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Resumo

VINHAS BERTOLINI, M. Representações de Grupos e Árvores Reais. 2016. 60 f. Tese

(Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2016.

Nesta tese é provado que certas seqüências de ações isométricas hiperbólicas do grupo livre em

um número in�nito, enumerável, de geradores, ou convergem, ou divergem para uma ação isométrica

do grupo em uma árvore real. Isto aponta para uma generalização do Teorema de W. Thurston de

Hiperbolização de Suspensões Compactas para monodromias pseudo-Anosov generalizadas.

Palavras-chave: Grupos Kleinianos, Árvores Reais, Teorema de Hiperbolização.
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Abstract

VINHAS BERTOLINI, M.Group Representations and Real Trees. 2016. 60 f. Tese (Doutorado)

- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2016.

In this thesis we stablish that certain sequences of isometric hyperbolic actions of the free group

on an in�nite, countable, number of generators, either converge, or diverge to an isometric action

of the group on a real tree. This points towards a generalization of W. Thurston's Theorem of

Hyperbolization of Compact Mapping Tori for generalized pseudo-Anosov monodromies

Keywords: Kleinian Groups, Real Trees, Hyperbolization Theorem.
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Chapter 1

Introduction

This thesis partially full�ll a program that aims to generalize the following Theorem of W.

Thurston. For the relevant de�nitions, see Chapter 4.

Theorem 1 (Thurston on Hyperbolic Mapping Tori). Let S be a compact surface, orientable, and

of negative Euler characteristic. If a self-homeomorphism ϕ of S is isotopic to a pseudo-Anosov

map, then the associated mapping torus is hyperbolic.

In this case, the hyperbolic structure is of �nite volume, by compacity, and unique up to isometry,

by Mostow Rigidity. What we are after is to prove that the mapping torus is hyperbolic for punctured

generalized pseudo-Anosov ϕ, which are de�ned on compact surfaces with an in�nite number of

points removed. In this case, if the hyperbolic structure exist, it has in�nite volume. Experts on

the �eld seems to agree that Thurston's Theorem is valid when ϕ is a pseudo-Anosov map of a

compact surface with a �nite number of punctures, but even of this we know of no written proof.

In fact, the proof of Theorem above is a complicated story. A fair account should be given by more

experienced researchers on the topic, but here's a brief outline.

[Ril13] [Sul81, Thu82, Mor84, Thu98, Ota96, McM14, Kap01, Hub] [BB]
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Chapter 2

Kleinian Representations

This preliminary Chapter sets basic terminology and results on Kleinian representations and

groups. We start with the general notions of representation and action.

De�nition 2 (Representation, Action). Let G be a group. A representation of G is a group-

homomorphism ρ whose domain is G. An action of G on a set X is a representation of G in the

group of self-bijections of X. The action is conformal if X is a Riemann surface and, for each g ∈ G,
ρ(g) is a conformal automorphism; and is isometric if X is a metric space and, for each g ∈ G, ρ(g)

is an isometry. For such, it su�ces that it holds for every h in a generating set of G.

2.1 PSL2 C Basics

Consider the group PSL2 C of 2× 2 matrices of complex entries with determinant 1, quotiented

by the normal subgroup {±Id}. It is a complex manifold of dimension 3. Let Ĉ = C ∪ {∞} be the
Riemann sphere. The formula [

a b

c d

]
· z =

az + b

cz + d
, z ∈ Ĉ, (2.1)

de�ne an isomorphism of PSL2 C onto the group of conformal automorphisms of Ĉ. Then, PSL2 C
acts conformally on Ĉ. Recall that each conformal automorphism γ of Ĉ is completelly determined

by the images γ(0), γ(1) and γ(∞), which can be any 3 distinct points of Ĉ. This is in accordance

with the dimension of PSL2 C.
Consider the 3-dimensional hyperbolic space, which is the complete Riemannian manifold de�ned

by:

H3 = {(z, t) | z ∈ C, t > 0}, ds2 = t−2(dz2 + dt2).

Its geodesics are the euclidean circles and lines orthogonal to C. So, the endpoints of the geodesics
constitute the Riemann sphere, which is the sphere at in�nity of H3. Recall that each conformal

map γ of Ĉ is the composition of a pair of inversions on circles of Ĉ. Each such inversion extends

to an inversion on a euclidean sphere of H3, which is a orientation-reversing isometry of its metric.

Compositions of pairs of such inversions generate the orientation-preserving isometry group of H3,

and the conformal automorphisms of Ĉ are preciselly the values at in�nity of these isometries. This

stablishes an isomorphism between PSL2 C and the group of orientation-preserving istrometries of

H3. Then, PSL2 C acts isometrically on H3.

De�nition 3 (Translation Length). Let (X, d) be a metric space. For each isometry ϕ of X, the

3



4 KLEINIAN REPRESENTATIONS 2.1

associated translation length is de�ned by:

`(ϕ) = inf
x∈X

d(x, ϕ(x)).

In particular, each element of PSL2 C have a well-de�ned translation length, as an isometry of

H3. Also, recall that elements of PSL2 C have well-de�ned squared traces tr2.

Theorem 4 (Elements of PSL2 C up to Conjugacy). Every γ ∈ PSL2 C di�erent from the identity

is conjugated in PSL2 C to either:

1. The parabolic z 7→ z + 1. This is equivalent to `(γ) = 0, the in�mum not being attained in

H3.

2. The hyperbolic z 7→ λz, for preciselly one λ ∈ C with |λ| > 1. This is equivalent to `(γ) > 0,

the in�mum being attained in H3.

3. The elliptic z 7→ λz, for preciselly one λ in the unit circle, λ 6= 1.

Finish this.

Figure: parabolic, hyperbolic and elliptic transformations.

Proof. Let γ ∈ PSL2 C be di�erent from the identity, and consider the �xed-point equation γ(z) = z.

It is a second order equation and, therefore, γ has either 1 or 2 �xed points in Ĉ. Suppose that it
has only one, which gives Case 1 : let z0 be the �xed point, and conjugate γ by some element of

PSL2 C that takes z0 to ∞, turning γ into z 7→ az + b, for a, b ∈ C \ {0}. A second conjugation

turns it into z 7→ z + 1. Notice that z0 is the global attractor for the action of γ, both on Ĉ and on

H3. Also, notice that each horosphere centered at z0 is invariant by γ. See Figure ??.

Now suppose that γ �xes preciselly two points z0, z1 ∈ Ĉ. Then, it �xes setwise the geodesic

of H3 with endpoints z0 and z1, called its axis, which determine the pair {z0, z1}, and it is also

determined by it. First conjugate γ to take this pair to {0,∞}, turning γ into z 7→ λz, for preciselly

one complex number λ 6= 1. Up to conjugating with z 7→ 1/z, |λ| ≥ 1, with λ 6= 1 since γ is not the

identity.

Suppose that |λ| > 1, which gives Case 2. Then, up to conjugation with inversion z 7→ 1/z, 0

and ∞ are, respectivelly, global attractor and repeller for the dynamics of the conjugated γ, both

on Ĉ and on H3, and so is the pair {z0, z1} for the dynamics of γ. The restriction of γ to its axis

is the translation by an amount of log |λ| in the direction of the attracting �xed point, where the

ammount is measured in the hyperbolic distance: compute the distance in H3 from (0, 1) to (0, |λ|).
And if |λ| = 1 (Case 3 ), the axis in H3 is �xed pointwise, and γ is a rotation around it. This

kind of transformation will not appear in what follows.

For formulae relating the coe�cients of the complex matrix and the geometrical features of the

associated isometry of H3, see [Bea12] and [Kou91], and [Hub].

Notice that for parabolic and hyperbolic elements of PSL2 C, the correspondent actions on H3

are topologically conjugated to the unit translation of R3. They correspond to di�erent compacti-

�cations of its action, by one and by two limit-points at the in�nity. Meanwhile, elliptic elements

acts as a rotation. Recall that the order of and element g in a group G is the number of elements of

the subgroup generated by g. In PSL2 C, every element of �nite order is elliptic, and so these do not
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appear in torsion-free subgroups of PSL2 C. Also, elliptic elements with in�nite order are rotations

with irrational angle, and these do not appear in discrete subgroups of PSL2 C. So, in what follows,

we'll be mainly thinking about hyperbolic and parabolic elements of PSL2 C.

2.2 Kleinian Representations

A subset of PSL2 C is discrete if the only convergent sequences contained in it are the eventually

constant ones. So, a subgroup Γ of PSL2 C is discrete if, and only if, every sequence in Γ converging to

the identity is eventually equal to the identity. Discreteness is a strong assumption over a subgroup,

and its consequences can be seen as restrictions on the dynamics of the associated actions on Ĉ and

H3.

[Mar07, MT98, MSW02, Mas12, Kap01, BP12, Hub, Bea12]

De�nition 5 (Kleinian Representation). Let G be a group. A Kleinian representation of G is an

injective representation ρ : G→ PSL2 C whose image is a discrete subgroup of PSL2 C. The image

Γ = ρ(G) of a Kleinian representation ρ is called a Kleinian group.

It is important not to confuse a representation, that is a �xed isomorphism onto its image, with

the image itself. For instance, if Γ is a Kleinian group, each group automorphism of Γ is a Kleinian

representation of Γ, and any two of these give distinct representations, all of them with the same

image.

Notice that the existence of a Kleinian representation of a group implies that it contains at most

a countable number of elements, since the topology of PSL2 C admits a countable basis of open

sets. A more serious restriction, over the isomorphism type of the group, will now be explained.

Recall that if a group G acts on a set X, each x ∈ X have an associated orbit under the action,

which is the set {g · x ∈ X | g ∈ G}. The orbits decomposes X, and the associated quotient is

the orbit space X/G. Let Γ be a Kleinian group, and consider the projection π : H3 → H3/Γ.

