$

 $\operatorname{com} \mathbb{Y}_{n-p} = \mathbb{X}_0^{-1} \mathbb{X}_{n-p} \in \gamma_{np} = \frac{K(z_n, z_p)}{K(z_n, z_n)}$

Demonstração: (i) $K = 1 \Rightarrow A_{np} = \mathbb{X}_{n-p} \Rightarrow C_{np} = A_{nn}^{-1}A_{np} = \mathbb{X}_0^{-1}\mathbb{X}_{n-p}$

(ii) $K \in C^1$, h pequeno $\Rightarrow A_{np} \approx K(z_n, z_p) \mathbb{X}_{n-p} \Rightarrow C_{np} = A_{nn}^{-1} A_{np} \approx \frac{\mathbb{X}_0^{-1}}{K(z_n, z_n)} K(z_n, z_p) \mathbb{X}_{n-p}$

De certa forma esse resultado nos permite colocar em evidência a atuação da K.

Basicamente temos um conjunto de coeficientes γ_{np} que dependem da K e um conjunto de matrizes \mathbb{Y}_r fixadas pela escolha dos c_i 's e d_j 's.

Continuando vamos observar algumas propriedades nas γ_{np} e nas \mathbb{Y}_r .

Lema 4.3.3: (Propriedades da γ_{np})

(i) γ_{np} é uniformemente limitada para qualquer n, p e qualquer h

(ii) Dado $r \in \mathbb{N}$ fixo, todas as $\gamma_{np} \operatorname{com} n - p < r$ se aproximam de 1 para h pequeno

Demonstração: (i) K contínua, $\tilde{\Omega}$ compacto $\Rightarrow \exists M_K = \max \{ |K(t,s)| : (t,s) \in \tilde{\Omega} \}$

$$|\gamma_{np}| = \frac{|K(z_n,z_p)|}{|K(z_n,z_n)|} \leqslant \frac{M_K}{k_0}$$
 para qualquer n,p e qualquer h

(ii) considere $\gamma(t,s) = \frac{K(t,s)}{K(t,t)}$

$$\gamma_{np} = \gamma(z_n, z_p) = \frac{K(z_n, z_p)}{K(z_n, z_n)} = \frac{K(z_n, z_p) - K(z_n, z_n) + K(z_n, z_n)}{K(z_n, z_n)} = \frac{K(z_n, z_p) - K(z_n, z_n)}{K(z_n, z_n)} + 1$$

 $K \in C^1$ sobre $\tilde{\Omega} \Rightarrow K(t,s) = K(t,t) + K_s(t,\xi)(s-t) \Rightarrow |K(t,s) - K(t,t)| \leq M_{K_S}|s-t|$

$$\operatorname{com} M_{K_S} = \max \left\{ |K_s(t,s)| : (t,s) \in \Omega \right\}$$

usando essa desigualdade e a estimativa $|K(t,t)| \ge k_0 > 0$, chegamos a

$$\begin{split} \left|\frac{K(z_n, z_p) - K(z_n, z_n)}{K(z_n, z_n)}\right| &\leqslant \frac{M_{K_S}}{k_0} |z_p - z_n| = \frac{M_{K_S}}{k_0} (n-p)h \leqslant \frac{M_{K_S}}{k_0} rh \\ & \cos h < \frac{\varepsilon}{rM_{K_S}/k_0}, \, \text{temos } |\gamma_{np} - 1| < \varepsilon \text{ para todo } n-p \leqslant r \end{split}$$

Proposição 4.3.4: (Decaimento da \mathbb{Y}_{n-p} com m=1) Se m=1, então

(i)
$$\beta_{nn} = \frac{d_1^{1-\mu}}{1-\mu}, \ \beta_{np} = \left[\frac{(n-p+d_1-\sigma)^{1-\mu}}{1-\mu}\right]_1^0$$

(ii) $\beta_{np} \approx (n-p)^{-\mu}$ para n-p grande

(iii)
$$\mathbb{Y}_{n-p} \approx (n-p)^{-\mu} \frac{1-\mu}{d_1^{1-\mu}}$$
 para $n-p$ grande

Demonstração: (i) $\ell_1(\sigma) = 1$, logo $\beta_{np} \in \beta_{nn}$ são dadas por

$$\begin{split} \beta_{nn} &= \int_{0}^{d_{1}} \frac{1}{(0+(d_{1}-\sigma))^{\mu}} d\sigma = \left[\frac{(0+d_{1}-\sigma)^{1-\mu}(-1)}{1-\mu} \right]_{0}^{d_{1}} = \frac{-(0)^{1-\mu}+(d_{1})^{1-\mu}}{1-\mu} = \frac{d_{1}^{1-\mu}}{1-\mu} \\ \beta_{np} &= \int_{0}^{1} \frac{1}{((n-p)+(d_{1}-\sigma))^{\mu}} d\sigma = \left[\frac{(n-p+d_{1}-\sigma)^{1-\mu}(-1)}{1-\mu} \right]_{0}^{1} \\ (\text{ii) Considere } f(t) &= t^{1-\mu} \\ f \in C^{2} \text{ longe de } t = 0 \Rightarrow f((n-p+d_{1}-1)+1) = f(n-p+d_{1}-1) + f'(n-p+d_{1}-1)1 + f''(\xi) \frac{1}{2} \Rightarrow \\ \Rightarrow f(n-p+d_{1}) - f(n-p+d_{1}-1) = [(1-\mu)t^{-\mu}]_{t=n-p+d_{1}-1} + [(1-\mu)(-\mu)t^{-1-\mu}]_{t=\xi} \frac{1}{2} \\ \operatorname{com} \xi \in [n-p+d_{1}-1, n-p+d_{1}] \end{split}$$

Ignorando o termo com $t^{-1-\mu},$ que vai a zero mais rápido, temos

$$\beta_{np} = \left[\frac{(n-p+d_1-\sigma)^{1-\mu}}{1-\mu}\right]_1^0 \approx (n-p+d_1-1)^{-\mu}$$

Considere $a(t) = t^{-\mu}$

Considere $g(t) = t^{-\mu}$

$$g \in C^1 \text{ longe de } t = 0 \Rightarrow g((n-p) + (d_1 - 1)) = g(n-p) + g'(\eta)(d_1 - 1)$$

$$\Rightarrow g(n-p+d_1 - 1) = g(n-p) + [(-\mu)t^{-1-\mu}]_{t=\eta}$$

$$\operatorname{com} \eta \in [n-p+d_1 - 1, n-p]$$

Ignorando o termo com $t^{-1-\mu}$, fica

$$\beta_{np} \approx (n-p+d_1-1)^{-\mu} \approx (n-p)^{-\mu}$$

(iii) $\mathbb{Y}_{n-p} = \frac{\mathbb{X}_{n-p}}{\mathbb{X}_{n-n}} = \frac{\beta_{np}}{\beta_{nn}} \approx \frac{(n-p)^{-\mu}}{d_1^{1-\mu}/[1-\mu]} = (n-p)^{-\mu} \frac{1-\mu}{d_1^{1-\mu}}$

Proposição 4.3.5: (Decaimento da \mathbb{Y}_{n-p} com m=2) Se m=2, então

(i)
$$\beta_{njni} = \frac{d_j^{1-\mu}}{1-\mu} \ell_i(0) + \frac{d_j^{2-\mu}}{(1-\mu)(2-\mu)} \ell'_i(0)$$

(ii) $\beta_{njpi} = \left[\frac{(n-p+d_j-\sigma)^{1-\mu}}{1-\mu} \ell_i(\sigma)\right]_1^0 + \left[\frac{(n-p+d_j-\sigma)^{2-\mu}}{(1-\mu)(2-\mu)}\right]_1^0 \ell'_i(0)$
(iii) $\beta_{njpi} \approx (n-p)^{-\mu} \left[\ell_i(0) + \frac{\ell'_i(0)}{2}\right]$ para $n-p$ grande

(iv) $\mathbb{Y}_{n-p} \approx (n-p)^{-\mu} B_0$ para n-p grande, com B_0 dada por

$$B_0 = \mathbb{X}_0^{-1} \begin{bmatrix} \ell_1(0) + \frac{\ell_1'(0)}{2} & \ell_2(0) + \frac{\ell_2'(0)}{2} \\ \ell_1(0) + \frac{\ell_1'(0)}{2} & \ell_2(0) + \frac{\ell_2'(0)}{2} \end{bmatrix}$$

Demonstração: (i) $\beta_{njni} = \int_0^{d_j} \frac{1}{(d_j - \sigma)^{\mu}} \ell_i(\sigma) d\sigma$

Integrando por partes, temos

$$\beta_{njni} = \left[\frac{(d_j - \sigma)^{1-\mu}(-1)}{1-\mu}\ell_i(\sigma)\right]_0^{d_j} - \int_0^{d_j} \frac{(d_j - \sigma)^{1-\mu}(-1)}{1-\mu}\ell_i'(\sigma)d\sigma$$
$$\ell_i' = \text{cte} \Rightarrow \beta_{njni} = \left[\frac{(d_j - \sigma)^{1-\mu}}{1-\mu}\ell_i(\sigma)\right]_{d_j}^0 + \ell_i'(0)\int_0^{d_j} \frac{(d_j - \sigma)^{1-\mu}}{1-\mu}d\sigma$$

Г		
L		
L		1

$$\int_{0}^{d_{j}} \frac{(d_{j} - \sigma)^{1-\mu}}{1-\mu} d\sigma = \left[\frac{(d_{j} - \sigma)^{2-\mu}(-1)}{(1-\mu)(2-\mu)}\right]_{0}^{d_{j}} = \left[\frac{(d_{j} - \sigma)^{2-\mu}}{(1-\mu)(2-\mu)}\right]_{d_{j}}^{0}$$

(ii) $\beta_{njpi} = \int_{0}^{1} \frac{1}{((n-p) + (d_{j} - \sigma))^{\mu}} \ell_{i}(\sigma) d\sigma$

Integrando por partes, fica

$$\begin{split} \beta_{njpi} &= \left[\frac{(n-p+d_j-\sigma)^{1-\mu}(-1)}{1-\mu} \ell_i(\sigma) \right]_0^1 - \int_0^1 \frac{(n-p+d_j-\sigma)^{1-\mu}(-1)}{1-\mu} \ell_i'(\sigma) d\sigma \\ \ell_i' &= \text{cte} \Rightarrow \beta_{njpi} = \left[\frac{(n-p+d_j-\sigma)^{1-\mu}}{1-\mu} \ell_i(\sigma) \right]_1^1 + \ell_i'(0) \int_0^1 \frac{(n-p+d_j-\sigma)^{1-\mu}}{1-\mu} d\sigma \\ \int_0^1 \frac{(n-p+d_j-\sigma)^{1-\mu}}{1-\mu} d\sigma &= \left[\frac{(n-p+d_j-\sigma)^{2-\mu}(-1)}{(1-\mu)(2-\mu)} \right]_0^1 = \left[\frac{(n-p+d_j-\sigma)^{2-\mu}}{(1-\mu)(2-\mu)} \right]_1^0 \\ \text{(iii) Vamos começar com a parte } \left[\frac{(n-p+d_j-\sigma)^{1-\mu}}{1-\mu} \ell_i(\sigma) \right]_1^0 \\ \text{Considere } f(\sigma) &= (n-p+d_j-\sigma)^{1-\mu} \ell_i(\sigma), \\ f \in C^2 \text{ longe de } (n-p+d_j-\sigma)^{-\mu}(-1)] \ell_i(\sigma) + (n-p+d_j-\sigma)^{1-\mu} \ell_i'(\sigma) \\ f''(\sigma) &= \left[(1-\mu)(n-p+d_j-\sigma)^{-\mu}(-1) \right] \ell_i(\sigma) + \left[(1-\mu)(n-p+d_j-\sigma)^{-\mu}(-1) \right] \ell_i'(\sigma) + \\ &+ \left[(1-\mu)(n-p+d_j-\sigma)^{-\mu}(-1) \right] \ell_i'(\sigma) \\ &= \left[(1-\mu)(-\mu)(n-p+d_j-\sigma)^{-1-\mu} \right] \ell_i(\sigma) + 2\left[(1-\mu)(n-p+d_j-\sigma)^{-\mu}(-1) \right] \ell_i'(\sigma) \\ &= \left[(1-\mu)(-\mu)(n-p+d_j-\sigma)^{-1-\mu} \right] \ell_i(\sigma) + 2\left[(1-\mu)(n-p+d_j-\sigma)^{-\mu}(-1) \right] \ell_i'(\sigma) \\ &- \frac{f'(0)}{1-\mu} = (n-p+d_j)^{-\mu} \ell_i(0) - \frac{(n-p+d_j)^{1-\mu} \ell_i'(0)}{1-\mu} \\ &= (n-p+d_j)^{-\mu} \ell_i(0) + \frac{(n-p+d_j-\xi)^{-1-\mu} \ell_i'(\xi)}{1-\mu} \\ &= \frac{\mu(n-p+d_j-\xi)^{-1-\mu} \ell_i(\xi)}{2} \\ \text{Logo com } n-p \text{ grande, chegamos a} \end{split}$$

$$\frac{f(0) - f(1)}{1 - \mu} \approx -\frac{(n - p + d_j)^{1 - \mu} \ell'_i(0)}{1 - \mu} + (n - p)^{-\mu} [\ell_i(0) + \ell'_i(0)]$$
Agora vamos para a parte
$$\left[\frac{(n - p + d_j - \sigma)^{2 - \mu}}{(1 - \mu)(2 - \mu)}\right]_1^0 \ell'_i(0).$$
Considere $g(\sigma) = (n - p + d_j - \sigma)^{2 - \mu},$
 $g \in C^2$ longe de $(n - p + d_j - \sigma) = 0 \Rightarrow g(1) = g(0) + g'(0)1 + g''(\eta)\frac{1}{2}$
 $g'(\sigma) = (2 - \mu)(n - p + d_j - \sigma)^{1 - \mu}(-1)$
 $g''(\sigma) = (2 - \mu)(1 - \mu)(n - p + d_j - \sigma)^{-\mu}$
 $\frac{-g'(0)}{(1 - \mu)(2 - \mu)} \ell'_i(0) = \frac{(n - p + d_j)^{1 - \mu}}{(1 - \mu)} \ell'_i(0)$

Logo com n-p grande, chegamos a

$$\frac{g(0) - g(1)}{(1 - \mu)(2 - \mu)}\ell'_i(0) \approx \frac{(n - p + d_j)^{1 - \mu}}{1 - \mu}\ell'_i(0) - (n - p)^{-\mu}\frac{1}{2}\ell'_i(0)$$

Para terminar, somamos as duas partes,

$$\begin{split} \beta_{njpi} &\approx \left[-\frac{(n-p+d_j)^{1-\mu}\ell_i'(0)}{1-\mu} + (n-p)^{-\mu} [\ell_i(0) + \ell_i'(0)] \right] + \left[\frac{(n-p+d_j)^{1-\mu}}{1-\mu} \ell_i'(0) - (n-p)^{-\mu} \frac{1}{2} \ell_i'(0) \right] \\ &= (n-p)^{-\mu} \left[\ell_i(0) + \frac{\ell_i'(0)}{2} \right] \\ (\text{iv}) \ \mathbb{Y}_{n-p} &= \mathbb{X}_0^{-1} \mathbb{X}_{n-p} = \mathbb{X}_0^{-1} \left[\begin{array}{c} \beta_{n1p1} & \beta_{n1p2} \\ \beta_{n2p1} & \beta_{n2p2} \end{array} \right] \approx (n-p)^{-\mu} \mathbb{X}_0^{-1} \left[\begin{array}{c} \ell_1(0) + \frac{\ell_1'(0)}{2} & \ell_2(0) + \frac{\ell_2'(0)}{2} \\ \ell_1(0) + \frac{\ell_1'(0)}{2} & \ell_2(0) + \frac{\ell_2'(0)}{2} \end{array} \right] \\ & \square \end{split}$$

4.4 Estabilidade numérica ao calcular as matrizes \mathcal{D}_{N-1}

Dado um método e um problema, o nosso interesse é observar como a norma da \mathcal{D}_{N-1} se comporta a medida que o N aumenta.

Para fazer isso, vamos considerar formas de calcular as D_{np} numericamente tomando cuidado com os erros de arredondamento.

A estrutura de dados e o conjunto de operações utilizados para estimar os erros se baseiam no uso de aritmética de intervalos. Há mais detalhes no apêndice e em [Moo65].

Basicamente, para cada operação mantemos um intervalo representável contendo o valor real, daí no final da execução contamos a quantidade de "dígitos em comum" entre as extremidades.

Exemplo 4.4.1: Considere um sistema de ponto flutuante com 4 dígitos e a seguinte sequência de instruções:

x = 1.4216121y = 0.3127364z = x + y

As operações comuns fazem algo como

 $\begin{array}{l} x \sim 1.422 \\ y \sim 0.3127 \\ z \sim {\rm arred}(1.7347) \sim 1.735 \end{array}$

Com as implementações usadas, fica

 $\begin{array}{l} x \sim [1.421, 1.423] \\ y \sim [0.3126, 0.3128] \\ z \sim [\mathrm{baixo}(1.7336), \mathrm{alto}(1.7358)] \sim [1.733, 1.737] \ (3 \ \mathrm{dígitos} \ \mathrm{em} \ \mathrm{comum}) \end{array}$

Com K qualquer, o sistema $\mathcal{C}_{N-1}\mathcal{D}_{N-1} = I$ é dado por

$$\begin{bmatrix} I & & & \\ C_{10} & I & & \\ C_{20} & C_{21} & I & \\ \vdots & \vdots & \ddots & \\ C_{N-1,0} & C_{N-1,1} & \cdots & C_{N-1,N-2} & I \end{bmatrix} \begin{bmatrix} I & & & \\ D_{10} & I & & \\ D_{20} & D_{21} & I & \\ \vdots & \vdots & \ddots & \\ D_{N-1,0} & D_{N-1,1} & \cdots & D_{N-1,N-2} & I \end{bmatrix} = \begin{bmatrix} I & & \\ I & & \\ & I & \\ & & \ddots & \\ & & & I \end{bmatrix}$$

Como a matriz C_{N-1} é triangular em blocos, uma opção natural é resolver uma coluna em blocos por vez indo de cima para baixo.

Por exemplo com N-1=4, a primeira coluna é calculada assim

 $\begin{array}{l} D_{00} = I \\ \text{obter } D_{10} \text{ tal que } C_{10} D_{00} + C_{11} D_{10} = 0 \\ \vdots \\ \text{obter } D_{40} \text{ tal que } C_{40} D_{00} + \ldots + C_{44} D_{40} = 0 \end{array}$

Algoritmo 4.4.2: (Cálculo das D_{rn} de cima para baixo)

Para n = 0 até N - 1. $D_{nn} = I$. Para r = n + 1 até N - 1. $D_{rn} = 0$. . . Para i = n até r - 1. . $D_{rn} = D_{rn} - C_{ri}D_{in}$

Esse algoritmo tem ordem $\mathcal{O}(n^3)$ e apresentou estimativas de estabilidade baixas no teste inicial.

Entre as opções que foram testadas, o algoritmo com melhor desempenho foi o que resolve o sistema por eliminação de Gauss tratando uma diagonal de blocos por vez de baixo para cima.

Por exemplo, com N-1=4, a etapa da primeira diagonal fica assim

 $\begin{bmatrix} I & & & & I & & & \\ C_{10} & I & & & & I & & \\ C_{20} & C_{21} & I & & & I & & \\ C_{30} & C_{31} & C_{32} & I & & & I & & \\ C_{40} & C_{41} & C_{42} & C_{43} & I & & & I & & \\ \end{bmatrix} \sim \begin{bmatrix} I & & & & & & I & & \\ 0 & I & & & & & I & & \\ C_{20}^{(1)} & 0 & I & & & & & & I & \\ C_{30}^{(1)} & C_{31}^{(1)} & 0 & I & & & & \\ C_{40}^{(1)} & C_{41}^{(1)} & C_{42}^{(1)} & 0 & I & & & & & -C_{32} & I & \\ C_{40}^{(1)} & C_{41}^{(1)} & C_{42}^{(1)} & 0 & I & & & & & -C_{43} & I \end{bmatrix}$

Algoritmo 4.4.3: (Cálculo das D_{rn} por diagonais)

Para n = 0 até N - 1. $D_{nn} = I$. Para r = 0 até n - 1. $D_{nr} = 0$ Para n = 1 até N - 1. Para r = N - 1 até n com passo -1. . . . Para i = 0 até r - n. . $D_{ri} = D_{ri} - C_{r,r-n}D_{r-n,i}$. . . $C_{ri} = C_{ri} - C_{r,r-n}C_{r-n,i}$

Esse algoritmo tem ordem $\mathcal{O}(N^3)$ e as estimativas de estabilidade no teste inicial ficaram melhores.

Para o caso com K(t,s) = k(t-s), o sistema $\mathcal{C}_{N-1}\mathcal{D}_{N-1} = I$ tem uma forma especial

$$\begin{bmatrix} I & & & \\ Y_1 & I & & \\ Y_2 & Y_1 & I & \\ \vdots & \vdots & \ddots & \\ Y_{N-1} & Y_{N-2} & \cdots & Y_1 & I \end{bmatrix} \begin{bmatrix} I & & & \\ Z_1 & I & & \\ Z_2 & Z_1 & I & \\ \vdots & \vdots & \ddots & \\ Z_{N-1} & Z_{N-2} & \cdots & Z_1 & I \end{bmatrix} = \begin{bmatrix} I & & & \\ I & & & \\ & I & & \\ & & \ddots & \\ & & & I \end{bmatrix}$$

Aplicando o algoritmo por diagonais para resolver apenas o sistema da primeira coluna, obtemos a seguinte versão

Algoritmo 4.4.4: (Cálculo das D_{rn} por diagonais para um núcleo-diferença)

$$\begin{split} &Z_0 = I \\ &\text{Para } p = 1 \text{ até } N-1 \\ &. & Z_p = 0 \end{split}$$

$$\begin{aligned} &\text{Para } n = 1 \text{ até } N-1 \\ &. & \text{Para } p = N-1 \text{ até } n \text{ com passo } -1 \\ &. & Z_p = Z_p - Y_n Z_{p-n} \\ &. & Y_p = Y_p - Y_n Y_{p-n} \end{aligned}$$

Com este algoritmo o tempo gasto fica bem menor, já que o custo passou para $\mathcal{O}(N^2)$.

Após determinar as D_{np} , calculamos a norma infinito da \mathcal{D}_{N-1} usando a maior soma de linha em módulo, percorrendo a matriz da esquerda para a direita (somar primeiro os valores mais próximos de zero).

Aplicando os três algoritmos para o método com ponto médio produto e K = 1, obtemos as seguintes tabelas de comparação:

N-1	Cima para baixo	Por diagonais	Por diagonais para $k(t-s)$
50	8	12	12
100	3	11	11
200		11	11
400		10	10
800			10
1600			9
3200			9

Tabela 4.4.5: Estimativa de dígitos corretos no valor calculado para a norma da
--

Tabela	4.4.6 :	Tempo	gasto (em	segundos	3)
--------	----------------	-------	---------	----	----------	----

N-1	Cima para baixo	Por diagonais	Por diagonais para $k(t-s)$
50	0.1	0.1	0.0
100	0.3	0.7	0.0
200		4.7	0.1
400		36.9	0.3
800			1.1
1600			4.4
3200			17.7

Terminando esta seção, vamos fazer alguns testes para verificar como a estabilidade do algoritmo por diagonais varia quando mudamos os parâmetros do método.

Mais especificamente, que remos observar quais parâmetros permitem que o procedimento se ja aplicado até valores altos de N.

Para m = 1 a matriz \mathcal{D}_{N-1} não depende do c_1 , já que $\ell_1 = \text{cte}$, logo basta considerar a variação do d_1 .

Vamos usar $K = 1, N - 1 = 50 e d_1$ variando em $\{0, 0.1, 0.2, ..., 1\}$.

Tabela 4.4.7: Estimativa de dígitos corretos na norma da \mathcal{D}_{50} com m = 1

d_1	Dígitos corretos
0.1	6
0.2	5
0.3	10
0.4	12
0.5	12
0.6	12
0.7	12
0.8	12
0.9	12
1.0	12

Observe que a estimativa fica pior com d_1 perto do zero.

Para m = 2 vamos usar K = 1, N - 1 = 50 e c_1, c_2, d_1, d_2 variando em $\{0.0, 0.2, 0.4, 0.6, 0.8, 1.0\}$.

Tabela 4.4.8: Estimativa de dígitos corretos na norma da \mathcal{D}_{50} com m	=2
--	----

		d_1	0.2	0.2	0.2	0.2	0.4	0.4	0.4	0.6	0.6	0.8
		d_2	0.4	0.6	0.8	1.0	0.6	0.8	1.0	0.8	1.0	1.0
c_1	c_2											
0.0	0.2		4	7	8	8	8	8	8	8	8	7
0.0	0.4		9	10	10	10	10	10	10	10	10	10
0.0	0.6		9	11	11	11	11	11	11	11	11	11
0.0	0.8		8	11	11	11	11	11	11	11	11	11
0.0	1.0		7	10	11	11	11	11	11	11	11	11
0.2	0.4		9	10	9	10	10	10	10	10	10	9
0.2	0.6		9	11	11	12	11	12	12	11	11	11
0.2	0.8		9	11	11	12	11	11	12	11	11	11
0.2	1.0		8	10	11	11	11	11	12	11	11	11
0.4	0.6		10	11	11	11	11	12	12	12	12	11
0.4	0.8		10	11	11	12	11	12	12	12	12	11
0.4	1.0		9	11	11	11	11	11	12	12	12	11
0.6	0.8		9	11	11	11	10	10	11	10	11	11
0.6	1.0		9	11	11	11	11	11	11	11	11	11
0.8	1.0		4	9	9	9	9	9	9	9	9	9

Note que a estimativa fica pior com d_1, d_2 ambos perto do zero ou c_1, c_2 ambos perto do zero ou do um.
Capítulo 5

Resumo dos testes numéricos

Neste capítulo vamos descrever os resultados obtidos em alguns exemplos e compará-los com as proposições consideradas nos capítulos anteriores.

Usaremos G_1 , G_2 para denotar os pontos da quadratura de Gauss sobre [0, 1] com 2 estágios representados com 15 dígitos:

$$G_1 = 0.211324865405187 \approx \frac{1}{2} - \frac{1}{2\sqrt{3}}$$
$$G_2 = 0.788675134594813 \approx \frac{1}{2} + \frac{1}{2\sqrt{3}}$$

5.1 Testes para CV2

Os problemas que vamos considerar nesta classe são os seguintes:

Exemplo 5.1.1: (teste V2-T1)

$$\begin{split} K(t,s,u) &= \exp{(s+2t)}\sin{(u)} \\ g(t) &= t - \frac{1}{2}\exp{(2t)}(\exp{(t)}(\sin{(t)} - \cos{(t)}) + 1) \\ y(t) &= t \end{split}$$

Exemplo 5.1.2: (teste V2-T2)

$$\begin{split} K(t,s,u) &= (1+ts)u \\ g(t) &= \sqrt{t} - \frac{2}{15} t^{3/2} \left(3t^2 + 5 \right) \\ y(t) &= \sqrt{t} \end{split}$$

As ordens de consistência e convergência foram observadas calculando numericamente as $e_{ni} \in \delta_{nj}$ sobre as execuções com N - 1 em {50, 100, 200, ...12800}

As tabelas completas estão no apêndice.

Tabela 5.1.3: Resumo com a ordem de consistência para CV2

Método	Teste V2-T1	Teste V2-T2
(0.5)	2	1.5
(0.5, 1)	2	1.5
(G_1,G_2)	3	1.5

Tabela 5.1.4: Resumo com a ordem de convergêcia para CV2

Método	Teste V2-T1	Teste V2-T2
(0.5)	2	1.5
(0.5, 1)	2	1.5
(G_1, G_2)	3	1.5

O comportamento esperado para h pequeno o bastante era

(i) em todas execuções temos K de Lipschitz para u, logo a ordem de convergência precisava ser pelo menos a mesma que a da consistência.

(ii) no teste 1, temos $K \in C^m$ e $y \in C^m$ sobre [0, 1], logo a ordem de consistência precisava ser de pelo menos m.