The discreteness of Γ implies that, away from the axis of elliptic rotations, π is a Riemannian

covering map. Therefore, if Γ is torsion-free, π is a universal covering map, and Γ, being the group

of the covering transformations, is isomorphic to fundamental group of the 3-manifold H3/Γ. On

the other direction, if M is a complete Riemannian manifold of dimension 3 and constant sectional

curvature equal to −1, the classical Theorem of Hadamard states that the universal Riemannian

covering is isometric to H3. Therefore, M is isometric to H3/Γ, for some torsion-free Kleinian

group Γ isomorphic to the fundamental group of M . So, the possible isomorphism types of torsion-

free Kleinian groups are preciselly the ones of the fundamental groups of complete Riemannian

3-manifolds of constant sectional curvature equal to −1.

From the point of view of the geometry of the orbit space, what is important is the conjugacy

class in PSL2 C of a Kleinian group. It can be useful to have something �xed to prove results

(De�nition 7), but geometric features of a Kleinian group are all invariant under conjugation in

PSL2 C.

Proposition 6 (Conjugated Kleinian Groups). Let Γ and Γ′ be torsion-free Kleinian groups. The

orbit spaces H3/Γ and H3/Γ′ are isometric if, and only if, Γ and Γ′ are conjugated in PSL2 C.

Proof. This is just a matter of lifting and projecting isometries.

De�nition 7. A Kleinian representation ρ of a group G is normalized if there are distinguished

group elements g0, g1, g∞ ∈ G such that 0 is the attracting �xed point of ρ(g0), 1 is the attracting
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�xed point of ρ(g1), and ∞ is the attracting �xed point of ρ(g∞). Given g0, g1 and g∞, this

conditions �xes ρ inside its conjugacy class in PSL2 C.

Example 8 (Cyclic Kleinian Groups). Let Γ be generated by a single γ ∈ PSL2 C, assumed to

be di�erent from the identity. If γ has �nite order, then γ is elliptic, and the quotient H3/Γ is

homeomorphic to R3. The metric of H3 projects to a Riemannian metric of constant sectional

curvature −1 away from the projection of the axis of γ, around which the metric is conical with

total angle equal to the rotation angle of γ. Suppose now that γ have in�nite order. If γ is elliptic,

then Γ is not discrete, and therefore is not a Kleinian group. And if γ is hyperbolic or parabolic,

in any case the quotient H3/Γ is homeomorphic to S1 × R2. Its isometry type depends on γ, in

accordance with Proposition 6 and Theorem 9. If γ is hyperbolic, then free homotopy class of the

S1 factor contains an unique simple closed geodesic; and if γ is parabolic, this homotopy class

contains representatives with arbitrary short lengths. See also Figure ?? for an enlightning picture

in dimension 2.

Theorem 9 (Free Homotopy Classes). Let Γ be a torsion-free Kleinian group, and let π : H3 →
H3/Γ be the associated universal covering map. For each non-trivial simple closed curve c in H3/Γ:

1. Each connected component of π−1(c) have well-de�ned endpoints in Ĉ, and those are the �xed

points of some γ ∈ Γ. The conjugates α ◦ γ ◦ α−1, for α ∈ Γ, �xes preciselly the endpoints of

the components of π−1(c).

2. For any simple closed curve c′ freely homotopic to c in M , the components of π−1(c′) have

the same endpoints in Ĉ that the ones of the components of π−1(c).

3. If the endpoints of some component of π−1(c) coincide, then γ is a parabolic element of Γ. In

this case, the free homotopy class of c contain arbitrarily short simple closed curves.

4. If the endpoints of some component of π−1(c) are distinct, then γ is a hyperbolic element of

Γ. The axis of γ project to a simple closed geodesic that is the length-minimizer in the free

homotopy class of c, with length equal to the translation length of γ.

An important consequence of discreteness is the existence of a subset of Ĉ that encodes all

the possible ways of going to in�nity inside a Kleinian group Γ. For sequences in Γ of the form

γk = γk0 , for �xed γ0 ∈ Γ and k ≥ 0, Theorem 4 shows that, for any x ∈ H3 and any z ∈ Ĉ, the
sequences γk(x) and γk(z) converge to the attracting �xed point of γ. A similar thing is true for

every divergent sequence in Γ.

Proposition 10. Let Γ be a Kleinian group, and let γk ∈ Γ be a sequence. Suppose that γk is

divergent. Then, for any x ∈ H3 and any z ∈ Ĉ, possibly passing to a subsequence, the following

limits are equal to a point of Ĉ, that is independent of x and z:

lim
k→∞

γk(x) = lim
k→∞

γk(z) ∈ Ĉ, ∀x ∈ H3, z ∈ Ĉ. (2.2)

De�nition 11 (Limit and Regular Set). Let Γ be a Kleinian group. The limit set of Γ is the closure

in Ĉ of the set of all points of the form (2.2) for some divergent sequence γk ∈ Γ. Its complement

ΩΓ = Ĉ \ ΛΓ is the regular set of Γ.
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Example 12 (Elementary Kleinian Groups).

Example 13 (Schottky Groups).

Theorem 14 (Non-Elementary Kleinian Groups). A Kleinian group Γ is non-elementary if, and

only if, it has the following equivalent properties:

1. ΛΓ contains more than two points. In this case, it contains an uncountable number of points.

2. Γ contains a subgroup free on two generators consisting only of hyperbolic elements.

3. Γ do not contain Abelian subgroups of �nite index.

Comments on the Tits Alternative.

Proposition 15. Let Γ be a Kleinian group. If Γ′ is a normal subgroup of Γ, then ΛΓ′ = ΛΓ.

Theorem 16 (Jorgensen's Inequality). For any α, β ∈ PSL2 C, let [α, β] = αβα−1β−1 be the

commutator of α and β. If α and β generate a non-elementary discrete subgroup of PSL2 C, then

µ(α, β) = |(trα)2 − 4|+ | tr[α, β]− 2| ≥ 1.

where tr denotes the trace.

Proof. This is a computation with matrices, µ ≥ 1 end up being the condition for a certain sequence

of group elements do not acmulate on the identity. [Jør76]

Theorem 17 (Margulis' Lemma). There exist a constant r0 > 0 such that, for any torsion-free

Kleinian group Γ and any x ∈ H3, the set

{γ ∈ Γ | dH3(x, γ(x)) < r0}

generate an elementary subgroup of Γ.

Proof. Consequence of Jorgensen's Inequality.

2.3 Fuchsian Representations

Suppose that the limit set of a Kleinian group Γ is a round circle C of Ĉ. Suppose also that each
of the two connected components of Ĉ \C is invariant by Γ, so they're not permuted by the action

of Γ. Then, conjugate Γ by an element of PSL2 C that takes C to the circle S1 = R ∪ {∞}. Each
element of this conjugated Γ, as a matrix, have real entries, and belongs to PSL2 R. Converselly,
formula (2.1) shows that the elements of PSL2 R leaves invariant S1, and the upper and the lower

halfplanes, which are the components of Ĉ\S1. This next de�nition leaves out Kleinian groups that

are Fuchsian in disguise, but is the one that we are going to stick with.

[Kat92, Don11, Bon09, Bor07, Bea12]

De�nition 18 (Fuchsian Representation). Let G be a group. A Fuchsian representation of G is an

injective representation ρ : G→ PSL2 R whose image is a discrete subgroup of PSL2 R. The image

Γ = ρ(G) of a Fuchsian representation ρ is called a Fuchsian group.
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A discrete subgroup Γ of PSL2 R with ΛΓ = S1 usually is called a Fuchsian group of the �rst

kind, which here we incorporate on the de�nition of Fuchsian group. This assumption leaves out

preciselly the cases where ΛΓ is a Cantor set, called of the second kind, besides the elementary ones.

Conformal and isometric actions on H2. Hadamard Theorem in Dimension 2 and Uniformization

Theorem.

Punctures and not funnels.

The lower half-plane, and the surfaces at in�nity of H3/Γ.

Riemann surfaces at in�nity of H3/Γ for Kleinian Γ. Ahlfors Finiteness Theorem.

Deformations at in�nity.

2.4 Sequences of Kleinian Representations

De�nition 19 (Algebraic Convergence). Let G be a group, not necessarily �nitely generated. A

sequence ρn of Kleinian representations of G converges algebraically if, for every g ∈ G, the sequence
ρn(g) converges in PSL2 C, with no uniformity requirements here. For such, it su�ces that ρn(h)

converges in PSL2 C for every h in a generating set of G.

Theorem 20 (Chuckrow's Theorem). Let G be a group, not necessarily �nitely generated, and let

ρn be a sequence of non-elementary Kleinian representations of G. If ρn converges algebraically,

then

ρ∞(g) = lim
n→∞

ρn(g), g ∈ G,

de�ne a Kleinian representation of G.

Proof. Jorgensen's Inequality.

Example 21 (Sequences with common �xed points and limited traces). Since 0 is the attractor

�xed point of αn and ∞ is the attractor �xed point of βn,

αn(z) =
z

anz + a′n
and βn(z) = bnz + b′n, z ∈ Ĉ,

where an, a′n, bn, b
′
n are complex numbers with |a′n| > 1 and |bn| > 1. Also,

τ(αn) = log |a′n|, and τ(βn) = log |bn|,

where τ(αn) and τ(βn) are the translation lengths in H3. These translation lengths coincide with

τ(ρn(f−n(a))) and τ(ρn(f−n(b))), and those are limited by Control of Translation Lengths, giving:

τ(αn) < 2τ+
0 (a) and τ(βn) < 2τ+

0 (b), ∀n ≥ 0.

The same argument shows that τ(αnβn) is limited above by τ0(ab). Also, αnβn �xes the point 1,

which gives

an + a′n = bn(an + a′n) + b′n.

Therefore, |an| and |b′n| are also limited above, and this concludes the proof that αn and βn have

subsequences converging in PSL2 C to α and β.
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2.5 Quasiconformal and Quasi-Isometric Homeomorphisms

There are several ways of de�ning quasiconformality, which is a bound on the distortion dilatation?

of a homeomorphism. But distortion of what? It is possible to consider speci�c metrics, quadri-

laterals, annuli, cross-ratios, skews, and all these leads to interesting characterizations of qua-

siconformality. Probably the most acessible de�nition is the one for di�eomorphisms. But, for

the uses we have in mind, smoothness everywhere is not there. The de�nition below, of ana-

lytical nature, handles with that, and is the closest to the proof of Theorem 24, which is the

main reason for us to consider quasiconformal homeomoprhisms. For references on this, check

[AE66, LVL73, GL00, Hub06, DD08, Väi89].