5.2 Testes para CV1

Os problemas que vamos considerar nesta classe são os seguintes:

Exemplo 5.2.1: (teste V1-T1) $K(t, s) = \exp(s+2t)$ $g(t) = \frac{1}{2}\exp(2t)(\exp(t)(\sin(t) - \cos(t)) + 1)$ $y(t) = \sin(t)$

Exemplo 5.2.2: (teste V1-T2)

$$\begin{split} K(t,s) &= (1+ts) \\ g(t) &= \frac{2}{15} t^{3/2} \left(3t^2 + 5 \right) \\ y(t) &= \sqrt{t} \end{split}$$

As ordens de consistência e convergência foram observadas calculando numericamente as $e_{ni} \in \delta_{nj}$ sobre as execuções com N - 1 em {50, 100, 200, ...12800}

As tabelas completas estão no apêndice.

Tabela 5.2.3: Resumo com a ordem de consistência para CV1

Método	Teste V1-T1	Teste V1-T2
(0.5, 1)	2	1.5
(0.5, 1, 0.8, 1)	2	1.5
$(G_1, G_2, 0.8, 1)$	3	1.5

Tabela 5.2.4: Resumo com a ordem de convergêcia para CV1

Método	Teste V1-T1	Teste V1-T2
(0.5, 1)	2	0.5
(0.5, 1, 0.8, 1)	2	0.5
$(G_1, G_2, 0.8, 1)$	2	0.5

O comportamento esperado para h pequeno o bastante era

(i) em todas execuções temos $K \in C^1$ e $d_m = 1$, logo a perda entre as ordem precisava ser de no máximo 1.

(ii) nas execuções com o teste 1, temos $K \in C^{m+1}$, $y \in C^{m+1}$ sobre [0, 1] e $d_m = 1$, logo a ordem de convergência precisava ser de pelo menos m.

(iii) com o teste 1, temos $K \in C^m$ e $y \in C^m$ sobre [0, 1], logo a ordem de consistência precisava ser de pelo menos m.

Para algumas escolhas de parâmetros com $d_m < 1$, o algoritmo foi consistente mas não convergiu. Isso aconteceu por exemplo para (0.5, 0.4) com K = 1 e (0.5, 1.0, 0.3, 0.6) com K = 1.

5.3 Testes para CAV2

Os problemas que vamos considerar nesta classe são os seguintes:

Exemplo 5.3.1: (teste AV2-T1) $K(t, s, u) = (s + \sin(t))u$ $g(t) = t^2 - \frac{16}{105}t^{5/2}(6t + 7\sin(t))$ $y(t) = t^2$

Exemplo 5.3.2: (teste AV2-T2)

$$\begin{split} K(t,s,u) &= (1+ts)u\\ g(t) &= \sqrt{t} - \frac{\pi}{8}t\left(3t^2 + 4\right)\\ y(t) &= \sqrt{t} \end{split}$$

As ordens de consistência e convergência foram observadas calculando numericamente as $e_{ni} \in \delta_{nj}$ sobre as execuções com N - 1 em {50, 100, 200, ... 12800}

As tabelas completas estão no apêndice.

Tabela 5.3.3: Resumo com a ordem de consistência para CAV2

Método	Teste AV2-T1	Teste AV2-T2
(0.5)	1.5	1
(0.5, 1)	2	1
(G_1, G_2)	2.5	1

Tabela 5.3.4: Resumo com a ordem de convergêcia para CAV2

Método	Teste AV2-T1	Teste AV2-T2
(0.5)	1.5	1.5
(0.5, 1)	2	1.5
(G_1, G_2)	2.5	1.5

O comportamento esperado para h pequeno o bastante era

(i) em todas execuções, temos K de Lipschitz para $u \in c_1 > 0$, logo a ordem de convergência precisava ser pelo menos a mesma que a de consistência.

(ii) no teste 1, temos $K \in C^m$ e $y \in C^m$ sobre [0, 1], logo a ordem de consistência precisava ser de pelo menos m.

5.4 Testes para CAV1

Os problemas que vamos considerar são os seguintes:

Exemplo 5.4.1: (teste AV1-T1) Copiado de [HHL08], exemplo 6

$$\begin{split} K(t,s) &= 1 \\ g(t) &= \frac{4}{3}t^{3/2} - \frac{32}{35}t^{7/2} \\ y(t) &= t - t^3 \end{split}$$

Exemplo 5.4.2: (teste AV1-T2) Copiado de [WA72], problema 2

$$\begin{split} K(t,s) &= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-(t-s)}{2}\right) \\ g(t) &= \frac{1}{\sqrt{2\pi t}} \exp\left(\frac{-(1+t)^2}{2t}\right) \text{ para } t > 0, \ g(0) = 0 \\ y(t) &= \frac{1}{2\sqrt{2\pi t}} \left[\left(\frac{1}{t} - 1\right) \exp\left(\frac{-(1+t)^2}{2t}\right) + \left(\frac{1}{t} + 1\right) \frac{1}{e^2} \exp\left(\frac{-(1-t)^2}{2t}\right) \right] \text{ para } t > 0, \ y(0) = 0 \end{split}$$

Exemplo 5.4.3: (teste AV1-T3) Copiado de [WA72], problema 3

$$K(t,s) = 1 + ts$$
$$g(t) = t + \frac{3}{4}t^{3}$$
$$y(t) = \frac{2}{\pi}\sqrt{t}$$

As normas das matrizes \mathcal{D}_{N-1} foram calculadas numericamente usando $N-1 \text{ em } \{50, 100, 200, \dots 3200\}$ para o teste 3 e em $\{50, 100, 200, \dots 12800\}$ para os testes 1 e 2.

As ordens de consistência e convergência foram observadas calculando numericamente as $e_{ni} \in \delta_{nj}$ sobre as execuções com N - 1 em {50, 100, 200, ...12800}

As tabelas completas estão no apêndice.

Nos casos que foram convergentes, a curva $A + B \ln (N-1)$ que realiza o valor da norma em N-1 = 50 eN-1 = 100se manteve acima do restante dos pontos e se afastou deles cada vez mais.

Figura 5.4.4: Relação entre a curva de referência e os valores observados para $|\mathcal{D}_{N-1}|_{\infty}$

Tabela 5.4.5: Resumo com a ordem de consistência em cada caso

Método	Teste AV1-T1	Teste AV1-T2	Teste AV1-T3
(0.5, 1)	1.5	1.5	1
(0.5, 1, 0.8, 1)	2	2	1
$(G_1, G_2, 0.8, 1)$	2.5	2.5	1

Tabela 5.4.6: Resumo com a ordem de convergêcia em cada caso

Método	Teste AV1-T1	Teste AV1-T2	Teste AV1-T3
(0.5, 1)	1	1.5	0.5
(0.5, 1, 0.8, 1)	2	2	0.5
$(G_1, G_2, 0.8, 1)$	2	2	0.5

O comportamento esperado para h pequeno o bastante era

(i) considerando que a norma continua limitada por essa curva, a perda entre a ordem de consistência e a de convergência precisava ser no máximo um pouco maior que 1 - 0.5.

(ii) nos testes 1 e 2, temos $K \in C^m$ e $y \in C^m$ sobre [0, 1], logo a ordem de consistência precisava ser de pelo menos m.

Para algumas escolhas de parâmetros com $d_m < 1$, o algoritmo foi consistente mas não convergiu.

Isso aconteceu por exemplo para (0.5, 0.17) com K = 1 e (0.5, 1.0, 0.2, 0.4) com K = 1.

Nestes casos o procedimento numérico para observação das normas mostrou valores crescendo de forma exponencial ou teve uma queda rápida demais na estimativa de dígitos corretos.

Tabela 5.4.7: Norma da \mathcal{D}_N e sua estimativa de dígitos corretos com o método (0.5, 1.0, 0.2, 0.4) e K = 1.

N-1	Norma	Dígitos na norma
50	$1.82\mathrm{e}{+03}$	10
100	$1.33\mathrm{e}{+}05$	10
200	$6.90\mathrm{e}{+08}$	9
400	$1.86\mathrm{e}{+16}$	9
800	$1.36\mathrm{e}{+31}$	8

Capítulo 6 Conclusões

Neste trabalho consideramos algumas propriedades sobre o comportamento de uma classe de métodos de colocação polinomial para equações integrais de Volterra de primeiro ou segundo tipo, regulares ou com singularidade de Abel.

Começamos observando a definição das equações consideradas e alguns resultados teóricos que mostram que com certas hipóteses,

(i) as equações têm solução e ela é única,

(ii) a solução tem uma certa classe de regularidade.

Em seguida descrevemos a classe de métodos escolhida e consideramos alguns resultados com demonstrações bem gerais, observando que sob determinadas condições,

(iii) os métodos são bem definidos,

(iv) a ordem de consistência é maior ou igual que a quantidade de pontos em cada sub-intervalo,

 (\mathbf{v}) para equações de segundo tipo regulares, a ordem de convergência é pelo menos a mesma que a de consistência,

(vi) para equações de segundo tipo com singularidade de Abel, a ordem de convergência é pelo menos a mesma que a de consistência,

(vii) para equações de primeiro tipo regulares, a perda passando para a ordem de convergência é de no máximo 1.

Depois disso utilizamos uma demonstração de caso particular para concluir que

(viii) para equações de primeiro tipo com singularidade de Abel, há um teste para garantir que a perda na ordem é no máximo um pouco maior do que $1 - \mu$,

 $({\rm ix})$ apesar da dificuldade em testar essa condição de forma analítica, é possível observá-la parcialmente empregando um procedimento numérico.

Por fim aplicamos os algoritmos sobre um conjunto de testes e observamos que os resultados obtidos obedeceram as propriedades descritas acima.

Em particular, os problemas de primeiro tipo com singularidade de Abel considerados se dividiram em dois grupos:

Para os casos convergentes, o teste numérico indicou um bom comportamento e a perda de ordem foi de no máximo $1-\mu.$

Para os casos que não convergiram, o teste numérico indicou um mau comportamento ou apresentou uma estimativa de estabilidade baixa.

Apêndice A

Estimativa de dígitos corretos

A.1 Operações com estimativa de dígitos corretos

Usando ponto flutuante com precisão dupla, a cada operação ocorre um arredondamento para o número representável mais próximo do resultado obtido, o que em geral realiza os primeiros 14 dígitos significativos com base decimal.

O nosso interesse é manter a cada operação um intervalo com extremos representáveis que contenha o resultado real. Daí no final da execução vamos comparar a quantidade de "dígitos em comum" entre as extremidades.

Essa estrutura de controle se baseia no uso de aritmética de intervalos. Mais detalhes podem ser vistos em [Moo65].

A partir de duas funções especiais de arredondamento e conhecendo o comportamento das operações de soma, subtração, produto e divisão com argumentos sobre regiões retangulares, as implementações terão a seguinte forma:

$x = x_0$	$x.alto = alto(x_0)$ $x.baixo = baixo(x_0)$
$y = y_0$	$y.alto = alto(y_0)$ $y.baixo = baixo(y_0)$
$z = \operatorname{oper}(x, y)$	$\begin{aligned} z.\text{alto} &= \text{alto}(\max\left\{\text{oper}([x.\text{baixo}, x.\text{alto}] \times [y.\text{baixo}, y.\text{alto}])\right\}) \\ z.\text{baixo} &= \text{baixo}(\min\left\{\text{oper}([x.\text{baixo}, x.\text{alto}] \times [y.\text{baixo}, y.\text{alto}])\right\}) \end{aligned}$

O nosso primeiro problema é descrever as funções de arredondamento.

Em C-ANSI as funções frexp e ldexp permitem separar e reunir os dígitos e o expoente de um número com tipo double

$\operatorname{dig}=\operatorname{frexp}(\mathrm{x},\operatorname{\&exp2});$	dig recebe os dígitos de x como um double com expoente e $+0$
	$\exp 2$ recebe o expoente de x em base 2 como um int

x = ldexp(dig, exp2); x recebe o double com esses dígitos e esse expoente em base 2

Assim as funções alto() e baixo() podem ser implementadas como

Algoritmo A.1.1: Função alto(x)

dig = frexp(x, &exp2)dig = dig + 1.0e-14devolver ldexp(dig, exp2)

Algoritmo A.1.2: Função baixo(x)

dig = frexp(x, &exp2) dig = dig - 1.0e-14devolver ldexp(dig, exp2)

Nossa segunda tarefa é descrever o comportamento das operações com argumentos sobre regiões retangulares.

Observando as curvas de nível notamos que os valores de mínimo e máximo ocorrem em uma das extremidades ou em torno do zero.

Figura A.1.3: Curvas de nível das funções soma(x, y) e subt(x, y)

Figura A.1.4: Curvas de nível das funções prod(x, y) e div(x, y)

Em C-ANSI, para a divisão é conveniente usar também os seguintes valores especiais: se $0 \notin [x.baixo, x.alto] \in 0 \in [y.baixo, y.alto]$, devolver -inf, +inf se $0 \in [x.baixo, x.alto] \in 0 \in [y.baixo, y.alto]$, devolver nan, nan

Por fim precisamos determinar o que queremos dizer com a expressão "dígitos em comum".

Definição A.1.5: x, y têm n dígitos em comum se ambos têm ordem ℓ e sua diferença tem ordem $\ell - n$, usando os expoentes em base 10.

Exemplo A.1.6:

(i) x = 1.123456e - 7, y = 1.123458e - 7, x - y = -2.0e - 13 (6 dígitos em comum) (ii) x = 1.000000e - 7, y = 0.999999e - 7, x - y = 1.0e - 13 (6 dígitos em comum)

Antes de terminar esse assunto, vamos considerar três aplicações interessantes dessa estrutura de dados:

(i) Ao calcular uma expressão, a ordem das operações influencia na precisão do resultado obtido. Quando usamos uma ordem pouco estável, a estimativa de dígitos corretos fica ruim.

(ii) Implementando o método de Gauss com esses objetos, obtemos uma aproximação para a solução do sistema e uma estimativa de seus dígitos corretos. Quando a matriz é mal condicionada, a estimativa fica ruim.

(iii) Calculando somas parciais de séries com esses objetos, obtemos uma aproximação para o seu valor e uma estimativa de seus dígitos corretos. Quando a influência dos erros de arredondamento se torna grande, a estimativa fica ruim.

O problema principal em usar essa estrutura é que as estimativas obtidas em geral são bem pessimistas.