De�nition 22 (Distributional Derivative, Locally Integrable). Let U be an open subset of Ĉ. A
function u de�ned on U have distributional partial derivative ux if, for every C∞ function ψ with

compact support in U , ∫∫
uψxdxdy = −

∫∫
uxψdxdy.

The distributional derivative ux is locally integrable if every point of U have a compact neighborhood

N for which
∫∫

N |ux|dxdy <∞. A homeomorphism w = u+ iv de�ned on U have locally integrable

distributional derivatives if all four of the partial derivatives ux,uy,vx, vy exist in the distributional

sense and are locally integrable. This is equivalent to the distributional derivatives ∂w/∂z and

∂w/∂z being locally integrable.

De�nition 23 (Quasiconformal Map). Let U be an open subset of Ĉ. A homeomorphism w of U

onto w(U) is quasiconformal if w has locally integrable distributional derivatives ∂w/∂z and ∂w/∂z
on U ; and there exist k < 1 such that ∣∣∣∣∂w∂z

∣∣∣∣ ≤ k ∣∣∣∣∂w∂z
∣∣∣∣ .

Such an w is called K-quasiconformal, for K = (1 + k)/(1− k). The function

µ(z) =
|∂w/∂z|
|∂w/∂z|

is the Beltrami coe�cient of ϕ.

Theorem 24 (Measurable Riemann Mapping Theorem). Let U be a domain of the Riemann sphere.

Given a measurable function µ : U → D with ||µ||∞ < 1, there exist a quasiconformal homeomor-

phism w : U → w(U) that solves the Beltrami equation

∂w

∂z
= µ

∂w

∂z
.

Any other solution of this Beltrami equation is w post-composed with a conformal map. In case

U = Ĉ, w is said to be normalized if it is the solution that �xes the points 0, 1 and ∞.

Theorem 25 (Uniformly Quasiconformal Maps). Let ϕn be a sequence of K-quasiconformal homeo-

morphisms of Ĉ. Assume that the sequences of points ϕn(0), ϕn(1) and ϕn(∞) are uniformly bounded

away one from each other. Then, ϕn have a subsequence that converges to a K-quasiconformal home-

omorphism ϕ∞ of Ĉ.
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De�nition 26 (Quasi-Isometric Homeomorphism). Let (X, dX) and (Y, dY ) be metric spaces, and

let ϕ : X → Y be a homeomorphism. The dilatation of ϕ is de�ned by:

dilϕ = sup
dY (ϕ(x1), ϕ(x2))

dX(x1, x2)
, (2.3)

where the supremum is taken over all distinct x1, x2 ∈ X. And the Lipschitz constant of ϕ is de�ned

by:

L(ϕ) = max{dilϕ,dilϕ−1}. (2.4)

The homeomorphism ϕ is quasi-isometric if L(ϕ) <∞. Notice that

L(ϕ1 ◦ · · · ◦ ϕN ) ≤ L(ϕ1) · · ·L(ϕN ). (2.5)

Quasi-isometric self-homeomorphisms of H3 are quasiconformal at in�nity. Converselly:

Theorem 27 (Visual Extension, McMullen B.23). Let Γ and Γ′ be torsion-free Kleinian groups,

and let ϕ be a K-quasiconformal conjugacy between Γ and Γ′. Then, ϕ extends to an equivariant

quasi-isometric homemorphism of H3, with bi-Lipschitz constant bounded by L = K3/2. It is called

the visual extension of ϕ, and induces the same group isomorphism than ϕ.



Chapter 3

Diverging to Isometric Actions on R-trees

The purpose of this chapter is to understand the divergence of certain sequences of isometric

group actions on a metric space. Supposing that the metric space is negativelly curved in the

sense of Section 3.2, limiting isometric actions of the group on R-trees will be constructed in

Section 3.3. The central result is Theorem 39. For �nitely generated groups, this and the related

results of Section 3.5 were �rst proved by J. Morgan and P. Shalen [MS84] in algebraic-geometrical

terms. Later, M. Bestvina [Bes88] and F. Paulin [Pau88] proved, independently, the same result,

by giving the same geometric argument, in slightly di�erent conceptual settings. See also [BS94].

This geometric argument was reorganized by J.-P. Otal [Ota96], where the R-tree is constructed in

terms of �Chiswell Functions�. Here, following [Bes02], the construction of the R-tree relies on the

Connecting the Dots Lemma 35, instead of Chiswell's formalism. In fact, for isometric actions, both

options end up being equivalent, and the main argument is the same. But the present approach

points towards possible further generalizations for quasi-isometric actions.

The basic phenomena behind �diverging to an R-tree� is the so-called �degeneration� of hyper-

bolic spaces when their metrics are re-scaled by a factor tending to zero. For instance, recall that

if a negativelly-curved metric is re-scaled as such, then the curvature tends to −∞. This can be

seen as geodesic triangles becoming in�nitely thin, as the ones in an R-tree. On the other hand,

under these re-scaling, the metric is expected to collapse to a single point. The trick is to re-scale in

accordance with a given divergent sequence of isometric actions, so the �sizes� of the actions stays

approximatelly constant, giving the desired limiting action.

Figure: degeneration of hyperbolic space.

So, the main object being considered here is:

De�nition 28 (Space of Isometric Actions). Let G be a group, and let X be a metric space. The

associated space of isometric actions is the set Rep(G,X) of representations of G in the isometry

group of X, with the topology of algebraic convergence: a sequence ρn ∈ Rep(G,X) is convergent if,

for each g ∈ G, ρn(g) converges, uniformly on compact subsets of X, to an isometry ρ∞(g) of X. For

such, it su�ces that it holds for every h in a generating set of G and, in this case, ρ∞ ∈ Rep(G,X).

Recall that being conjugated in IsomX is an equivalence relation, and denote by [Rep(G,X)] the

associated quotient space. Finally, call an isometric action ρ non-trivial if there exist x ∈ X and

g ∈ G such that ρ(g)(x) 6= x.

Notice that, for X = H3, this coincides with De�nition 19.

11
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3.1 Convergent Sequences

If ρn ∈ Rep(G,X) is convergent, then the sequence of displacements d(x0, ρn(g)(x0)) is conver-

gent, by continuity of d, for any x0 ∈ X. On the other direction, recall the classical technique to

extract a convergent subsequence of sequence of isometries:

Theorem 29 (Arzelà-Ascoli). Let (X, d) be a complete and separable metric space, and let ϕn be

a sequence of isometries of X. Suppose that there exist a point x0 ∈ X and a constant M > 0

such that, for every n ≥ 0, d(x0, ϕn(x0)) ≤ M . Then, ϕn contains a subsequence that converges,

uniformly on compact subsets of X, to an isometry of X.

Notice that, for any ρ ∈ Rep(G,X), with no assumptions on X, the displacement of a basepoint

x0 by a word g = h1 · · ·hN can be estimated, from above, in terms of the number N of letters, and

the displacement of the basepoint by each of the letters hj . This is a consequence of the triangle

inequality and the fact the ρ is isometric:

d(x0, ρ(g)(x0)) ≤
N∑
j=1

d(x0, ρ(hj)(x0)). (3.1)

Corollary 30. Let ρn ∈ Rep(G,X), and assume that X is complete and separable. Suppose that

there exist a countable generating set G of G and a basepoint x0 ∈ X, such that, for each h ∈ G,
d(x0, ρn(h)(x0)) ≤ Ch for some constant Ch. Then, ρn contains a convergent subsequence.

Proof. This is 3.1 and Cantor's Diagonal Argument. Fill in details.

In the result above it is important to keep the basepoint x0 �xed, or at least inside a compact

of X. For instance, suppose that ρn is a convergent sequence of Kleinian representations, and let

Ω be the regular set of its limit Kleinian representation. Suppose that Ω 6= ∅, and take a sequence

xn ∈ H3 converging to some point of Ω fast enough, so d(xn, ρn(g)(xn))→∞. This situation is also

covered by Theorem 39.

Anyway, if IsomX is big enough, it is possible to consider the displacements of a sequence

xn ∈ X of basepoints and, if those are limited, guarantee convergence in [Rep(G,X)]. Understand

by �big enough� that the action of IsomX on X is transitive: for any x1, x2 ∈ X, there exist

ϕ ∈ IsomX such that ϕ(x1) = x2. This can be replaced by the weaker assumption that there exist

a compact K ⊂ X such that every x can be taken to K by some isometry, but transitivity is enough

to us.

Corollary 31. Let ρn ∈ Rep(G,X), and assume that X is complete and separable, and that the

action of IsomX on X is transitive. Suppose that there exist a countable generating set G of G, and

a sequence of basepoints xn ∈ X, such that, for each g ∈ G and n ≥ 0, d(xn, ρn(g)(xn)) ≤ Cg for

some constant Cg. Then, [ρn] contains a subsequence that is convergent in [Rep(G,X)].

Proof. Fix a point x0 ∈ X, and take αn ∈ IsomX such that αn(xn) = x0, and de�ne the isometric

action ρ′n(g) = αn ◦ ρn(h) ◦ α−1
n . It belongs to [ρn] and, for each g ∈ G, ρ′n(g) moves x0 the same

limited amount that ρn(g) moves xn. So, Corollary 30 applies to ρ′n, and this �nishes the proof.