Apêndice B

Resultados numéricos para CV2

B.1 Método (0.5) com o teste V2-T1

Tabela B.1.1: Aproximações usando o método (0.5) sobre o teste 1 com N-1=4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.100	0.100	0.108	-6.952E-03	-8.030E-03
1	0.300	0.300	0.322	-1.328E-02	-2.154E-02
2	0.500	0.500	0.573	-2.478E-02	-7.259E-02
3	0.700	0.700	1.034	-4.509E-02	-3.337E-01
4	0.900	0.900	1.910	-7.975E-02	-1.010E + 00

Tabela B.1.2: Erros e ordens com o método (0.5) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	9.813E-04			5.340E-02		
100	2.535E-04	3.871	1.953	1.466E-02	3.643	1.865
200	6.443E-05	3.934	1.976	3.833E-03	3.825	1.935
400	1.624E-05	3.967	1.988	9.794E-04	3.914	1.969
800	4.078E-06	3.983	1.994	2.475E-04	3.957	1.985
1600	1.022E-06	3.992	1.997	6.220E-05	3.979	1.992
3200	2.557E-07	3.996	1.998	1.559E-05	3.989	1.996
6400	6.395E-08	3.998	1.999	3.903E-06	3.995	1.998
12800	1.599E-08	3.999	2.000	9.764 E-07	3.997	1.999

B.2 Método (0.5) com o teste V2-T2

Tabela B.2.1: Aproximações usando o método (0.5) sobre o teste 2 com N-1=4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.100	0.316	0.328	-1.073E-02	-1.194E-02
1	0.300	0.548	0.561	-9.385E-03	-1.329E-02
2	0.500	0.707	0.725	-9.715E-03	-1.746E-02
3	0.700	0.837	0.861	-1.057E-02	-2.474E-02
4	0.900	0.949	0.986	-1.174E-02	-3.766E-02

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.236E-04			9.216E-04		
100	1.161E-04	2.787	1.479	3.112E-04	2.962	1.566
200	4.136E-05	2.808	1.489	1.055E-04	2.950	1.561
400	1.468E-05	2.818	1.495	3.601E-05	2.929	1.550
800	5.199E-06	2.823	1.497	1.239E-05	2.907	1.540
1600	1.840E-06	2.826	1.499	4.290 E-06	2.888	1.530
3200	6.507 E-07	2.827	1.499	1.494E-06	2.872	1.522
6400	2.301E-07	2.828	1.500	5.222 E-07	2.860	1.516
12800	8.137E-08	2.828	1.500	1.831E-07	2.851	1.512

Tabela B.2.2: Erros e ordens com o método (0.5) sobre o teste 2

B.3 Método (0.5, 1) com o teste V2-T1

Tabela B.3.1: Aproximações usando o método (0.5, 1) sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.100	0.100	0.099	1.129E-03	1.276E-03
0	2	0.200	0.200	0.198	1.094E-03	1.512E-03
1	1	0.300	0.300	0.295	3.306E-03	4.581E-03
1	2	0.400	0.400	0.393	3.544E-03	6.800E-03
2	1	0.500	0.500	0.485	7.619E-03	1.457 E-02
2	2	0.600	0.600	0.573	8.488E-03	2.740E-02
3	1	0.700	0.700	0.658	1.557E-02	4.172 E-02
3	2	0.800	0.800	0.689	1.774E-02	1.107E-01
4	1	0.900	0.900	1.534	2.935E-02	-6.339E-01
4	2	1.000	1.000	0.379	3.399E-02	6.208E-01

Tabela B.3.2: Erros e ordens com o método (0.5, 1) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.262E-04			1.276E-02		
100	8.318E-05	3.922	1.972	3.193E-03	3.996	1.998
200	2.100E-05	3.961	1.986	7.984E-04	3.999	2.000
400	5.277 E-06	3.980	1.993	1.996E-04	4.000	2.000
800	1.323E-06	3.990	1.996	4.991E-05	4.000	2.000
1600	3.310E-07	3.995	1.998	1.248E-05	4.000	2.000
3200	8.281E-08	3.998	1.999	3.119E-06	4.000	2.000
6400	2.071E-08	3.999	2.000	7.798E-07	4.000	2.000
12800	5.178E-09	3.999	2.000	1.949E-07	4.000	2.000

B.4 Método (0.5, 1) com o teste V2-T2

Tabela B.4.1: Aproximações usando o método (0.5, 1) sobre o teste 2 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.100	0.316	0.321	-3.892E-03	-4.327E-03
0	2	0.200	0.447	0.452	-3.451E-03	-4.334E-03
1	1	0.300	0.548	0.553	-3.818E-03	-5.249E-03
1	2	0.400	0.632	0.638	-3.620E-03	-5.695E-03
2	1	0.500	0.707	0.714	-3.560E-03	-6.409E-03
2	2	0.600	0.775	0.782	-3.387E-03	-7.209E-03
3	1	0.700	0.837	0.845	-3.138E-03	-8.140E-03
3	2	0.800	0.894	0.904	-2.962E-03	-9.532E-03
4	1	0.900	0.949	0.960	-2.593E-03	-1.110E-02
4	2	1.000	1.000	1.014	-2.407E-03	-1.363E-02

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.492E-04			6.070E-04		
100	5.535E-05	2.695	1.430	2.282E-04	2.660	1.412
200	2.019E-05	2.742	1.455	8.403E-05	2.715	1.441
400	7.286E-06	2.771	1.470	3.054E-05	2.752	1.460
800	2.611E-06	2.790	1.480	1.100E-05	2.776	1.473
1600	9.318E-07	2.802	1.487	3.940E-06	2.792	1.481
3200	3.315E-07	2.811	1.491	1.406E-06	2.803	1.487
6400	1.177 E-07	2.816	1.494	5.001E-07	2.811	1.491
12800	4.175E-08	2.820	1.496	1.776E-07	2.816	1.494

Tabela B.4.2: Erros e ordens com o método (0.5, 1) sobre o teste 2

B.5 Método $(G_1,\,G_2)$ com o teste V2-T1

Tabela B.5.1: Aproximações usando o método (G_1, G_2) sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.042	0.042	1.495E-04	1.605E-04
0	2	0.158	0.158	0.158	-1.984E-04	-1.887E-04
1	1	0.242	0.242	0.242	2.630E-04	2.892 E-04
1	2	0.358	0.358	0.358	-3.452E-04	-3.208E-04
2	1	0.442	0.442	0.442	4.429E-04	5.141E-04
2	2	0.558	0.558	0.558	-5.744E-04	-4.834E-04
3	1	0.642	0.642	0.641	7.083E-04	9.427 E-04
3	2	0.758	0.758	0.758	-9.056E-04	-3.932E-04
4	1	0.842	0.842	0.840	1.059E-03	2.129E-03
4	2	0.958	0.958	0.955	-1.328E-03	3.195E-03

Tabela B.5.2: Erros e ordens com o método (G_1, G_2) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.307E-06			1.848E-06		
100	1.686E-07	7.752	2.955	2.075 E-07	8.906	3.155
200	2.141E-08	7.874	2.977	2.402 E-08	8.638	3.111
400	2.698E-09	7.937	2.989	2.867 E-09	8.379	3.067
800	3.386E-10	7.968	2.994	3.493E-10	8.207	3.037
1600	4.241E-11	7.984	2.997	4.303E-11	8.117	3.021
3200	5.319E-12	7.974	2.995	5.315E-12	8.097	3.017
6400	7.049E-13	7.545	2.916	7.365E-13	7.216	2.851
12800	1.477E-13	4.774	2.255	1.722E-13	4.277	2.097

Com precisão de 15 dígitos, a ordem piorou quando o erro global ficou abaixo de 1.0E-12

B.6 Método $(G_1,\,G_2)$ com o teste V2-T2

Tabela B.6.1: Aproximações usando o método (G_1, G_2) sobre o teste 2 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.206	0.207	-1.406E-03	-1.477E-03
0	2	0.158	0.397	0.398	-2.610E-04	-4.439E-04
1	1	0.242	0.492	0.493	-7.344E-04	-9.732E-04
1	2	0.358	0.598	0.599	-5.862E-04	-9.506E-04
2	1	0.442	0.665	0.666	-6.597E-04	-1.131E-03
2	2	0.558	0.747	0.748	-6.338E-04	-1.294E-03
3	1	0.642	0.801	0.803	-6.284E-04	-1.462E-03
3	2	0.758	0.870	0.872	-6.513E-04	-1.800E-03
4	1	0.842	0.918	0.920	-6.088E-04	-2.057E-03
4	2	0.958	0.979	0.981	-6.597E-04	-2.675E-03

Tabela B.6.2: Erros e ordens com o método (G_1, G_2) sobre o teste 2

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	4.342E-05			8.500 E-05		
100	1.558E-05	2.787	1.479	3.058E-05	2.780	1.475
200	5.550E-06	2.807	1.489	1.091E-05	2.804	1.487
400	1.969E-06	2.818	1.495	3.873E-06	2.816	1.494
800	6.976E-07	2.823	1.497	1.372E-06	2.822	1.497
1600	2.469E-07	2.826	1.499	4.857E-07	2.825	1.498
3200	8.732E-08	2.827	1.499	1.718E-07	2.827	1.499
6400	3.088E-08	2.828	1.500	6.077 E-08	2.828	1.500
12800	1.092E-08	2.828	1.500	2.149E-08	2.828	1.500

Apêndice C

Resultados numéricos para CV1

C.1 Método (0.5, 1) com o teste V1-T1

Tabela C.1.1: Aproximações usando o método (0.5, 1) sobre o teste 1 com N - 1 = 4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.100	0.100	0.103	1.094E-03	-3.316E-03
1	0.300	0.296	0.299	3.544E-03	-3.183E-03
2	0.500	0.479	0.482	8.488 E-03	-2.924E-03
3	0.700	0.644	0.647	1.774E-02	-2.547E-03
4	0.900	0.783	0.785	3.399E-02	-2.069E-03

Tabela C.1.2: Erros e ordens com o método (0.5, 1) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.262E-04			3.204E-05		
100	8.318E-05	3.922	1.972	8.169E-06	3.922	1.972
200	2.100E-05	3.961	1.986	2.063E-06	3.960	1.986
400	5.277 E-06	3.980	1.993	5.182E-07	3.980	1.993
800	1.323E-06	3.990	1.996	1.299E-07	3.990	1.996
1600	3.310E-07	3.995	1.998	3.251E-08	3.995	1.998
3200	8.281E-08	3.998	1.999	8.133E-09	3.997	1.999
6400	2.071E-08	3.999	2.000	2.035E-09	3.998	1.999
12800	5.178E-09	3.999	2.000	5.102E-10	3.988	1.996

C.2 Método (0.5, 1) com o teste V1-T2

Tabela C.2.1: Aproximações usando o método (0.5, 1) sobre o teste 2 com N - 1 = 4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.100	0.316	0.299	-3.451E-03	1.692 E-02
1	0.300	0.548	0.547	-3.620E-03	4.509E-04
2	0.500	0.707	0.708	-3.387E-03	-1.176E-03
3	0.700	0.837	0.838	-2.962E-03	-1.521E-03
4	0.900	0.949	0.950	-2.407E-03	-1.477E-03

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.490E-04			5.659E-03		
100	5.532E-05	2.693	1.429	4.023E-03	1.407	0.492
200	2.019E-05	2.741	1.455	2.852E-03	1.411	0.496
400	7.285E-06	2.771	1.470	2.019E-03	1.412	0.498
800	2.611E-06	2.790	1.480	1.429E-03	1.413	0.499
1600	9.318E-07	2.802	1.487	1.011E-03	1.414	0.500
3200	3.315E-07	2.811	1.491	7.148E-04	1.414	0.500
6400	1.177E-07	2.816	1.494	5.055E-04	1.414	0.500
12800	4.175E-08	2.820	1.496	3.574E-04	1.414	0.500

Tabela C.2.2: Erros e ordens com o método (0.5, 1) sobre o teste 2

C.3 Método (0.5, 1, 0.8, 1) com o teste V1-T1

Tabela C.3.1: Aproximações usando o método (0.5, 1, 0.8, 1) sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.100	0.100	0.103	1.103E-03	-3.316E-03
0	2	0.200	0.199	0.196	1.094E-03	2.486 E-03
1	1	0.300	0.296	0.299	3.433E-03	-3.183E-03
1	2	0.400	0.389	0.387	3.544E-03	2.367 E-03
2	1	0.500	0.479	0.482	8.102E-03	-2.924E-03
2	2	0.600	0.565	0.562	8.488E-03	2.152 E- 03
3	1	0.700	0.644	0.647	1.680E-02	-2.547E-03
3	2	0.800	0.717	0.716	1.774E-02	1.852 E-03
4	1	0.900	0.783	0.785	3.198E-02	-2.069E-03
4	2	1.000	0.841	0.840	3.399E-02	1.478E-03

Tabela C.3.2: Erros e ordens com o método (0.5, 1, 0.8, 1) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.262E-04			3.204 E-05		
100	8.318E-05	3.922	1.972	8.169E-06	3.922	1.972
200	2.100E-05	3.961	1.986	2.063E-06	3.960	1.986
400	5.277 E-06	3.980	1.993	5.182 E-07	3.980	1.993
800	1.323E-06	3.990	1.996	1.299 E-07	3.990	1.996
1600	3.310E-07	3.995	1.998	3.251E-08	3.995	1.998
3200	8.281E-08	3.998	1.999	8.133E-09	3.997	1.999
6400	2.071E-08	3.999	2.000	2.035E-09	3.998	1.999
12800	5.178E-09	3.999	2.000	6.780E-10	3.001	1.585

Com precisão de 15 dígitos, a ordem piorou quando o erro global ficou abaixo de 1.0E-09

C.4 Método (0.5, 1, 0.8, 1) com o teste V1-T2

Tabela C.4.1: Aproximações usando o método (0.5, 1, 0.8, 1) sobre o teste 2 com N-1=4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.100	0.316	0.299	-3.596E-03	1.692 E-02
0	2	0.200	0.447	0.456	-3.451E-03	-8.978E-03
1	1	0.300	0.548	0.547	-3.692E-03	4.509E-04
1	2	0.400	0.632	0.635	-3.620E-03	-2.496E-03
2	1	0.500	0.707	0.708	-3.454E-03	-1.176E-03
2	2	0.600	0.775	0.776	-3.387E-03	-1.514E-03
3	1	0.700	0.837	0.838	-3.031E-03	-1.521E-03
3	2	0.800	0.894	0.895	-2.962E-03	-1.018E-03
4	1	0.900	0.949	0.950	-2.482E-03	-1.477E-03
4	2	1.000	1.000	1.001	-2.407E-03	-6.891E-04