3.2 δ-HYPERBOLICITY AND R-TREES 13

3.2 δ-Hyperbolicity and R-trees

[Gro87, GdlH90]

De�nition 32 (δ-Hyperbolicity). Let (X, d) be a metric space. For each x0 ∈ X, the associated

Gromov product is, for each x, y ∈ X, equal to half the triangle di�erence of x0, x and y:

(x · y)x0 =
1

2
(d(x0, x) + d(x0, y)− d(x, y)). (3.2)

For δ ≥ 0, the space X is δ-hyperbolic if there exist x0 ∈ X such that, for any x, y, z ∈ X:

(x · y)x0 ≥ min{(x · z)x0 , (y · z)x0} − δ. (3.3)

Accordingly, a semi-metric on X is δ-hyperbolic if the corresponding quotient metric is δ-hyperbolic.

If X is δ-hyperbolic with respect to the basepoint x0, then it is 2δ-hyperbolic with respect to

any other x ∈ X. So, �hyperbolicity',' and �0-hyperbolicity�, are properties of the metric space itself,

independent of the choice of a basepoint. Also, if d is δ-hyperbolic, then the re-scaled λd, for λ > 0,

is λδ-hyperbolic.

As examples of δ-hyperbolic spaces, consider, in ascending degree of generality, the hyperbolic

spaces Hn, and simply connected geodesic metric spaces of negative curvature. In geodesic metric

spaces as such, δ-hyperbolicity is equivalent to the existence of a radius r = r(δ) such that, for

every geodesic triangle, the r-neighbourhood of any two of the sides contains the third one. See

[BBI01, BH99, Gro07] for the geometric theory on these spaces. Regarding 0-hyperbolic spaces,

De�nition 33 (R-tree). An R-tree is a metric space (T, d) such that, for every t0, t1 ∈ T , the

intersection of all connected sets containing t0 and t1 is isometric to the interval of length equal to

d(t0, t1). It is called the segment [t0, t1].

Every R-tree is a geodesic metric space in which, given two points, there is an unique shortest

path in T joining t0 and t1. Also, every R-tree is 0-hyperbolic, in accordance with all its geodesic

triangles being in�nitely thin, as in Figure ??. For points t0, t1 and t2 in an R-tree, the Gromov

product (t1 · t2)t0 is equal to the length of [t0, t1] ∩ [t0, t2]. So, in particular (t1 · t2)t0 = 0 if t1 and

t2 are in opposite sides of t0. Condition (3.3) is illustrated in Figure ??.

Figures: possible relative positions of points in an R-tree. Unusual metric

on R2.

First examples of R-trees are simplicial trees. On the other extreme, consider the set R2 with

the metric whose geodesics are depicted on Figure ??. In particular, it is not clear what a �vertex�

of an R-tree should be, unless one admits that these �vertices� can accumulate on each other. A

guiding example of R-tree, after Section 4.2, is:

Example 34 (R-trees From Measured Foliations). Let Γ be a Fuchsian group such that H2/Γ is

a compact surface, and let F be a measured foliation on H2/Γ, in the sense of Section 4.2. By

compacity, F have a �nite number of singularities. Assume that none of them is 1-pronged. Lift F
to a measured foliation F̃ of H2, and let dF̃ be the semi-metric associated to the transverse measure

of F . Then, the metric quotient H2/dF̃ is an R-tree, and Γ acts on it isometrically. See [Ota96] for

a proof.
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Lemma 35 (�Connecting The Dots�). Given a 0-hyperbolic semi-metric space (X, d) with at most

a countable number of elements, and a �xed basepoint x0 ∈ X, there exist an R-tree (T, dT ) and an

isometric embedding i : X → T such that:

1. No proper subtree of T contains i(X).

2. If j : X → T ′ is an isometric embedding of X into an R-tree T ′, then there is a unique

isometric embedding k : T → T ′ such that k ◦ i = j. Consequently, T is unique up to isometry.

3. If ρ is an isometric action of a group G on X, then there exist an isometric action ρ′ of G

on T such that, for every g ∈ G and x ∈ X, i(ρ(g)(x)) = ρ′(g)(i(x)).

Proof. Fill in details here.

For each x ∈ X, let Ix be the interval [0, d(x0, x)] with its standard metric. Then, glue isomet-

rically Ix1 to Ix2 through their sub-intervals [0, (x1 · x2)x0 ] (possibly degenerated to the points 0).

See Figure ??. The points 0 ∈ Ix all project to a same t0 ∈ T , and denote by x · t0 the projection

on T of d(x0, x) ∈ Ix. Notice that, for any g ∈ G, and any x, x′ ∈ X, the segments [x · t0, x′ · t0] and

[ρ(g)(x) · t0, ρ(g)(x′) · t0] have the same lengths, and this su�ces to de�ne ρ′.

Figure: gluing segments.

The 0-hyperbolic metrics of interest will appear as limits of sequences of semi-metrics.

De�nition 36 (Sequences of Semi-Metrics). A sequence dn of semi-metrics on a set X is convergent

if, for any x1, x2 ∈ X, the limit d∞(x1, x2) = limn→∞ dn(x1, x2) is �nite. In this case, d∞ de�ne a

semi-metric on X.

Proposition 37. Let dn be a sequence of δn-hyperbolic semi-metrics on a set X. Suppose that dn

converges to a semi-metric d∞ and that δn converges to δ∞ <∞. Then, d∞ is δ∞-hyperbolic.

Proof. Clear from the de�nition.

3.3 Divergent Sequences

In view of the results of Section 3.1, now it will be considered sequences ρn ∈ Rep(G,X) such

that, for some sequence of basepoints xn ∈ X and some g ∈ G, the displacements d(xn, ρn(g)(xn))

are unlimited. For instance, this is so if ρn is not convergent and xn = x0, for any �xed x0 ∈ X.

Notice that, in this case, by the estimate (3.1), every generating set of G contains some h with this

property.

De�nition 38 (Arboreal Sequences). A sequence ρn ∈ Rep(G,X) is arboreal if:

1. G has at most a countable number of elements and X is a δ-hyperbolic metric space.

2. There exist sequences xn ∈ X and Mn →∞ such that

d∞(g1, g2) = lim
n→∞

d(ρn(g1)(xn), ρn(g2)(xn))

Mn
(3.4)

is a non-trivial semi-metric on G. Here, non-trivial means that there exist g1, g2 ∈ G such that

d(g1, g2) 6= 0. In particular, the xn are not globally �xed by the action.
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In particular, if ρn is convergent, then it is not arboreal with respect to xn = x0, because

Mn → ∞ imply, in this case, that d∞ is trivial. But a convergent ρn can be arboreal for non-

constant xn.

Theorem 39. If ρn is an arboreal sequence, then there exist an R-tree (T, dT ), a basepoint t0 ∈ T ,
and a non-trivial isometric action ρ∞ of G on T , such that

d∞(g1, g2) = dT (ρ∞(g1)(t0), ρ∞(g2)(t0)), ∀g1, g2 ∈ G, (3.5)

where d∞ is de�ned by (3.4).

Proof. Let xn and Mn be as in De�nition 38. The following de�ne a sequence of semi-metrics on G:

dn(g1, g2) = d(ρn(g1)(xn), ρn(g2)(xn)), g1, g2 ∈ G. (3.6)

Since dn/Mn is (δ/Mn)-hyperbolic and Mn → ∞, d∞ is 0-hyperbolic. Now, for every g ∈ G,

d∞(gg1, gg2) = d∞(g1, g2), since this is so for each dn, because each ρn is isometric. So, G acts, by

multiplication on the left, isometrically on (G, d∞). The �Connecting The Dots� Lemma 35, then,

concludes the proof.

It is possible that a part ofG disappears in the limiting action given by Theorem 39. For instance,

if g ∈ G is such that d(x0, ρn(g)(x0))/Mn → 0, then the subgroup generated by g acts trivially

on the R-tree. In this sense, the worst that can happen is that the limiting action degenerate to a

Z-action, for Z being generated by b1.

Now, the question is, given ρn, wheter or not there exist xn and Mn as in De�nition 38. The

answer is �yes�, up to passing to a subsequence, for every divergent ρn if G is �nitely generated

(Proposition 41), and for certain divergent ρn if G is generated by an in�nite, countable, number

of elements (Theorem 46). The idea is to use the growth, in the sense of displacements, of a �nite

set F ⊂ G along ρn to control the growth of the whole group, in order to properly de�ne Mn.

De�nition 40 (Maximum Displacement Function). For each ρ ∈ Rep(G,X), �nite non-empty set

F ⊂ G, and x ∈ X, the associated maximum displacement is the quantity

M(ρ, F, x) = max
b∈F

d(x, ρ(b)(x)). (3.7)

It is the smallest radius of a ball centered at x that contains its images by the ρ(b), with b ∈ F . The
pair (F, x) should be thought as a referential from which the representation ρ will be measured. See

Figure ??. If ρn is divergent, then, for some F and any x0, the sequence M(ρn, F, x0) is unlimited.

Figure: basepoint and geodesics connecting it to its images by the elements

of F.

Proposition 41. If G is a �nitely generated group and X is a δ-hyperbolic metric space, every

divergent sequence ρn ∈ Rep(G,X) contains an arboreal subsequence.

Proof. Fill in details. Let G be any �nite generating set of G, and take Mn = M(ρn,G, x0)

for some �xed x0. The result follows from the triangle inequality, estimate (3.1), and Cantor's

Diagonal Argument.
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So, in order to get arboreal subsequences, it su�ces that, for some �nite set F ⊂ G and choice

of basepoints xn ∈ X, for every h in a generating set of G, there exist a non-negative constant Ch,

and a sequence of non-negative numbers C ′h,n, such that

d(xn, ρn(h)(xn)) ≤ ChM(ρn, F, xn) + C ′h,n, ∀n ≥ 0, (3.8)

and such that C ′h,n/M(ρn, F, xn) is limited above. Proposition 41 is the particular case in which

Ch = 1 and Ch,n = 0.

The results above are due to some generalization. De�nition 38 and Theorem 39 works, with the

same argument, if X is replaced by a sequence Xn of δn-hyperbolic spaces such that δn/Mn → 0.

The convergent case of Section 3.1 would require the understanding of some limiting space for the

group to act on.