Tabela C.4.2: Erros e ordens com o método (0.5, 1, 0.8, 1) sobre o teste 2

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.491E-04			5.659E-03		
100	5.533E-05	2.694	1.430	4.023E-03	1.407	0.492
200	2.019E-05	2.741	1.455	2.852E-03	1.411	0.496
400	7.285E-06	2.771	1.470	2.019E-03	1.412	0.498
800	2.611E-06	2.790	1.480	1.429E-03	1.413	0.499
1600	9.318E-07	2.802	1.487	1.011E-03	1.414	0.500
3200	3.315E-07	2.811	1.491	7.148E-04	1.414	0.500
6400	1.177E-07	2.816	1.494	5.055E-04	1.414	0.500
12800	4.175E-08	2.820	1.496	3.574E-04	1.414	0.500

C.5 Método $(G_1, G_2, 0.8, 1)$ com o teste V1-T1

Tabela C.5.1: Aproximações usando o método $(G_1, G_2, 0.8, 1)$ sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.042	0.040	-1.989E-04	2.497 E-03
0	2	0.158	0.157	0.159	-4.916E-08	-2.225E-03
1	1	0.242	0.240	0.238	-3.460E-04	2.383E-03
1	2	0.358	0.350	0.352	-3.371E-07	-2.123E-03
2	1	0.442	0.428	0.426	-5.756E-04	2.174 E-03
2	2	0.558	0.529	0.531	-1.282E-06	-1.936E-03
3	1	0.642	0.599	0.597	-9.076E-04	1.879E-03
3	2	0.758	0.687	0.689	-3.817E-06	-1.672E-03
4	1	0.842	0.746	0.745	-1.331E-03	1.508E-03
4	2	0.958	0.818	0.819	-9.916E-06	-1.341E-03

Tabela C.5.2: Erros e ordens com o método $(G_1, G_2, 0.8, 1)$ sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.305E-06			2.238E-05		
100	1.682 E-07	7.754	2.955	5.684E-06	3.938	1.978
200	2.136E-08	7.875	2.977	1.432E-06	3.969	1.989
400	2.692 E-09	7.937	2.989	3.594E-07	3.984	1.994
800	3.378E-10	7.968	2.994	9.003E-08	3.992	1.997
1600	4.232E-11	7.983	2.997	2.253E-08	3.996	1.999
3200	5.301E-12	7.983	2.997	5.637 E-09	3.997	1.999
6400	6.958E-13	7.618	2.929	1.412E-09	3.992	1.997
12800	1.558E-13	4.466	2.159	4.827E-10	2.925	1.548

Com precisão de 15 dígitos, a ordem piorou quando o erro global ficou abaixo de 1.0E-09

C.6 Método $(G_1, G_2, 0.8, 1)$ com o teste V1-T2

Tabela C.6.1: Aproximações usando o método $(G_1, G_2, 0.8, 1)$ sobre o teste 2 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.206	0.207	-2.622E-04	-1.270E-03
0	2	0.158	0.397	0.390	-6.415E-04	7.459E-03
1	1	0.242	0.492	0.493	-5.865E-04	-1.017E-03
1	2	0.358	0.598	0.597	-6.418E-04	7.817E-04
2	1	0.442	0.665	0.665	-6.339E-04	-1.797E-04
2	2	0.558	0.747	0.747	-6.379E-04	-3.215E-05
3	1	0.642	0.801	0.801	-6.513E-04	1.166E-04
3	2	0.758	0.870	0.871	-6.334E-04	-2.695E-04
4	1	0.842	0.918	0.918	-6.597E-04	2.319E-04
4	2	0.958	0.979	0.979	-6.288E-04	-3.366E-04

Tabela C.6.2: Erros e ordens com o método $(G_1, G_2, 0.8, 1)$ sobre o teste 2

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	2.001E-05			2.551E-03		
100	7.182E-06	2.786	1.478	1.814E-03	1.406	0.492
200	2.559E-06	2.807	1.489	1.286E-03	1.410	0.496
400	9.080E-07	2.818	1.495	9.105E-04	1.412	0.498
800	3.216E-07	2.823	1.497	6.442 E-04	1.413	0.499
1600	1.138E-07	2.826	1.499	4.557E-04	1.414	0.500
3200	4.026E-08	2.827	1.499	3.223E-04	1.414	0.500
6400	1.424 E-08	2.828	1.500	2.279E-04	1.414	0.500
12800	5.034E-09	2.828	1.500	1.611E-04	1.414	0.500

C.7 Exemplos não convergentes

Tabela C.7.1: Erros e ordens com o método (0.5, 0.4) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	9.258E-04			$1.397\mathrm{E}{+}06$		
100	2.396E-04	3.864	1.950	$4.470E{+}14$	-	-
200	6.096E-05	3.931	1.975	9.104E + 31	-	-
400	1.538E-05	3.965	1.987	$7.531\mathrm{E}{+66}$	-	-
800	3.861E-06	3.982	1.994	$1.029E{+}137$	-	-

Tabela C.7.2: Erros e ordens com o método (0.5, 1.0, 0.3, 0.6) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.227E-04			$5.959\mathrm{E}{+}05$		
100	8.272 E-05	3.901	1.964	$5.844E{+}14$	-	-
200	2.094E-05	3.950	1.982	$2.253E{+}33$	-	-
400	5.269E-06	3.975	1.991	$1.341E{+}71$	-	-
800	1.322E-06	3.987	1.995	$1.903E{+}147$	-	-

Apêndice D

Resultados numéricos para CAV2

D.1 Método (0.5) com o teste AV2-T1

Tabela D.1.1: Aproximações usando o método (0.5) sobre o teste 1 com N - 1 = 4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.100	0.010	0.011	-6.380E-04	-7.303E-04
1	0.300	0.090	0.101	-6.669E-03	-1.091E-02
2	0.500	0.250	0.308	-1.797E-02	-5.793E-02
3	0.700	0.490	0.944	-3.395E-02	-4.542E-01
4	0.900	0.810	$3.465E{+}03$	-5.400E-02	-3.464E+03

Tabela D.1.2: Erros e ordens com o método (0.5) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.703E-03			8.258E-02		
100	6.003E-04	2.837	1.505	2.930E-02	2.818	1.495
200	2.104E-04	2.853	1.512	1.034E-02	2.833	1.502
400	7.371E-05	2.855	1.513	3.637E-03	2.844	1.508
800	2.585 E-05	2.852	1.512	1.277 E-03	2.847	1.510
1600	9.079E-06	2.847	1.510	4.488E-04	2.847	1.509
3200	3.194E-06	2.843	1.507	1.578E-04	2.844	1.508
6400	1.125E-06	2.839	1.505	5.555E-05	2.841	1.506
12800	3.966E-07	2.836	1.504	1.957E-05	2.838	1.505

D.2 Método (0.5) com o teste AV2-T2

Tabela D.2.1: Aproximações usando o método (0.5) sobre o teste 2 com N-1=4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.100	0.316	0.437	-4.374E-02	-1.211E-01
1	0.300	0.548	0.815	-2.534E-02	-2.675 E-01
2	0.500	0.707	1.694	-2.383E-02	-9.874E-01
3	0.700	0.837	14.330	-2.569E-02	$-1.349E{+}01$
4	0.900	0.949	7.474E + 07	-2.915E-02	-7.474E + 07

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	4.209E-03			1.362E + 00		
100	2.125E-03	1.981	0.986	4.966E-01	2.742	1.455
200	1.068E-03	1.990	0.993	1.799E-01	2.761	1.465
400	5.352E-04	1.995	0.996	6.455 E-02	2.787	1.479
800	2.679E-04	1.998	0.998	2.301E-02	2.805	1.488
1600	1.340E-04	1.999	0.999	8.170E-03	2.816	1.494
3200	6.704 E-05	1.999	1.000	2.895 E-03	2.822	1.497
6400	3.353E-05	2.000	1.000	1.025E-03	2.826	1.499
12800	1.676E-05	2.000	1.000	3.624E-04	2.827	1.499

Tabela D.2.2: Erros e ordens com o método (0.5) sobre o teste 2

D.3 Método (0.5, 1) com o teste AV2-T1

Tabela D.3.1: Aproximações usando o método (0.5, 1) sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.100	0.010	0.008	1.469E-03	1.695E-03
0	2	0.200	0.040	0.039	5.266E-04	9.402 E-04
1	1	0.300	0.090	0.082	4.836E-03	8.086E-03
1	2	0.400	0.160	0.152	2.177 E-03	7.588E-03
2	1	0.500	0.250	0.225	9.124E-03	2.461E-02
2	2	0.600	0.360	0.324	4.642E-03	3.551E-02
3	1	0.700	0.490	0.435	1.406E-02	5.464 E-02
3	2	0.800	0.640	0.516	7.718E-03	1.242E-01
4	1	0.900	0.810	-3.450E + 02	1.946E-02	$3.458\mathrm{E}{+02}$
4	2	1.000	1.000	$6.229\mathrm{E}{+}02$	1.125E-02	-6.219E + 02

Tabela D.3.2: Erros e ordens com o método (0.5, 1) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.852E-04			1.233E-02		
100	4.701E-05	3.939	1.978	3.100E-03	3.978	1.992
200	1.183E-05	3.974	1.991	7.743E-04	4.004	2.001
400	2.965 E-06	3.990	1.996	1.932E-04	4.008	2.003
800	7.416E-07	3.997	1.999	4.820 E-05	4.007	2.003
1600	1.854 E-07	4.000	2.000	1.203E-05	4.006	2.002
3200	4.633E-08	4.001	2.001	3.005E-06	4.004	2.002
6400	1.158E-08	4.002	2.001	7.506E-07	4.003	2.001
12800	2.894E-09	4.001	2.000	1.875E-07	4.002	2.001

D.4 Método (0.5, 1) com o teste AV2-T2

Tabela D.4.1: Aproximações usando o método (0.5, 1) sobre o teste 2 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.100	0.316	0.354	-1.491E-02	-3.731E-02
0	2	0.200	0.447	0.491	-7.416E-03	-4.370E-02
1	1	0.300	0.548	0.606	-8.005E-03	-5.821E-02
1	2	0.400	0.632	0.723	-5.914E-03	-9.072E-02
2	1	0.500	0.707	0.810	-5.374E-03	-1.030E-01
2	2	0.600	0.775	0.980	-4.509E-03	-2.054E-01
3	1	0.700	0.837	0.978	-3.579E-03	-1.410E-01
3	2	0.800	0.894	1.331	-3.285E-03	-4.368E-01
4	1	0.900	0.949	-7.505E + 05	-2.132E-03	$7.505E{+}05$
4	2	1.000	1.000	-2.069E+06	-2.185E-03	2.069E + 06

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.500E-03			5.678E-01		
100	7.577E-04	1.980	0.986	2.155E-01	2.635	1.398
200	3.807E-04	1.990	0.993	7.943E-02	2.713	1.440
400	1.908E-04	1.995	0.996	2.885E-02	2.753	1.461
800	9.554E-05	1.997	0.998	1.039E-02	2.777	1.473
1600	4.780E-05	1.999	0.999	3.721E-03	2.792	1.482
3200	2.391E-05	1.999	1.000	1.328E-03	2.803	1.487
6400	1.196E-05	2.000	1.000	4.723E-04	2.811	1.491
12800	5.978E-06	2.000	1.000	1.677E-04	2.816	1.494

Tabela D.4.2: Erros e ordens com o método (0.5, 1) sobre o teste 2

D.5 Método (G_1, G_2) com o teste AV2-T1

Tabela D.5.1: Aproximações usando o método (G_1, G_2) sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.002	0.002	2.107 E-04	2.243E-04
0	2	0.158	0.025	0.025	-4.368E-04	-4.869E-04
1	1	0.242	0.059	0.057	9.542 E-04	1.206E-03
1	2	0.358	0.128	0.129	-1.105E-03	-1.278E-03
2	1	0.442	0.196	0.193	1.711E-03	2.646E-03
2	2	0.558	0.311	0.313	-1.759E-03	-1.799E-03
3	1	0.642	0.413	0.407	2.452 E-03	5.166E-03
3	2	0.758	0.574	0.574	-2.394E-03	7.688 E-05
4	1	0.842	0.709	0.698	3.171E-03	1.097 E-02
4	2	0.958	0.917	0.896	-3.007E-03	2.133E-02

Tabela D.5.2: Erros e ordens com o método (G_1, G_2) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.097E-05			7.450E-05		
100	2.002E-06	5.481	2.455	1.379E-05	5.403	2.434
200	3.596E-07	5.568	2.477	2.478E-06	5.564	2.476
400	6.407 E-08	5.612	2.488	4.396E-07	5.637	2.495
800	1.137E-08	5.634	2.494	7.759E-08	5.666	2.502
1600	2.014E-09	5.646	2.497	1.367E-08	5.675	2.505
3200	3.564E-10	5.651	2.499	2.409E-09	5.676	2.505
6400	6.305E-11	5.654	2.499	4.246E-10	5.673	2.504
12800	1.115E-11	5.653	2.499	7.487E-11	5.671	2.504

D.6 Método (G_1, G_2) com o teste AV2-T2

Tabela D.6.1: Aproximações usando o método (G_1, G_2) sobre o teste 2 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.206	0.221	-8.477E-03	-1.508E-02
0	2	0.158	0.397	0.404	1.442E-03	-7.273E-03
1	1	0.242	0.492	0.506	-2.114E-03	-1.370E-02
1	2	0.358	0.598	0.619	-6.542E-04	-2.047E-02
2	1	0.442	0.665	0.694	-1.106E-03	-2.903E-02
2	2	0.558	0.747	0.806	-7.999E-04	-5.906E-02
3	1	0.642	0.801	0.884	-7.231E-04	-8.293E-02
3	2	0.758	0.870	1.123	-8.257E-04	-2.521E-01
4	1	0.842	0.918	1.144	-5.030E-04	-2.259E-01
4	2	0.958	0.979	2.727	-8.300E-04	-1.748E+00

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	8.362E-04			8.275E-02		
100	4.223E-04	1.980	0.986	2.977E-02	2.780	1.475
200	2.122E-04	1.990	0.993	1.057E-02	2.816	1.493
400	1.064E-04	1.995	0.996	3.735E-03	2.831	1.501
800	5.324E-05	1.998	0.998	1.317E-03	2.836	1.504
1600	2.664E-05	1.999	0.999	4.643E-04	2.837	1.504
3200	1.332E-05	1.999	1.000	1.637E-04	2.836	1.504
6400	6.663E-06	2.000	1.000	5.776E-05	2.834	1.503
12800	3.332E-06	2.000	1.000	2.039E-05	2.833	1.502