And �nally, instead of considering isometric actions, one could consider �quasi-isometric� actions,

supposing that each ρ(g) is a only a quasi-isometric homeomorphism of X. Assuming uniformly

bounded bi-Lipschitz constants over the sequence, the convergent case, and the argument above

on the divergent case goes well. The R-tree can be constructed, but it is not clear how to de�ne a

quasi-isometric action of G on it. More preciselly, we don't know if item 3 of the Connecting The

Dots Lemma 35 holds. If so, Theorem 39 holds, and Proposition 41 can be proved with a small

adaptation on the estimate of the displacement of the basepoint by a word of the group. Write

estimate here.

3.4 The Modular Action

Maybe merge this into the next chapter.

The results of the previous Sections apply to an interesting class of sequences of isometric actions

of a group isomorphic to the free group on an in�nite, countable, number of generators. These

are obtained by keeping �xed the image of an initial representation of the group, but changing

the representation by pre-composing with iterates a group automorphism. The automorphism is

supposed to be �realizable� under the representation (De�nition 44). Also, the automorphism is

supposed to be generating (De�nition 45). Together, these two assumptions ensures that a �nite

number of group elements controls the growth of the group over the sequence of representations,

and this gives Theorem 46. The concepts are well-behaved under conjugation, so Theorem 48 is

obtained.

De�nition 42 (Inner and Outer Automorphisms). Let G be a group, and denote by AutG the

group of automorphisms of G. Automorphisms of the form g 7→ hgh−1 for some h ∈ G are called

inner automorphisms, and constitute the normal subgroup InnG of AutG. The associated quotient

is the outer automorphisms group of G:

OutG = AutG/ InnG. (3.9)

So, two automorphisms represents the same outer automorphism if, and only if, they are conjugated

by some element of G.

De�nition 43 (Modular Action). The formula f · ρ = ρ ◦ f−1 de�ne an action of AutG on

Rep(G,X), which quotient to the modular action of OutG on [Rep(G,X)].
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De�nition 44 (Quasi-Isometric Outer Automorphism). An outer automorphism [f ] is quasi-

isometric with respect to [ρ] if there exist a quasi-isometric homeomorphism ϕ of X such that

ρ(f(g)) = ϕ ◦ ρ(g) ◦ ϕ−1, ∀g ∈ G. (3.10)

If X = H2 or X = H3: being quasi-isometric with respect to a Kleinian representation is the

same that being induced in homotopy by a quasi-isometric homeomorphism of the orbit space.

In this case, ϕ in equation (3.10) is given by a lift of the homeomorphism. Every quasi-isometric

automorphism is type-preserving. And, by the classical Dehn-Nielsen Isomorphism Theorem, if Γ is a

�nitely generated Fuchsian group, then every type-preserving automorphism of Γ is quasi-isometric.

De�nition 45 (Generating Outer Automorphism). Let G be isomorphic to the free group on an

in�nite, countable, number of generators. A group automorphism f ∈ Aut Γ is generating if there

exist a generating set G of G, and a �nite set F ⊂ G, such that, for each h ∈ G, h = f◦k(b) for some

b ∈ F and k ∈ Z. Notice that f is generating if, and only if, f−1 is generating, and that to generate

G is a property of [f ] ∈ Out Γ. Also, f is generating if, and only if, the mapping torus group Γnf Z
is �nitelly generated.

We could also not require that F ⊂ G.

Theorem 46. Let G be a group isomorphic to the free group on an in�nite, countable, number of

generators, and let X be a δ-hyperbolic metric space. Suppose that f ∈ AutG is generating, and

quasi-isometric with respect ρ ∈ Rep(G,X). If the iterated sequence ρn = ρ ◦ f−n is divergent, then

it contains an arboreal subsequence.

Besides being quite simple, the next Proposition will be stated and proved separatedly, so

we can emphasize its relation to its analogous, Proposition 66, in the context of quasi-Fuchsian

representations.

Proposition 47. If [f ] is quasi-isometric with respect to [ρ], then it is quasi-isometric, with the

same bi-Lipschitz constant, with respect to every [ρn] = [f ]n · [ρ].

Proof. This is because the automorphism f commutes with itself, and by the equivariance equation

(3.10):

ρn(f(g)) = ρ(f−n ◦ f(g)) = ρ(f ◦ f−n(g)) = ϕ ◦ ρ(f−n(g)) ◦ ϕ−1 = ϕ ◦ ρn(g) ◦ ϕ−1. (3.11)

Proof of Theorem 46. Let ϕ be a quasi-isometric homeomorphism of X such that (3.10) holds. So,

for any k, n ≥ 0, xn ∈ X, and g ∈ G, equation (3.11) gives:

d(xn, ρn(f◦k(g)(xn)) = d(xn, ϕ
k ◦ ρn(g) ◦ ϕ−k(xn)).

Then, denoting by L the bi-Lipschitz constant of ϕ, using the triangle inequality, and that each
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ρn(g) is an isometry:

d(xn, ρn(f◦k(g)(xn)) = d(ϕk ◦ ϕ−k(xn), ϕk ◦ ρn(g) ◦ ϕ−k(xn)) (3.12)

≤ Lkd(ϕ−k(xn), ρn(g) ◦ ϕ−k(xn)) (3.13)

≤ Lk[d(ϕ−k(xn), xn) + d(xn, ρn(g)(xn)) (3.14)

+d(ρn(g)(xn), ρn(g) ◦ ϕ−k(xn))] (3.15)

= Lk[d(xn, ρn(g)(xn)) + 2d(xn, ϕ
−k(xn))]. (3.16)

Let G be a generating set as in De�nition 45. Since ρn is divergent, there exist h ∈ G such that,

for any x0 ∈ X, the sequence d(x0, ρn(h)(x0)) is unlimited. Since h = f◦k(b) for some k ∈ Z and

b ∈ F , the estimate above guarantee that d(x0, ρn(b)(x0))→∞. Then, M(ρn, F, x0)→∞. Also, it

follows from the estimate that

d(x0, ρn(h)(x0)) ≤ ChM(ρn, F, x0) + C ′h,

for Ch = Lk and C ′h = 2Lkd(x0, ϕ
−k(x0)). Theorem 39, then, stablishes the result.

Theorem 48. Let G be a group isomorphic to the free group on an in�nite, countable, number

of generators, and let X be a complete and separable δ-hyperbolic metric space such that IsomX

acts transitivelly on X. Suppose that [f ] ∈ OutG is generating, and quasi-isometric with respect to

[ρ] ∈ [Rep(G,X)]. Then, either [ρ]n = [f ]n · [ρ] contains a convergent subsequence, or it contains

an arboreal subsequence of representatives.

Question 49. Which conditions guarantee that an iterated sequence is divergent?

See also the discussion in the end of Section 4.2.

3.5 Further Properties

Now the discussion will be restricted to sequences of Kleinian representations, and correspondent

isometric actions on H3. If a sequence converges, then the limit de�ne a Kleinian representation,

by Chuckrow's Theorem 20. On the other hand, if a sequence is arboreal, we'll be able to:

1. Pass the Margulis Lemma 17 to the limiting actions on R-trees, in Proposition 52.

2. Use a bit of the knowledge about how isometries behave when x→∞, in Proposition 54, and

the fact that IsomH3 is big enough, to obtain �tight� limiting actions on R-trees in Proposition
55.

3. Understand how translation lengths pass to the limit, in Proposition 55.

These items are related to Example 34, and to the question of which isometric actions of a Fuchsian

group on an R-tree are of that form. More preciselly, we are thinking about:

Theorem 50 (Skora). Let Γ be a �nitelly generated Fuchsian group, and let ρ be an isometric

action of Γ on an R-tree T . Suppose that: ρ is non-trivial, have small arc stabilizers, is minimal,

and is such that the translation length of ρ(γ) is zero for every parabolic element γ ∈ Γ. Then, T is

isometric to an R-tree of the form discussed in Example 34.
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This needs fixing: either the example permits punctures, or this statement

avoids it.

The proof of the next results relies on the following technique for approximating distances on

an R-tree T associated to an arboreal sequence. For any t1, t2 ∈ T , take any g1, g2 ∈ G such that

t1 and t2 are in the segment I = [ρ∞(g1)(t0), ρ∞(g2)(t0)], and let x1,n and x2,n be the points of

the geodesic segment In = [ρn(g1)(xn), ρn(g2)(xn)] that divide it with the same proportions that t1
and t2 divide I. Then,

dT (t1, t2) = lim
n→∞

d(x1,n, x2,n)

Mn
.

See [Bes02] for more details.

We emphasize that the next results holds for divergent sequences of Kleinian iterated sequences

associated to generating and quasi-isometric automorphisms. In neither of them the group is as-

sumed to be �nitely generated. For the proofs, see [Ota96, Bes88, Bes02]. Write them here.

De�nition 51 (Small Arc Stabilizer). An isometric action of a group G on an R-tree T have

small arc stabilizers if the stabilizer of any arc in T under the action of G do not contain Abelian

subgroups of �nite index.

Proposition 52. If ρn is an arboreal sequence of non-elementary Kleinian representations of a

group G, then the ρ∞ given by Theorem 39 have small edge stabilizers.

De�nition 53 (Minimality). An isometric action on an R-tree is minimal if every invariant subtree
is either a single point or the whole R-tree.

Proposition 54. Let ρ be a Kleinian representation of a group G. Suppose that a �nite set F ⊂ G
contains at least two elements whose images by ρ �x di�erent points at in�nity. Then, the function

x 7→M(ρ, F, x) assumes a global minimum at some x = x(ρ, F ) ∈ Hn.

Proof. For each b ∈ F , moving x to in�nity makes d(x, ρ(b)(x)) goes to in�nity, except if x tends to

a �xed point of ρ(b). In this case, for b′ ∈ F with other �xed points, d(x, ρ(b′)(x)) goes to in�nity,

and the maximum in question goes to in�nity whenever x→∞. By continuity, this su�ces to prove

that the minimum is attained.

Proposition 55. Let ρn be a sequence of non-elementary Kleinian representations of a group G,

let F ⊂ G be a �nite set containing elements h1 and h2 such that ρn(h1) and ρn(h2) �xes distinct

points at in�nity, and let xn ∈ H3 be the minimum of x 7→ M(ρn, F, x) given by Proposition 54.