Tabela D.6.2: Erros e ordens com o método (G_1, G_2) sobre o teste 2

Apêndice E

Resultados numéricos para CAV1

E.1 Método (0.5, 1) com o teste AV1-T1

Tabela E.1.1: Matriz C_4 com o método (0.5, 1) e K = 1

Tabela E.1.2: Matriz \mathcal{D}_4 com o método (0.5, 1) e K = 1

Tabela E.1.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método (0.5, 1) e K = 1

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	1.9100	12	1.7616	0.037943	1.9100	0.0000
100	1.9363	11			1.9363	0.0000
200	1.9550	11			1.9626	0.0076
400	1.9682	10			1.9889	0.0207
800	1.9775	10			2.0152	0.0377
1600	1.9841	9			2.0415	0.0574
3200	1.9887	9			2.0678	0.0791
6400	1.9920	9			2.0941	0.1021
12800	1.9944	8			2.1204	0.1260

Tabela E.1.4: Aproximações usando o método (0.5, 1) sobre o teste 1 com N - 1 = 4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.10	0.0990	0.1297	2.744E-02	-3.068E-02
1	0.30	0.2730	0.2820	1.945E-02	-9.034E-03
2	0.50	0.3750	0.3638	2.009E-03	1.125E-02
3	0.70	0.3570	0.3235	-2.422E-02	3.351E-02
4	0.90	0.1710	0.1127	-5.910E-02	5.828E-02

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	2.171E-03			3.265 E-03		
100	7.917E-04	2.742	1.455	1.650E-03	1.979	0.985
200	2.851E-04	2.777	1.473	8.291E-04	1.990	0.993
400	1.019E-04	2.798	1.484	4.156E-04	1.995	0.996
800	3.627E-05	2.809	1.490	2.081E-04	1.997	0.998
1600	1.288E-05	2.816	1.494	1.041E-04	1.999	0.999
3200	4.567E-06	2.820	1.496	5.207 E-05	1.999	0.999
6400	1.618E-06	2.823	1.497	2.604E-05	2.000	1.000
12800	5.726E-07	2.825	1.498	1.302E-05	2.000	1.000

Tabela E.1.5: Erros e ordens com o método (0.5, 1) sobre o teste 1

E.2 Método (0.5, 1) com o teste AV1-T2

Tabela E.2.1: Matriz C_4 com o método (0.5, 1) e K do teste 2

Tabela E.2.2: Matriz \mathcal{D}_4 com o método (0.5, 1) e K do teste 2

Tabela E.2.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método (0.5, 1) e K do teste 2

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	1.8697	12	1.6569	0.054390	1.8697	0.0000
100	1.9074	11			1.9074	0.0000
200	1.9344	11			1.9451	0.0107
400	1.9535	10			1.9828	0.0293
800	1.9671	10			2.0205	0.0534
1600	1.9767	9			2.0582	0.0815
3200	1.9835	9			2.0959	0.1124
6400	1.9884	9			2.1336	0.1452
12800	1.9918	8			2.1713	0.1795

Tabela E.2.4: Aproximações usando o método (0.5, 1) sobre o teste 2 com N - 1 = 4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.10	0.0298	0.0718	1.428E-02	-4.207E-02
1	0.30	0.1452	0.1335	1.364E-03	1.175E-02
2	0.50	0.1189	0.1110	-4.650E-04	7.914E-03
3	0.70	0.0865	0.0829	-4.276E-04	3.587 E-03
4	0.90	0.0629	0.0613	-2.361E-04	1.617 E-03

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	4.801E-04			2.616E-03		
100	1.776E-04	2.703	1.435	1.003E-03	2.608	1.383
200	6.431E-05	2.762	1.466	3.685E-04	2.722	1.445
400	2.306E-05	2.789	1.480	1.331E-04	2.769	1.469
800	8.231E-06	2.802	1.486	4.768E-05	2.792	1.481
1600	2.929E-06	2.810	1.491	1.700E-05	2.805	1.488
3200	1.040E-06	2.816	1.494	6.042E-06	2.814	1.492
6400	3.687 E-07	2.820	1.496	2.144E-06	2.818	1.495
12800	1.306E-07	2.823	1.497	$7.599\mathrm{E}\text{-}07$	2.821	1.496

Tabela E.2.5: Erros e ordens com o método (0.5, 1) sobre o teste 2

E.3 Método (0.5, 1) com o teste AV1-T3

Tabela E.3.1: Matriz C_4 com o método (0.5, 1) e K do teste 3

Tabela E.3.2: Matriz \mathcal{D}_4 com o método (0.5, 1) e K do teste 3

1.0000 -0.3846 1.0000 -0.1145 -0.3760 1.0000 -0.0458 -0.1129 -0.3717 1.0000 -0.0205 -0.0472 -0.1132 -0.3706 1.0000

Tabela E.3.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método $(0.5, 1) \in K$ do teste 3

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	1.8569	12	1.6238	0.059583	1.8569	0.0000
100	1.8982	11			1.8982	0.0000
200	1.9277	11			1.9395	0.0118
400	1.9488	10			1.9808	0.0320
800	1.9638	10			2.0221	0.0583
1600	1.9744	9			2.0634	0.0890
3200	1.9819	9			2.1047	0.1228

Tabela E.3.4: Aproximações usando o método (0.5, 1) sobre o teste 3 com N - 1 = 4

n	t_{n1}	$y(t_{n1})$	$u(t_{n1})$	δ_{n1}	e_{n1}
0	0.10	0.2013	0.2258	2.234E-02	-2.448E-02
1	0.30	0.3487	0.3604	2.113E- 02	-1.167E-02
2	0.50	0.4502	0.4613	2.547E-02	-1.117E-02
3	0.70	0.5326	0.5441	3.230E-02	-1.150E-02
4	0.90	0.6040	0.6154	4.082E-02	-1.147E-02

δ	Razão	Ordem do δ	e	Razão	Ordem do e
1.957E-03			6.986E-03		
9.873E-04	1.982	0.987	4.961E-03	1.408	0.494
4.960E-04	1.991	0.993	3.516E-03	1.411	0.497
2.486E-04	1.995	0.997	2.489E-03	1.413	0.498
1.244E-04	1.998	0.999	1.761E-03	1.413	0.499
6.226E-05	1.998	0.999	1.246E-03	1.413	0.499
3.114E-05	1.999	1.000	8.810E-04	1.414	0.500
1.557E-05	2.000	1.000	6.230E-04	1.414	0.500
7.787E-06	2.000	1.000	4.405E-04	1.414	0.500
	$\begin{array}{c} \delta \\ 1.957\text{E-}03 \\ 9.873\text{E-}04 \\ 4.960\text{E-}04 \\ 2.486\text{E-}04 \\ 1.244\text{E-}04 \\ 6.226\text{E-}05 \\ 3.114\text{E-}05 \\ 1.557\text{E-}05 \\ 7.787\text{E-}06 \end{array}$	δ Razão 1.957E-03 1.982 9.873E-04 1.982 4.960E-04 1.991 2.486E-04 1.995 1.244E-04 1.998 6.226E-05 1.998 3.114E-05 1.999 1.557E-05 2.000 7.787E-06 2.000	δ RazãoOrdem do δ 1.957E-039.873E-041.9820.9874.960E-041.9910.9932.486E-041.9950.9971.244E-041.9980.9996.226E-051.9980.9993.114E-051.9991.0001.557E-052.0001.0007.787E-062.0001.000	$\begin{array}{l ll} \delta & {\rm Razão} & {\rm Ordem \ do \ } \delta & e \\ \hline 1.957{\rm E}{\rm -}03 & & 6.986{\rm E}{\rm -}03 \\ 9.873{\rm E}{\rm -}04 & 1.982 & 0.987 & 4.961{\rm E}{\rm -}03 \\ 4.960{\rm E}{\rm -}04 & 1.991 & 0.993 & 3.516{\rm E}{\rm -}03 \\ 2.486{\rm E}{\rm -}04 & 1.995 & 0.997 & 2.489{\rm E}{\rm -}03 \\ 1.244{\rm E}{\rm -}04 & 1.998 & 0.999 & 1.761{\rm E}{\rm -}03 \\ 6.226{\rm E}{\rm -}05 & 1.998 & 0.999 & 1.246{\rm E}{\rm -}03 \\ 3.114{\rm E}{\rm -}05 & 1.999 & 1.000 & 8.810{\rm E}{\rm -}04 \\ 1.557{\rm E}{\rm -}05 & 2.000 & 1.000 & 6.230{\rm E}{\rm -}04 \\ 7.787{\rm E}{\rm -}06 & 2.000 & 1.000 & 4.405{\rm E}{\rm -}04 \\ \end{array}$	δ RazãoOrdem do δ e Razão1.957E-03 $6.986E-03$ $6.986E-03$ 9.873E-041.982 0.987 $4.961E-03$ 1.408 4.960E-041.991 0.993 $3.516E-03$ 1.411 2.486E-041.995 0.997 $2.489E-03$ 1.413 1.244E-041.998 0.999 $1.761E-03$ 1.413 $6.226E-05$ 1.998 0.999 $1.246E-03$ 1.413 $3.114E-05$ 1.999 1.000 $8.810E-04$ 1.414 $1.557E-05$ 2.000 1.000 $4.405E-04$ 1.414

Tabela E.3.5: Erros e ordens com o método (0.5, 1) sobre o teste 3

E.4 Método (0.5, 1, 0.8, 1) com o teste AV1-T1

Tabela E.4.1: Matriz C_4 com o método (0.5, 1, 0.8, 1) e K = 1

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
$0.4857 \\ 0.2002$	0.0357 -0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
$0.3698 \\ 0.1819$	$0.0143 \\ 0.0035$	$0.4857 \\ 0.2002$	0.0357 -0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
$\begin{array}{c} 0.3106 \\ 0.1634 \end{array}$	$0.0082 \\ 0.0028$	$0.3698 \\ 0.1819$	$0.0143 \\ 0.0035$	$0.4857 \\ 0.2002$	0.0357 -0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
$0.2731 \\ 0.1489$	$0.0055 \\ 0.0022$	$\begin{array}{c} 0.3106\\ 0.1634\end{array}$	$0.0082 \\ 0.0028$	$0.3698 \\ 0.1819$	$0.0143 \\ 0.0035$	$0.4857 \\ 0.2002$	0.0357 -0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$

Tabela E.4.2: Matriz \mathcal{D}_4 com o método (0.5, 1, 0.8, 1) e K = 1

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
-0.4857 -0.2002	-0.0357 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
-0.1267 -0.0848	$0.0030 \\ 0.0037$	-0.4857 -0.2002	-0.0357 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
-0.0636 -0.0491	$0.0034 \\ 0.0030$	-0.1267 -0.0848	$0.0030 \\ 0.0037$	-0.4857 -0.2002	-0.0357 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
-0.0399 -0.0329	$0.0027 \\ 0.0024$	-0.0636 -0.0491	$0.0034 \\ 0.0030$	-0.1267 -0.0848	$0.0030 \\ 0.0037$	-0.4857 -0.2002	-0.0357 0.0004	$1.0000 \\ 0.0000$	0.0000 1.0000

Tabela E.4.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método (0.5, 1, 0.8, 1) e K = 1

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	1.9794	11	1.8281	0.038664	1.9794	0.0000
100	2.0062	11			2.0062	0.0000
200	2.0253	11			2.0330	0.0077
400	2.0388	10			2.0598	0.0210
800	2.0484	10			2.0866	0.0382
1600	2.0551	9			2.1134	0.0583
3200	2.0599	9			2.1402	0.0803
6400	2.0633	9			2.1670	0.1037
12800	2.0657	8			2.1938	0.1281

Tabela E.4.4: Aproximações usando o método (0.5, 1, 0.8, 1) sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.10	0.0990	0.0986	-3.246E-04	4.263E-04
0	2	0.20	0.1920	0.1919	-2.896E-04	1.189E-04
1	1	0.30	0.2730	0.2713	-1.434E-03	1.664E-03
1	2	0.40	0.3360	0.3354	-1.308E-03	5.517E-04
2	1	0.50	0.3750	0.3719	-3.142E-03	3.111E-03
2	2	0.60	0.3840	0.3829	-2.899E-03	1.116E-03
3	1	0.70	0.3570	0.3523	-5.345E-03	4.655E-03
3	2	0.80	0.2880	0.2862	-4.971E-03	1.753E-03
4	1	0.90	0.1710	0.1647	-7.982E-03	6.256E-03
4	2	1.00	0.0000	-0.0024	-7.467E-03	2.437E-03

Tabela E.4.5: Erros e ordens com o método (0.5, 1, 0.8, 1) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.100E-04			8.495 E-05		
100	2.933E-05	3.750	1.907	2.249E-05	3.777	1.917
200	7.644E-06	3.837	1.940	5.828E-06	3.859	1.948
400	1.964E-06	3.892	1.961	1.491E-06	3.909	1.967
800	5.001E-07	3.927	1.974	3.783E-07	3.941	1.979
1600	1.266E-07	3.950	1.982	9.553E-08	3.960	1.986
3200	3.192E-08	3.966	1.988	2.404E-08	3.974	1.991
6400	8.027 E-09	3.977	1.992	6.039E-09	3.981	1.993
12800	2.015E-09	3.984	1.994	1.514E-09	3.988	1.996

E.5 Método (0.5, 1, 0.8, 1) com o teste AV1-T2

Tabela E.5.1: Matriz \mathcal{C}_4 com o método (0.5, 1, 0.8, 1) e K do teste 2

1.0000 0.0000	$0.0000 \\ 1.0000$								
$0.4395 \\ 0.1723$	0.0340 -0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
$\begin{array}{c} 0.3027 \\ 0.1417 \end{array}$	$0.0123 \\ 0.0028$	$0.4395 \\ 0.1723$	0.0340 -0.0004	$\begin{array}{c} 1.0000 \\ 0.0000 \end{array}$	$0.0000 \\ 1.0000$				
$\begin{array}{c} 0.2301 \\ 0.1152 \end{array}$	$0.0064 \\ 0.0021$	$\begin{array}{c} 0.3027 \\ 0.1417 \end{array}$	$0.0123 \\ 0.0028$	$0.4395 \\ 0.1723$	0.0340 -0.0004	$\begin{array}{c} 1.0000 \\ 0.0000 \end{array}$	$0.0000 \\ 1.0000$		
$\begin{array}{c} 0.1830 \\ 0.0950 \end{array}$	$0.0039 \\ 0.0015$	$\begin{array}{c} 0.2301 \\ 0.1152 \end{array}$	$0.0064 \\ 0.0021$	$\begin{array}{c} 0.3027 \\ 0.1417 \end{array}$	$0.0123 \\ 0.0028$	$0.4395 \\ 0.1723$	0.0340 -0.0004	$1.0000 \\ 0.0000$	$\begin{array}{c} 0.0000 \\ 1.0000 \end{array}$

Tabela E.5.2: Matriz \mathcal{D}_4 com o método (0.5, 1, 0.8, 1) e K do teste 2

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
-0.4395 -0.1723	-0.0340 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
-0.1037 -0.0660	$0.0026 \\ 0.0030$	-0.4395 -0.1723	-0.0340 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
-0.0471 -0.0346	$0.0027 \\ 0.0023$	-0.1037 -0.0660	$0.0026 \\ 0.0030$	-0.4395 -0.1723	-0.0340 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
-0.0267 -0.0210	$0.0019 \\ 0.0016$	-0.0471 -0.0346	$0.0027 \\ 0.0023$	-0.1037 -0.0660	$0.0026 \\ 0.0030$	-0.4395 -0.1723	-0.0340 0.0004	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$

Tabela E.5.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método $(0.5, 1, 0.8, 1) \in K$ do teste 2

N-1	Norma	Dígitos na norma	A	В	$A + B\ln\left(N - 1\right)$	Diferença
50	1.9396	12	1.7263	0.054534	1.9396	0.0000
100	1.9774	11			1.9774	0.0000
200	2.0046	11			2.0152	0.0106
400	2.0240	10			2.0530	0.0290
800	2.0378	10			2.0908	0.0530
1600	2.0476	9			2.1286	0.0810
3200	2.0546	9			2.1664	0.1118
6400	2.0595	9			2.2042	0.1447
12800	2.0630	8			2.2420	0.1790

Tabela E.5.4: Aproximações usando o método (0.5, 1, 0.8, 1) sobre o teste 2 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.10	0.0298	0.0421	3.637E-03	-1.236E-02
0	2	0.20	0.1219	0.1248	3.148E-03	-2.950E-03
1	1	0.30	0.1452	0.1428	9.310E-04	2.431E-03
1	2	0.40	0.1361	0.1355	8.910E-04	5.376E-04
2	1	0.50	0.1189	0.1184	6.467 E-04	5.390E-04
2	2	0.60	0.1017	0.1015	6.212E-04	2.131E-04
3	1	0.70	0.0865	0.0864	5.596E-04	1.208E-05
3	2	0.80	0.0736	0.0736	5.354E-04	3.553E-05
4	1	0.90	0.0629	0.0630	4.847E-04	-7.542E-05
4	2	1.00	0.0540	0.0540	4.642E-04	-1.379E-05

Tabela E.5.5: Erros e ordens com o método (0.5, 1, 0.8, 1) sobre o teste 2

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.597 E-05			2.316E-04		
100	1.034E-05	3.479	1.799	7.079E-05	3.272	1.710
200	2.816E-06	3.672	1.877	1.953E-05	3.625	1.858
400	7.499E-07	3.755	1.909	5.231E-06	3.734	1.901
800	1.958E-07	3.830	1.937	1.371E-06	3.815	1.932
1600	5.047 E-08	3.880	1.956	3.542E-07	3.871	1.953
3200	1.289E-08	3.915	1.969	9.062 E-08	3.909	1.967
6400	3.272E-09	3.939	1.978	2.303E-08	3.935	1.976
12800	8.269E-10	3.957	1.985	5.824E-09	3.954	1.983

E.6 Método (0.5, 1, 0.8, 1) com o teste AV1-T3

Tabela E.6.1: Matriz C_4 com o método (0.5, 1, 0.8, 1) e K do teste 3

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
$0.4548 \\ 0.1721$	0.0346 -0.0007	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
$\begin{array}{c} 0.3058 \\ 0.1335 \end{array}$	$0.0125 \\ 0.0026$	$0.4437 \\ 0.1682$	0.0342 -0.0006	$\begin{array}{c} 1.0000\\ 0.0000 \end{array}$	$0.0000 \\ 1.0000$				
$\begin{array}{c} 0.2188\\ 0.1004\end{array}$	$0.0062 \\ 0.0019$	$0.2969 \\ 0.1318$	$0.0122 \\ 0.0026$	$\begin{array}{c} 0.4379 \\ 0.1671 \end{array}$	0.0340 -0.0005	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
$0.1611 \\ 0.0762$	$0.0035 \\ 0.0012$	$0.2151 \\ 0.1014$	$0.0061 \\ 0.0019$	$0.2939 \\ 0.1326$	$0.0121 \\ 0.0027$	$0.4359 \\ 0.1676$	0.0339 -0.0005	$1.0000 \\ 0.0000$	0.0000 1.0000

Tabela E.6.2: Matriz \mathcal{D}_4 com o método (0.5, 1, 0.8, 1) e K do teste 3

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
-0.4548 -0.1721	-0.0346 0.0007	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
-0.0981 -0.0571	$0.0029 \\ 0.0032$	-0.4437 -0.1682	-0.0342 0.0006	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
-0.0368 -0.0236	$0.0027 \\ 0.0022$	-0.0969 -0.0577	$0.0027 \\ 0.0031$	-0.4379 -0.1671	-0.0340 0.0005	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
-0.0159 -0.0105	$0.0018 \\ 0.0014$	-0.0384 -0.0259	$0.0026 \\ 0.0022$	-0.0974 -0.0593	$0.0027 \\ 0.0030$	-0.4359 -0.1676	-0.0339 0.0005	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$

Tabela E.6.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método $(0.5, 1, 0.8, 1) \in K$ do teste 3

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	1.9270	12	1.6945	0.059439	1.9270	0.0000
100	1.9682	11			1.9682	0.0000
200	1.9980	11			2.0094	0.0114
400	2.0193	10			2.0506	0.0313
800	2.0345	10			2.0918	0.0573
1600	2.0453	9			2.1330	0.0877
3200	2.0529	9			2.1742	0.1213

Tabela E.6.4: Aproximações usando o método (0.5, 1, 0.8, 1) sobre o teste 3 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.10	0.2013	0.1944	-5.320E-03	6.888E-03
0	2	0.20	0.2847	0.2830	-4.721E-03	1.714E-03
1	1	0.30	0.3487	0.3471	-4.051E-03	1.582 E-03
1	2	0.40	0.4026	0.4021	-3.765E-03	4.843E-04
2	1	0.50	0.4502	0.4499	-3.045E-03	2.538E-04
2	2	0.60	0.4931	0.4932	-2.870E-03	-3.748E-05
3	1	0.70	0.5326	0.5329	-2.208E-03	-2.259E-04
3	2	0.80	0.5694	0.5697	-2.092E-03	-2.408E-04
4	1	0.90	0.6040	0.6043	-1.471E-03	-3.978E-04
4	2	1.00	0.6366	0.6369	-1.391E-03	-3.057E-04

Tabela E.6.5: Erros e ordens com o método (0.5, 1, 0.8, 1) sobre o teste 3

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	5.391E-04			2.259E-03		
100	2.723E-04	1.980	0.985	1.606E-03	1.407	0.492
200	1.368E-04	1.990	0.993	1.138E-03	1.411	0.497
400	6.859E-05	1.994	0.996	8.060E-04	1.412	0.498
800	3.434E-05	1.997	0.998	5.703E-04	1.413	0.499
1600	1.718E-05	1.999	0.999	4.034E-04	1.414	0.500
3200	8.592 E-06	2.000	1.000	2.853E-04	1.414	0.500
6400	4.297 E-06	2.000	1.000	2.017E-04	1.414	0.500
12800	2.149E-06	2.000	1.000	1.427E-04	1.414	0.500

E.7 Método $(G_1, G_2, 0.8, 1)$ com o teste AV1-T1

Tabela E.7.1: Matriz C_4 com o método $(G_1, G_2, 0.8, 1)$ e K = 1

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
$\begin{array}{c} 0.3046 \\ 0.1550 \end{array}$	$0.4026 \\ 0.1807$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
$\begin{array}{c} 0.2316 \\ 0.1277 \end{array}$	$0.2672 \\ 0.1416$	$\begin{array}{c} 0.3046 \\ 0.1550 \end{array}$	$0.4026 \\ 0.1807$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
$\begin{array}{c} 0.1937 \\ 0.1109 \end{array}$	$0.2132 \\ 0.1198$	$\begin{array}{c} 0.2316 \\ 0.1277 \end{array}$	$0.2672 \\ 0.1416$	$\begin{array}{c} 0.3046 \\ 0.1550 \end{array}$	$0.4026 \\ 0.1807$	$\begin{array}{c} 1.0000 \\ 0.0000 \end{array}$	$0.0000 \\ 1.0000$		
$\begin{array}{c} 0.1697 \\ 0.0994 \end{array}$	$0.1824 \\ 0.1056$	$\begin{array}{c} 0.1937 \\ 0.1109 \end{array}$	$0.2132 \\ 0.1198$	$\begin{array}{c} 0.2316 \\ 0.1277 \end{array}$	$0.2672 \\ 0.1416$	$\begin{array}{c} 0.3046 \\ 0.1550 \end{array}$	$0.4026 \\ 0.1807$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$

Tabela E.7.2: Matriz \mathcal{D}_4 com o método $(G_1, G_2, 0.8, 1) \in K = 1$

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
-0.3046 -0.1550	-0.4026 -0.1807	$1.0000 \\ 0.0000$	0.0000 1.0000						
-0.0764 -0.0525	-0.0718 -0.0466	-0.3046 -0.1550	-0.4026 -0.1807	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
-0.0373 -0.0288	-0.0310 -0.0232	-0.0764 -0.0525	-0.0718 -0.0466	-0.3046 -0.1550	-0.4026 -0.1807	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
-0.0230 -0.0189	-0.0180 -0.0145	-0.0373 -0.0288	-0.0310 -0.0232	-0.0764 -0.0525	-0.0718 -0.0466	-0.3046 -0.1550	-0.4026 -0.1807	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$

Tabela E.7.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método $(G_1, G_2, 0.8, 1)$ e K = 1

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	2.1554	11	2.0312	0.031739	2.1554	0.0000
100	2.1774	11			2.1774	0.0000
200	2.1929	10			2.1994	0.0065
400	2.2039	10			2.2214	0.0175
800	2.2117	9			2.2434	0.0317
1600	2.2172	9			2.2654	0.0482
3200	2.2211	9			2.2874	0.0663
6400	2.2239	8			2.3094	0.0855
12800	2.2258	8			2.3314	0.1056

Tabela E.7.4: Aproximações usando o método $(G_1, G_2, 0.8, 1)$ sobre o teste 1 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.042	0.045	2.798E-04	-2.513E-03
0	2	0.158	0.154	0.152	-4.884E-04	1.366E-03
1	1	0.242	0.228	0.234	7.525E-04	-6.275E-03
1	2	0.358	0.312	0.308	-1.214E-03	3.603E-03
2	1	0.442	0.356	0.366	1.222E-03	-9.782E-03
2	2	0.558	0.384	0.378	-1.942E-03	6.004 E-03
3	1	0.642	0.377	0.391	1.690E-03	-1.318E-02
3	2	0.758	0.323	0.314	-2.671E-03	8.489E-03
4	1	0.842	0.245	0.261	2.158E-03	-1.651E-02
4	2	0.958	0.079	0.068	-3.400E-03	1.102 E-02

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.090E-05			1.499E-04		
100	1.982E-06	5.501	2.460	3.761E-05	3.986	1.995
200	3.553E-07	5.578	2.480	9.374E-06	4.012	2.004
400	6.326E-08	5.617	2.490	2.332E-06	4.020	2.007
800	1.122E-08	5.637	2.495	5.802E-07	4.019	2.007
1600	1.987E-09	5.647	2.497	1.444E-07	4.017	2.006
3200	3.517E-10	5.652	2.499	3.599E-08	4.013	2.005
6400	6.220E-11	5.654	2.499	8.977E-09	4.010	2.003
12800	1.099E-11	5.659	2.501	2.238E-09	4.010	2.004

Tabela E.7.5: Erros e ordens com o método $(G_1, G_2, 0.8, 1)$ sobre o teste 1

E.8 Método $(G_1, G_2, 0.8, 1)$ com o teste AV1-T2

Tabela E.8.1: Matriz C_4 com o método $(G_1, G_2, 0.8, 1)$ e K do teste 2

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
$0.2756 \\ 0.1324$	$0.3860 \\ 0.1635$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
$0.1896 \\ 0.0987$	$0.2318 \\ 0.1160$	$0.2756 \\ 0.1324$	$0.3860 \\ 0.1635$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
$0.1435 \\ 0.0776$	$0.1673 \\ 0.0887$	$0.1896 \\ 0.0987$	$0.2318 \\ 0.1160$	$0.2756 \\ 0.1324$	$0.3860 \\ 0.1635$	$\begin{array}{c} 1.0000 \\ 0.0000 \end{array}$	$0.0000 \\ 1.0000$		
$0.1137 \\ 0.0629$	$0.1295 \\ 0.0708$	$0.1435 \\ 0.0776$	$0.1673 \\ 0.0887$	$0.1896 \\ 0.0987$	$0.2318 \\ 0.1160$	$0.2756 \\ 0.1324$	$0.3860 \\ 0.1635$	$1.0000 \\ 0.0000$	0.0000 1.0000

Tabela E.8.2: Matriz \mathcal{D}_4 com o método $(G_1, G_2, 0.8, 1)$ e K do teste 2

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
-0.2756 -0.1324	-0.3860 -0.1635	$1.0000 \\ 0.0000$	0.0000 1.0000						
-0.0626 -0.0406	-0.0623 -0.0381	-0.2756 -0.1324	-0.3860 -0.1635	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
-0.0276 -0.0201	-0.0243 -0.0172	-0.0626 -0.0406	-0.0623 -0.0381	-0.2756 -0.1324	-0.3860 -0.1635	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$		
-0.0154 -0.0119	-0.0128 -0.0097	-0.0276 -0.0201	-0.0243 -0.0172	-0.0626 -0.0406	-0.0623 -0.0381	-0.2756 -0.1324	-0.3860 -0.1635	$1.0000 \\ 0.0000$	0.0000 1.0000