If ρn is arboreal with respect to xn and Mn = M(ρn, F, xn), then the ρ∞ given by Theorem 39 is

minimal, and

`T (ρ∞(g)) = lim
n→∞

`(ρn(g))

Mn
, ∀g ∈ G.
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Chapter 4

Hyperbolization of Mapping Tori

4.1 Mapping Tori

De�nition 56 (Mapping Torus). Let S be a topological surface, oriented, and let ϕ be an orientation-

preserving self-homeomorphism of S. The associated mapping torus is the oriented topological 3-

manifold Mϕ de�ned as the quotient:

Mϕ = S × [0, 1]/(x, 1) ∼ (ϕ(x), 0). (4.1)

The homeomorphism ϕ is called the monodromy of the mapping torus. The topological type of Mϕ

depends only on the isotopy class of ϕ: if ϕ′ is isotopic to ϕ, then Mϕ′ is homeomorphic to Mϕ.

Figure: example on a punctured surface, figure eight braid, compact fiber.

The inclusion S → S × {0} and the projection S × [0, 1] → [0, 1] pass to the quotient as a

�bration

S →Mϕ → S1. (4.2)

And every oriented 3-manifold M that �bers over S1 with an oriented surface S as the �ber is of

this form for some ϕ: cut out a �ber of M to get a S × [0, 1] and de�ne ϕ as the homeomorphism

that glues back S × {0} to S × {1} to produce M .

Question 57 (Hyperbolization of Mapping Tori). Given S and ϕ, we are interested in �nding a

Kleinian group Γ such that Mϕ is homeomorphic to H3/Γ. This is equivalent to de�ning on Mϕ

a complete Riemannian metric of constant sectional curvature equal to −1. In case it exists, the

mapping torus Mϕ is said to be hyperbolic.

Our approach to this Question is to follow the proof of Thurston's celebrated Theorem below

for compact surfaces and pseudo-Anosov monodromy, trying to relax the hypothesis and adapt the

argument for the case of the in�nitely punctured surfaces associated to generalized pseudo-Anosov

mondromies. For references and a bit on the complicated development of the proof of this Theorem,

see the Introduction.

Theorem 58 (Thurston on Compact Mapping Tori). Let S be a compact surface, orientable, and

of negative Euler characteristic. For each self-homeomorphism ϕ of S, Mϕ is hyperbolic if, and only

if, ϕ is isotopic to a pseudo-Anosov map of S.

If Γ as in Question 57 exist, it is isomorphic to the fundamental group of Mϕ. So, to begin,

this fundamental group will be described. Here, S do not need to be compact. Denote G = π1(S, ∗)
for a �xed basepoint ∗ ∈ S, and �x a generator t of π1(S1, [0]), identifying it with Z. Also, denote

21
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Ĝ = π1(Mϕ, [∗, 0]). The short exact sequence of fundamental groups corresponding to the �bration

(4.2) is, then:

{e} → G→ Ĝ→ Z→ {e}. (4.3)

This sequence, or the van Kampen Theorem, gives the presentation

Ĝ = Gnf Z = 〈G, t | f(g) = t−1gt for each g ∈ G〉, (4.4)

where f = ϕ# ∈ AutG is induced by ϕ. Therefore, if Mϕ is homeomorphic to H3/Γ for a Kleinian

group Γ, then Γ is isomorphic to Ĝ.

Given G and f , we ask if there exist a Kleinian representation ρ̂ of Ĝ. Notice that, in this case, ρ̂

restricts to a Kleinian representation ofG. Suppose for a moment that such ρ̂ exist. SinceG is normal

in Ĝ, the limit set of ρ̂(G) coincide with the limit set of ρ̂(Ĝ), by Proposition 15. In particular, if

S is compact, and so Mϕ is compact, the limit set of ρ̂(G) is the whole sphere Ĉ. This is a very

interesting property of ρ̂. It implies, for instance, that a connected component of the pre-image in

H3 of a �ber of (4.2) acumulate on every point of Ĉ. Also, ρ̂ gives G a boundary at in�nity which

is topologically a 2-sphere, instead of the circle given by any Fuchsian representations of G. It is

possible to show that there exist a continuous and surjective ρ(G)-equivariant map S1 → S2 relating

both, and this is known as the Cannon-Thurston Map [CT07]. See Figure ?? and the discussion

before it. We are not going to give precise statements and proofs of this, but it is clarifying to keep

this fact in mind along the following constructions.

Back to the general case, recall that f = ϕ# is determined by the choice of a homotopy class

of paths from ∗ to ϕ(∗) (rel. extremities). This is so even if ∗ is a �xed-point of ϕ. Di�erent

choices results in automorphisms conjugated in G, and the homeomorphism ϕ itself determine

[f ] ∈ OutG (42). Any homeomorphism of S isotopic to ϕ determine the same outer automorphism,

and reciprocally, provided that the correct identi�cation between fundamental groups with di�erent

basepoints are made. This is in accordance with the dependence of the topological type ofMϕ being

only on the isotopy class of ϕ. Understanding that the mapping class group of S is the group of

isotopy classes of homeomorphisms of S, an injective group homomorphism of the mapping class

group of S on OutG is well-de�ned. See [FM12, Hat02] for details.

To assume that S is orientable and have negative Euler characteristic, possibly −∞, ensures

that we can assume, without loss of generality, that S = H2/Γ, where Γ is a Fuchsian group, well-

de�ned up to conjugacy in PSL2 R, and isomorphic to G. So, we'll also assume G = Γ. But recall

that our de�nition of Fuchsian group assumes that ΛΓ = S1. If S is compact, this is always the

case. But for non-compact S, this imposes a restriction, namelly that H2/Γ have punctures, but

no funnels � see Figure ??. We require that ϕ respect this type of non-compacity, and do not open

punctures into funnels. For such, it su�ces to assume that ϕ is a quasiconformal, or quasi-isometric,

homeomorphism of H2/Γ. For Fuchsian groups arising from generalized pseudo-Anosov maps this

is always the case.

Take a lift ϕ̃ of ϕ, which is a quasiconformal, or quasi-isometric, homeomorphism of H2. It

determines the choice of automorphism f inside its class in Out Γ and, reciprocally, the choice of

the automorphism determines a lift, in the sense that they're related by the following equivariance

equation:

f(γ)(z) = ϕ̃ ◦ γ ◦ ϕ̃−1(z), ∀z ∈ H2, γ ∈ Γ. (4.5)
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In the perspective of De�nition 44, this is to say that f ∈ Aut Γ, and its class [f ] ∈ Out Γ, are quasi-

isometric, or quasiconformal, with respect to the Fuchsian representation idΓ. In particular, they're

topological. For �nitely generated Γ, the Dehn-Nielsen Isomorphism Theorem stablishes that every

type-preserving group automorphism of Γ is topological (see [FM12]). This is known to not be true

for in�nitely generated Γ. Anyway, thinking about Question 57, the involved group automorphisms

are topological a priori.

Notice that equation (4.5) ressembles the relation that de�ne the group Ĝ. For a moment, de�ne

ρ̂(γ) = γ, for γ ∈ Γ, and ρ̂(t) = ϕ̃. Then, by (4.5), ρ̂ is a �representation� of Ĝ. But it is not the

one we want. A �rst issue is that ρ̂ is an action of Ĝ on H2, and not on Ĉ. But this is no big deal,

since the γ's are de�ned on Ĉ, and ϕ̃ can be extended so equation (4.5) is true on the whole sphere

� see equation (4.8). Now, the γ's are conformal on Ĉ, but ϕ̃ is not. This points towards looking

to this wrong ρ̂ as a quasiconformal, or quasi-isometric, representation � see the comments in the

end of Section 3.3. This approach have not been pursued. Notice that this kind of representation

should not be confused with the �quasiconformal groups� in the sense of Tukia [Tuk86], since the

quasiconformal dilatations of iterates of ϕ̃ are growing to in�nity.

The strategy that works to tackle Question 57 is to produce convergent sequences Γn and ϕ̃n

of deformations of Γ and ϕ̃, keeping equivariance valid along the sequences, and also for the limits

Γ∞ and ϕ̃∞. This is done in a way that ϕ̃∞ end up being conformal, and not only quasiconformal,

so the attempt to de�ne ρ̂ of the last paragraph becomes right. This will be explained in Sections

4.3 and 4.4. Before that, the meaning of �pseudo-Anosov� is in order.

4.2 Generalized pseudo-Anosov Maps

Classical pseudo-Anosov maps were introduced by W. Thurston as canonical representatives of

aperiodic and irreducible isotopy classes of homeomorphisms of a surface of �nite topological type. A

lot is known about them nowadays, and standard material on the Nielsen-Thurston Classi�cation

include [Thu88, Ber78, FLP79, CB88, BH95]; while [Hub06, FM12] are more recent references,

where an extended bibliography can be found. Their property that passes to their generalized

version, in the sense introduced by A. de Carvalho [dC05, dCH04], is the simulteneous expanding

and contracting dynamical behaviour, in the fashion of Smale's Horseshoe and Markov Partitions.

See Figure ??. They should not be thought as canonical representatives of homotopy classes and,

in fact, a lot of examples are de�ned on topological 2-spheres. Anyway, puncturing orbits brings

back some topology, as we shall see.

Figure: simplified picture showing the action of a pA.

Define measured foliation.

De�nition 59 (Generalized pseudo-Anosov Map). A generalized pseudo-Anosov map is a homeo-

morphism φ of a surface S such that:

1. There exist a �nite φ-invariant set Σ ⊂ S, and a pair of φ-invariant transverse measured

foliations on S \ Σ, such that φ expands one of the foliations by a multiplier λ > 1, and

contracts the other by 1/λ (see Figure ??).

2. The foliations can have singularities of the types on Figure 4.1, and an in�nite number of

singularities is allowed, provided that they accumulate only on the �nite set Σ (see Figure

4.2).
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If Σ = ∅ and there are no 1-pronged singularities, φ is a non-generalized, or classical, pseudo-Anosov

map.