Tabela E.8.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método $(G_1, G_2, 0.8, 1)$ e K do teste 2

N-1	Norma	Dígitos na norma	A	B	$A + B\ln\left(N - 1\right)$	Diferença
50	2.1208	11	1.9402	0.046166	2.1208	0.0000
100	2.1528	11			2.1528	0.0000
200	2.1755	10			2.1848	0.0093
400	2.1916	10			2.2168	0.0252
800	2.2030	9			2.2488	0.0458
1600	2.2111	9			2.2808	0.0697
3200	2.2168	9			2.3128	0.0960
6400	2.2208	8			2.3448	0.1240
12800	2.2236	8			2.3768	0.1532

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.000	-0.010	-1.306E-03	9.739E-03
0	2	0.158	0.091	0.091	-6.944E-04	5.709E-05
1	1	0.242	0.138	0.147	-8.580E-06	-8.677E-03
1	2	0.358	0.142	0.139	-8.286E-04	3.219E-03
2	1	0.442	0.129	0.129	-2.566E-04	3.100E-04
2	2	0.558	0.109	0.108	-2.582E-04	3.333E-04
3	1	0.642	0.095	0.094	-2.162E-04	5.669E-04
3	2	0.758	0.079	0.079	-1.590E-04	-1.219E-04
4	1	0.842	0.069	0.068	-1.691E-04	3.426E-04
4	2	0.958	0.058	0.058	-1.260E-04	-1.481E-04

Tabela E.8.4: Aproximações usando o método $(G_1, G_2, 0.8, 1)$ sobre o teste 2 com N - 1 = 4

Tabela E.8.5: Erros e ordens com o método $(G_1, G_2, 0.8, 1)$ sobre o teste 2

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do \boldsymbol{e}
50	1.676E-05			7.080E-04		
100	3.010E-06	5.567	2.477	1.695E-04	4.176	2.062
200	5.529E-07	5.445	2.445	4.104E-05	4.131	2.046
400	9.894E-08	5.588	2.482	9.906E-06	4.143	2.051
800	1.757E-08	5.633	2.494	2.408E-06	4.113	2.040
1600	3.111E-09	5.646	2.497	5.898E-07	4.084	2.030
3200	5.505E-10	5.652	2.499	1.452 E-07	4.060	2.022
6400	9.735E-11	5.654	2.499	3.592 E-08	4.043	2.016
12800	1.721E-11	5.656	2.500	8.912E-09	4.031	2.011

E.9 Método $(G_1, G_2, 0.8, 1)$ com o teste AV1-T3

Tabela E.9.1: Matriz C_4 com o método $(G_1, G_2, 0.8, 1)$ e K do teste 3

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
$0.2884 \\ 0.1363$	$0.3941 \\ 0.1671$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$						
$0.1942 \\ 0.0964$	$0.2367 \\ 0.1148$	$\begin{array}{c} 0.2802\\ 0.1318\end{array}$	$0.3894 \\ 0.1637$	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
$0.1379 \\ 0.0700$	$0.1637 \\ 0.0827$	$\begin{array}{c} 0.1872 \\ 0.0938 \end{array}$	$0.2309 \\ 0.1125$	$0.2756 \\ 0.1298$	$0.3867 \\ 0.1622$	$\begin{array}{c} 1.0000 \\ 0.0000 \end{array}$	$0.0000 \\ 1.0000$		
$0.1004 \\ 0.0518$	$0.1187 \\ 0.0614$	$\begin{array}{c} 0.1344 \\ 0.0694 \end{array}$	$0.1605 \\ 0.0822$	$0.1844 \\ 0.0933$	$0.2286 \\ 0.1121$	$0.2736 \\ 0.1295$	$0.3855 \\ 0.1619$	$1.0000 \\ 0.0000$	$\begin{array}{c} 0.0000 \\ 1.0000 \end{array}$

Tabela E.9.2: Matriz \mathcal{D}_4 com o método $(G_1, G_2, 0.8, 1)$ e K do teste 3

$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$								
-0.2884 -0.1363	-0.3941 -0.1671	$1.0000 \\ 0.0000$	0.0000 1.0000						
-0.0603 -0.0361	-0.0612 -0.0355	-0.2802 -0.1318	-0.3894 -0.1637	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$				
-0.0219 -0.0139	-0.0207 -0.0133	-0.0590 -0.0360	-0.0603 -0.0353	-0.2756 -0.1298	-0.3867 -0.1622	$1.0000 \\ 0.0000$	0.0000 1.0000		
-0.0091 -0.0058	-0.0087 -0.0058	-0.0226 -0.0151	-0.0212 -0.0140	-0.0589 -0.0366	-0.0602 -0.0357	-0.2736 -0.1295	-0.3855 -0.1619	$1.0000 \\ 0.0000$	$0.0000 \\ 1.0000$

Tabela E.9.3: Norma da \mathcal{D}_N , sua estimativa de dígitos corretos e sua curva de referência com o método $(G_1, G_2, 0.8, 1)$ e K do teste 3

N-1	Norma	Dígitos na norma	A	В	$A + B\ln\left(N - 1\right)$	Diferença
50	2.1100	11	1.9125	0.050494	2.1100	0.0000
100	2.1450	11			2.1450	0.0000
200	2.1700	10			2.1800	0.0100
400	2.1877	10			2.2150	0.0273
800	2.2002	9			2.2500	0.0498
1600	2.2091	9			2.2850	0.0759
3200	2.2154	9			2.3200	0.1046

Tabela E.9.4: Aproximações usando o método $(G_1, G_2, 0.8, 1)$ sobre o teste 3 com N - 1 = 4

n	i	t_{ni}	$y(t_{ni})$	$u(t_{ni})$	δ_{ni}	e_{ni}
0	1	0.042	0.131	0.142	7.913E-04	-1.114E-02
0	2	0.158	0.253	0.246	-2.930E-03	6.944E-03
1	1	0.242	0.313	0.313	-4.327E-04	-1.198E-04
1	2	0.358	0.381	0.379	-9.360E-04	1.672 E-03
2	1	0.442	0.423	0.423	-5.105E-04	5.313E-04
2	2	0.558	0.475	0.475	-5.247E-04	4.167 E-04
3	1	0.642	0.510	0.510	-5.206E-04	6.389E-04
3	2	0.758	0.554	0.554	-3.270E-04	-4.958E-05
4	1	0.842	0.584	0.584	-5.196E-04	6.230E-04
4	2	0.958	0.623	0.623	-2.022E-04	-2.378E-04

Tabela E.9.5: Erros e ordens com o método $(G_1, G_2, 0.8, 1)$ sobre o teste 3

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	3.032E-04			3.788E-03		
100	1.531E-04	1.980	0.985	2.694E-03	1.406	0.492
200	7.696E-05	1.990	0.993	1.910E-03	1.410	0.496
400	3.858E-05	1.995	0.996	1.352E-03	1.412	0.498
800	1.931E-05	1.997	0.998	9.567E-04	1.413	0.499
1600	9.662 E-06	1.999	0.999	6.767E-04	1.414	0.500
3200	4.833E-06	1.999	1.000	4.786E-04	1.414	0.500
6400	2.417E-06	2.000	1.000	3.384E-04	1.414	0.500
12800	1.208E-06	2.000	1.000	2.393E-04	1.414	0.500

E.10 Exemplos não convergentes

Tabela E.10.1: Norma da \mathcal{D}_N e sua estimativa de dígitos corretos com o método (0.5, 0.17) e K = 1

N-1	Norma	Dígitos na norma
50	$3.1066\mathrm{e}{+03}$	4
100		

Tabela E.10.2:	Erros e	ordens	com c) método ([0.5,	0.17) sobre o	teste	1
----------------	---------	--------	-------	------------	-------	------	-----------	-------	---

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	8.754E-04			$1.602E{+}00$		
100	3.141E-04	2.787	1.479	$1.882E{+}02$	-	-
200	1.119E-04	2.807	1.489	5.115E + 06	-	-
400	3.971E-05	2.818	1.495	7.500E + 15	-	-
800	1.407E-05	2.823	1.497	3.213E + 34	-	-

Tabela E.10.3: Norma da \mathcal{D}_N e sua estimativa de dígitos corretos com o método (0.5, 1.0, 0.2, 0.4) e K = 1

N-1	Norma	Dígitos na norma
50	$1.8176E{+}03$	10
100	$1.3274E{+}05$	10
200	$6.8990 \text{E}{+}08$	9
400	$1.8629E{+}16$	9
800	$1.3583E{+}31$	8

Tabela E.10.4: Erros e ordens com o método (0.5, 1.0, 0.2, 0.4) sobre o teste 1

N-1	δ	Razão	Ordem do δ	e	Razão	Ordem do e
50	1.492E-04			9.247E-02		
100	3.657 E-05	4.081	2.029	9.172 E-01	-	-
200	8.956E-06	4.083	2.030	$6.057\mathrm{E}{+}02$	-	-
400	2.199E-06	4.072	2.026	$2.060E{+}09$	-	-
800	5.421E-07	4.057	2.021	$1.884E{+}23$	-	-
Referências Bibliográficas

Referências principais:

[Atk74]	K. E. Atkinson - An existence theorem for Abel integral equations - SIAM, J. Math. An., V. 5, N. 5, October 1974
[Bru74]	H. Brunner - Global solution of the generalized Abel integral equation by implicit interpolation - Math. Comp., 28, pp. 61-67, 1974
[Bru86]	H. Brunner - On the history of numerical methods for Volterra integral equations - CWI Newsletter, No. 11, p.3-20, June 1986
[Bru04]	H. Brunner - Collocation Methods for Volterra Integral and Related Functional Differential Equations - Cambridge University Press, 2004
[DM86]	J. Dixon, S. McKee - Weakly singular discrete Gronwall inequalities ZAMM, J. of App. Math. and Mechanics, v. 66, n. 11, p. 535-544, 1986.
[Hac95]	W. Hackbusch - Integral equations: theory and numerical treatment - Birkhauser Verlag, 1995
[HHL08]	L. Huang, Y. Huang, X. F. Li - Approximate solution of Abel integral equation - Computers & Mathematics with Applications, v. 56, n. 7, p. 1748-1757, 2008.
[HW73]	F. de Hoog, R. Weiss - On the solution of a Volterra integral equation with a weakly singular kernel - SIAM, J. Math. An., v. 4, n. 4, p. 561-573, 1973.
[Lin85]	P. Linz - Analytical and Numerical Methods for Volterra Equations - SIAM, 1985
[MF71]	R. K. Miller, A. Feldstein - Smoothness of solutions of Volterra integral equations with weakly singular kernels - SIAM, J. Math. An., V. 2, N. 2, May 1971
[Moo65]	R. E. Moore - The automatic analysis and control of error in digital computation based on the use of interval numbers - Error in digital computation, v. 1, p. 61-130, 1965.
[WA72]	R. Weiss, R. S. Anderssen - A product integration method for a class of singular first kind Volterra equations - Numer. Math., v. 18, n. 5, p. 442-456, 1972

Trabalhos citados seguindo-se o texto de uma das referências principais:

- [Abe23] N. H. Abel Solution de quelques problemes a l'aide d'integrales definies Oeuvres completes I, 11-27, Grondahl & Son, Chiristiania, 1881
- [Bel65] B. A. Bel'tyukov An analogue of the Runge-Kutta method for the solution of nonlinear integral equations of Volterra type Differential Equations 1, 417-433, 1965
- [BHN82] H. Brunner, E. Hairer, S. P. Norsett Runge-Kutta theory for Volterra integral equations of the second kind Math. Comp. 39, 147-163, 1982

- [Bow76] J. M. Bownds On solving weakly singular Volterra equations of the first kind with Galerkin approximations - Math. Comp. 30, 747-757, 1976; corrigendum: Math. Comp. 31 (1977), 808
- [Bru85] H. Brunner The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes Math. Comp. 45, 417-437, 1985
- [Egg81] P. P. B. Eggermont Special discretization for the integral equation of image reconstruction and for Abel-type integral equations - Tech. Kept. MIPG50, Dept. Computer Science, State Univ. of New York at Buffalo, 1981.
- [Egg88] P. P. B. Eggermont On Galerkin methods for Abel-type integral equations SIAM J. Numer. Anal. 25, 1093-1117, 1988
- [Eval1] G. C. Evans Volterra's integral equation of the second kind with discontinuous kernel - Trans. Amer. Math. Soc. 11, 393-413; 12, 429-472, 1911
- [Hub39] A. Huber Eine Naherungsmethode zur Auflosung Volterrascher Integralgleichungen -Monatsh. Phys. 47, 240-246, 1939
- [Kry49] V. Krylov Application of the Euler-Laplace formula to approximate solution of integral equations of Volterra type Trudy Mat. Inst. Steklov 28, 33-72 (Russian), 1949
- [Lin69] P. Linz Numerical methods for Volterra integral equations of the first kind Comput. J. 12, 393-397, 1969
- [Lub83] C. Lubich On the stability of linear multistep methods for Volterra convolution equations - IMA J. Numer. Anal. 3, 439-465, 1983
- [Mik35] S. E. Mikeladze De la resolution numériques des équations intégrales Bull. Acad. Sci. URSS VII, NR. 2, 255-300, 1935
- [Pou63] P. Pouzet Etude en vue de leur traitement numérique des équations intégrales de type Volterra - Rev. Française Trait. Inform. Chiffres 6, 79-112, 1963
- [Pra24] G. Prasad On the numerical solution of integral equations Proc. Edinburgh Math. Soc. 42, 46-59, 1924
- [Rot82] S. Rothe Ein Quadraturformelverfahren zur Lösung Volterraschen Integralgleichungen erster Art - Diplomarbeit, Hahn-Meitner Institut und Technische Universität Berlin, 1982
- [Vol96] V. Volterra Sulla inversione digli integrali definiti Nota I, II, III, IV, Opere Matematiche, II, 216-254, Academia Nazionale dei Lincei, Roma, 1896
- [You54] A. Young The application of product integration to the numerical solution of integral equations Proc. Roy. Soc. London (A) 224, 561-573, 1954
- [Wag54] C. Wagner On the numerical solution of Volterra integral equations J. Math. Phys. 32, 289-301, 1954
- [Wei72] R. Weiss Product integration for the generalized Abel equation Math. Comp. 26, 177-190, 1972
- [Wol82] P. H. M. Wolkenfelt The construction of reducible quadrature rules for Volterra integral and integro-differential equations - IMA J. Numer. Anal. 2, 131-152, 1982