Figure 4.1: Singularities admited in the foliations associated to a generalized pseudo-Anosov map. One of

the foliations is drawn in full lines, and the other on dotted lines. Any �nite number 6= 2 of leafs meeting in

a singularity is permited, and this number is called the number of prongs of the singularity.

Figure 4.2: 1 and 3-pronged singularities accumulating in one point.

Example 60 (The Tight Horseshoe). Following Figure 4.3, take the unit square, and transform it

linearly in a rectangular stripe with height 1/2 and width 2. Then, cut along the central vertical of

the stripe, and glue isometrically the top sides of the obtained rectangles as indicated. In order that

this de�ne a homeomorphism of a Hausdor� topological space, points of the square's frontier need

to be identi�ed as in Figure 4.4. Dotted lines outside the square connect points of its frontier that

are identi�ed to each other, and an in�nite number of foldings centered at the • points accumulate
on the inferior vertex on the left. The equivalence class of this vertex are the points marked with ×.
By a classical theorem of R. Moore on monotone and upper semi-continuous decompositions of the

2-sphere, the quotient S is topologically a 2-sphere (see [dCH10, dCH12, dCH11] for details). The

tight horseshoe is the self-homeomorphism of S obtained by this construction, and is a generalized

pseudo-Anosov map. The horizontal and vertical foliations of the square, with the euclidean length,

project to the invariant transverse measured foliations on S \ {×}. The horizontal one is expanded,
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while the vertical is contracted. The multiplier is equal to 2. The points • are 1-pronged singularities

accumulating on the point ×.

Figure 4.3: The de�nition of the Tight Horseshoe map.

Let φ be the tight horseshoe constructed above. The euclidean metric of the square project to a

complete geodesic metric on S, called the paper model of φ. This metric is conic-�at on S\{×}, with
conical angle π around each • point. In view of the Gauss-Bonnet Theorem on Compact Surfaces,

applied to S, the point × must carry in�nite negative curvature. A �ner understanding of how S

compacti�es S \ {×}, in the metric sense, should appear in the future. For instance, notice that no

geodesic ray of the square starting at the inferior vertex on the left projects to a geodesic of S. In

fact, the projections do not de�ne directions of ×. In [Ber12], a certain metric space of directions

of × is recognized as being the real line, which goes along × having an in�nite total angle around

it.

From the conformal point of view, the paper model de�ne a conformal structure on S \ {×}, by
correcting to 2π the total angle around each •, using z 7→ z2 to de�ne coordinate charts. Then, φ is

a λ2-quasiconformal map of this structure, for λ = 2. In [dC05, dCH04, dCH12, dCH11] it is proved

that this conformal structure on S \ {×} extends uniquelly to a conformal structure on S. So, after

uniformizing, S is the Riemann sphere Ĉ, of which φ is a λ2-quasiconformal homeomorphism.

De�ne S∗ as the open subsurface of S obtained by removing × and the • points. Since they

constitute a φ-invariant set, φ is a homeomorphism of S∗. For a �xed basepoint ∗ ∈ S∗, the loops
based at ∗ that go one time around each • generate the fundamental group G = π1(S∗, ∗), �xing
an isomorphism of G onto the free group on an in�nite, countable, number of generators. Fix an

automorphism f = φ# of G induced by φ, and name the generators hi in a way that f(hi) = hi+1

except for a �nite number of hi. See Figure ??.

Figure: homotopy of the tight horseshoe - on the square, topologically
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Figure 4.4: The domain of the Tight Horseshoe map, and its transverse measured foliations. The • points
are 1-pronged singularities that accumulate on the × point.

on a sphere, and the braid.

So, there exist a �nite set F = {h1, . . . , hN} such that every generator is equal to fk(hi) for

some i = 1, . . . , N and k ∈ Z. This is preciselly to say that f is generating, in the sense of De�nition

45. Notice that, besides G being free on an in�nite, countable, number of generators, the �nite set

F ∪ {t} generate the associated mapping torus group Ĝ = G nf Z. For future statements, the

following will be usefull:

De�nition 61 (Generating Homeomorphism). Let S be a surface with fundamental group isomor-

phic to the free group on an in�nite, countable, number of generators. A homeomorphism of S is

generating if the automorphism it induces in homotopy is generating in the sense of De�nition 45.

As an open Riemann subsurface of Ĉ, S∗ is also a Riemann surface, of which φ is a λ2-

quasiconformal homeomorphism. Since the number of points removed is greater than 2, after uni-

formizing, S∗ determine the conjugacy class of Fuchsian group Γ isomorphic to G. Identifying

S∗ = H2/Γ, the tight horseshoe φ is in the context of the last section. Figure ?? gives a sketch

of a fundamental domain of the associated action on H2. The generators of G de�ned above cor-

respond to parabolic elements γi of Γ, since their free homotopy classes contain arbitrarily short

representatives, namelly the ones that shrinks to the corresponding puncture. Any lift φ̃ of φ takes

the conjugacy class [γi] to [γi+1].

Not much is known about the length spectrum of Γ, but this should appear in the future.

For instance, changing to hyperbolic generators related to each other as the parabolic above, the

equivariance equation (4.5) opens the possibility of relating their sizes by the bi-Lipschitz constant
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of φ̃, and maybe this end-up being a good �rst step on understanding the full length spectrum of

Γ. Anyway, this has not been pursued yet.

Figure: a fundamental domain and the “flute surface” of the tight horseshoe.

In [dCH04], a big family of generalized pseudo-Anosov maps is constructed from graph endo-

morphisms using Peron-Frobenius Theory. The tight horseshoe is the particular case that originates

from the graph endomorphism of Figure ??, which is same that the tent map of [0, 1] with slope ±2

and critical point 1/2. For another example, consider Figures ?? and ??. The description above for

the tight horseshoe works as a program on every known generalized pseudo-Anosov map considered

in [dC05, dCH04, dCH12, dCH11]. This includes realization as quasiconformal homeomorphisms

of Riemann surfaces, and being puncturable in a way that produces generating automorphisms in

homotopy.

Figures: other gpA.

Let's put things in the terms of Chapter 3. Consider a classical pseudo-Anosov homeomorphism

φ, realized as a quasiconformal homeomorphism of a compact H2/Γ, and let f ∈ Aut Γ be induced in

homotopy by φ. The iterated sequence of Fuchsian representations of Γ de�ned by ρn(γ) = f−n(γ) is

known to be divergent and, since Γ is �nitely generated, it is arboreal. Therefore, possibly passing

to a subsequence, it determine an isometric action of Γ on an R-tree. This can be shown to be

the same that the one obtained, as in Example 34, from the contracting foliation of φ. The same

reasoning applied to φ−1 gives the expanding foliation. For generalized pseudo-Anosov maps, a �rst

question is: does the iterated sequences associated to a generalized pseudo-Anosov and its inverse

diverge? See also Question ??. If so, by the generating property, Proposition 46 establishes that the

sequences are arboreal, and therefore determine a pair of isometric actions on R-trees. A second

question is, then, if these coincide with the ones arising from the foliations.

Starting from an arbitrary quasiconformal map of H2/Γ, and looking to the iterated sequences

of Fuchsian representations associated to the map and its inverse, gives an approach to the Nielsen-

Thurston Classi�cation mentioned in the begining of the Section. Suppose that these sequences

diverge, and assume that H2/Γ is �nitely generated. Then, the sequences are arboreal, and de-

termine isometric actions on R-trees that are in the conditions of Skora's Theorem 50. Therefore,

they determine a pair of measured foliations on H2/Γ. This, in fact, characterizes pseudo-Anosov

homeomorphisms in terms of their modular actions, and is a glimpse of Thurston's compacti�cation

of the modular action on the Teichmüller space of Γ, which also provides lots of other information,

including the Nielsen-Thurston Classi�cation. A generalized Skora's Theorem is still missing but,

when proved, should make possible to reproduce this scenario for generalized pseudo-Anosov.

In the next section the sequences of deformations of Γ and φ mentioned in the end of Section 4.1

will be de�ned. They are obtained by lifting to the upper half-plane H2
+ the contracting invariant

foliation of φ, lifting to the lower half-plane H2
− the expanding, and then bending simultenously both

by the iterates φn and φ−n. See Figures ?? and ??. This is achieved by a sequence of quasiconformal

maps wn of Ĉ, that deform S1 quite strongly into quasicircles (see Figures ??). For a topological

picture of what should be expected as a limit of this, when the lifts of the foliations have been

�totally� contracted, take the quotient of the sphere by the decomposition whose elements are the

leafs of the lifts. By the same theorem of R. Moore mentioned above, the quotient is a topological

sphere. The circle S1 is a fundamental domain of this decomposition, and its projection onto the

quotient is the Cannon-Thurston Map mentioned in last section. This have been fully proved in
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[CT07] for classical pseudo-Anosov maps in compact surfaces, and have been proved for punctured

surfaces much later, in [Bow07]. It is not known wheter or not this should be true for generalized

pseudo-Anosov maps.

Figure: The Cannon-Thurston map.

4.3 Quasi-Fuchsian Reresentations

De�nition 62 (Quasi-Fuchsian Representation). Let Γ be a Fuchsian group, and let QF(Γ) be the

set of quasi-Fuchsian representations of Γ, which are the Kleinian representations ρ of Γ of the form

ρ(γ) = w ◦ γ ◦ w−1, γ ∈ Γ, (4.6)

for some quasiconformal map w of Ĉ.

Our de�nition of Fuchsian group assumes that ΛΓ = S1. Therefore, for each ρ ∈ QF(Γ), as

in (4.6), the limit set Λ of ρ(Γ) is equal to w(S1), which is the homeomorphic image of S1 by a

quasiconformal map. This is, by de�nition, a quasicircle � see Figure ??. Back on the context of

Section 4.1, and assuming that H2/Γ is compact, if ρ̂ is a Kleinian representation of Ĝ, then the

restriction of ρ̂ to the surface group G is not quasi-Fuchsian, since Λ 6= Ĉ, no matter the amount

a quasicircle can �ll up the sphere. But, still, this restricted representation can be obtained as the

limit of a sequence of quasi-Fuchsian representations. Since Λ contains more than 2 points, every

quasi-Fuchsian representation is non-elementary, so Chucrow's Theorem 20 applies, and convergent

sequences of quasi-Fuchsian representations de�ne limiting Kleinian representations. Those are not

necessarilly quasi-Fuchsian, and this is what opens the possibility of �nding as such limit the

restriction to G of the wanted ρ̂. This is provided, for compact H2/Γ and classical pseudo-Anosov

monodromy, by Thurston's Double Limit Theorem 68, which is one of the main cores of Theorem

58. This is the way to go.

Figure: quasi-circles

Quasi-Fuchsian representations can be written on their Ahlfors-Bers Coordinates. We emphasize

that here it is not needed to assume that Γ is �nitely generated. Let ρ ∈ QF(Γ) be of the form (4.6).

The regular set Ω of ρ(Γ) have two connected components, namelly Ω+ = w(H2
+) and Ω− = w(H2

−).

Each is invariant by the action of ρ(Γ). Also, they're open and simply-connected subsets of Ĉ and,

by the Riemann Mapping Theorem, there exist conformal homeomorphisms u+ : Ω+ → H2
+ and

u− : Ω− → H2
−. By conjugation with them, a pair (ρ+, ρ−) of Fuchsian representations of Γ is

de�ned:

ρ+(γ) = u+ ◦ ρ(γ) ◦ (u+)−1 and ρ−(γ) = u− ◦ ρ(γ) ◦ (u−)−1, γ ∈ Γ.

The pair (ρ+, ρ−) is called Ahlfors-Bers Coordinates of ρ. Discreteness?

On the other direction, take a pair (ρ+, ρ−) of Fuchsian representations of Γ of the form

ρ+(γ) = w+ ◦ γ ◦ (w+)−1 and ρ−(γ) = w− ◦ γ ◦ (w−)−1, γ ∈ Γ, (4.7)

for quasiconformal maps w+ of H2
+ and w− of H2

−. Representations ρ
+ and ρ− of this form should

be thought as conformal actions of Γ on H2
+ and H2

−. De�ne the Beltrami form µ as the Beltrami

form of w+ on H2
+, and as the Beltrami form of w− on H2

−. It's de�ned on the full-measure set

Ĉ \ S1, and ||µ|| < 1. Therefore, the Measurable Riemann Mapping Theorem 24 applies, and there

exist a quasiconformal map w of Ĉ that solves the Beltrami equation associated to µ. This w
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determine, by (4.6), a quasi-Fuchsian representation of Γ whose Ahlfors-Bers coordinates are ρ+

and ρ−. Discreteness? Conformality?

Both the Riemann Mapping Theorem, and the Measurable Riemann Mapping Theorem, give

maps well-de�ned up to post-composition with conformal maps. Taking this into account, one

gets a bijection between [QF(Γ)] and the two-fold product of the space of conjugacy classes of

Fuchsian representations of Γ of the form 4.7. Here we're not interested in holomorphic properties

of this bijection, but they can be obtained by taking, instead of these conjugacy classes, the sets of

representatives normalized by �xed group elements, in the sense of De�nition 7. Using holomorphic

dependence on parameters on the Measurable Riemann Mapping Theorem, making it be called the

Ahlfors-Bers Theorem, the Ahlfors-Bers Isomorphism is de�ned.

For a quasi-Fuchsian representation ρ = (ρ+, ρ−), the following result bounds the geometry of

H3/ρ(Γ) by the geometries of H2
+/ρ

+(Γ) and H2
−/ρ

−(Γ). It's valid for every quasi-Fuchsian group,

not necessarily �nitely generated. The proof is by a clever argument on the modulus of annuli, see

� [Ota96, MT98].

Theorem 63 (Bers' Inequality). Let Γ be any Fuchsian group. For any quasi-Fuchsian represen-

tation ρ = (ρ+, ρ−) of Γ, and any hyperbolic γ ∈ Γ,

1

`(ρ+(γ))
+

1

`(ρ−(γ))
≤ 2

`(ρ(γ))
,

where ` denote the translation length. Therefore, `(ρ(γ)) < 2 min{`(ρ+(γ)), `(ρ−(γ))}.

Corollary 64. If a sequence ρn ∈ QF(Γ) is divergent, then its Ahlfors-Bers Coordinates ρ+
n and

ρ−n are also divergent.

On the contrary, the Ahlfors-Bers Coordinates can diverge with ρn being convergent, and this is

precicelly what happens for certain sequences in QF(Γ), due to Thurston's Double Limit Theorem

68. These �certain sequences� include the ones that we are interested, that will now �nally be

de�ned.

De�nition 65 (Doubly Iterated Sequence). Let Γ be any Fuchsian group, and let f ∈ Aut Γ.

The doubly iterated sequence associated to f is the sequence ρn of quasi-Fuchsian representations

of Γ de�ned on Ahlfors-Bers Coordinates by ρn = (fn, f−n). If f is induced in homotopy by a

homeomorphism ϕ of H2/Γ, ρn is called associated to ϕ. Notice that, in this de�nition, instead of f

we could consider a pair of automorphisms of Γ, but things will not be considered in such generality.

Figure: the doubly-iterated sequence.

Consider the doubly iterated sequence ρn associated to aK-quasiconformal homeomorphism ϕ of

H2/Γ. The involved objects are summarized on Figure ??. Lift ϕ to ϕ̃, which is a K-quasiconformal

homeomorphism of H2, and take f = ϕ̃#. The equivariance equation (4.5) is satis�ed. Extend ϕ̃

to S1, by continuity, and to H2
− by conjugation with complex conjugation z 7→ z, turning ϕ̃ into a

K-quasiconformal map of Ĉ. The extended ϕ̃ satis�es the same equivariance equation, but now on

the whole Ĉ:
f(γ)(z) = ϕ̃ ◦ γ ◦ ϕ̃−1(z), ∀z ∈ Ĉ, γ ∈ Γ. (4.8)

Denoting the Ahlfors-Bers Coordinates of ρn by (ρ+
n , ρ

−
n ):

ρ+
n (γ) = fn(γ) = ϕ̃n ◦ γ ◦ ϕ̃−n and ρ−n (γ) = f−n(γ) = ϕ̃n ◦ γ ◦ ϕ̃−n, γ ∈ Γ.
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Then, by the construction above,

ρn(γ) = wn ◦ γ ◦ w−1
n , γ ∈ Γ, (4.9)

where wn is a quasiconformal map of Ĉ whose Beltrami form is the one of ϕ̃n on H2
+, and of ϕ̃−n

on H2
−. If ϕ is a pseudo-Anosov homeomorphism (classical or generalized), these Beltrami forms

are aligned with the lifts of leafs of the the invariant measured foliations, and ρn is the sequence of

deformations obtained by bending them, as claimed in the ends of Sections 4.1 and 4.2. Regarding

the correspondent sequence of deformations of ϕ̃, de�ne

ϕ̃n = wn ◦ ϕ̃ ◦ w−1
n . (4.10)

And notice that, as claimed, the equivariance equation (4.8) is valid along the sequence:

ρn(f(γ)) = ϕ̃n ◦ γ ◦ ϕ̃−1
n , γ ∈ Γ. (4.11)

The next result should be compared to Proposition 47.

Proposition 66. Let Γ be any Fuchsian group, and let ϕ be a K-quasiconformal homeomorphism

of H2/Γ. If ϕ̃n is de�ned, as above, by (4.10), then ϕ̃n is K-quasiconformal for every n ≥ 0.

Proof. Fill in details. This can also be checked by a computation with Beltrami forms, but

the following argument on which ellipses are taken to circles is enlightening. See Figure ??.

As a consequence of Proposition 66 and the usual technique for extracting convergent subse-

quences of sequences of quasiconformal maps, Theorem 25, one gets:

Proposition 67. Let Γ be a Fuchsian group, and let ρn ∈ QF(Γ) be the iterated sequence associated

to a K-quasiconformal homeomorphism ϕ of H2/Γ. Suppose ρn is normalized, and that ϕ̃n is de�ned,

as above, by (4.10). If ρn is convergent, then ϕ̃n contains a subsequence that converges to a K-

quasiconformal homeomorphism ϕ̃∞ of Ĉ.

Proof. Recall what �normalized� means (De�nition 7). To say that ρ0 = idΓ is normalized is to say

that Γ contains elements γ0, γ1 and γ∞ whose attracting �xed points are 0, 1 and ∞. This is a

matter of chosing Γ inside its conjugation class in PSL2 R. And to say that ρn is normalized, for

n ≥ 1, is to say that ρn(γ0), ρn(γ1) and ρn(γ∞) also have 0, 1 and ∞ as its attracting �xed points.

This is obtained by taking wn in (4.9) as the solution of the correspondent Beltrami equation that

�xes 0, 1 and ∞.

By the equivariance equation (4.11), ϕ̃n(0), ϕ̃n(1) and ϕ̃n(∞) are the attracting �xed points

of ρn(f(γ0)), ρn(f(γ1)) and ρn(f(γ∞)), for every n ≥ 0. As n → ∞, these points converge to

the atrracting �xed points of ρ∞(f(γ0)), ρ∞(f(γ1)) and ρ∞(f(γ∞)). By Chuckrow's Theorem 20,

these are distinct, since the limiting representation is non-elementary. The result follows, then, from

Theorem 25.

By continuity, if the limits of Proposition 67 exist, then

ρ∞(f(γ)) = ϕ̃∞ ◦ ρ∞(γ) ◦ ϕ̃−1
∞ . (4.12)
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Recall, from the end of Section 4.1, that the main goal is to de�ne a Kleinian representation ρ̂ of

Ĝ = Γ nf Z by setting ρ̂(γ) = ρ∞(γ) and ρ̂(t) = ϕ̃∞. Equation (4.12) is a sign that this will be

possible and, from here, the discussion splits in: proving the existence of ρ∞ and, provided this,

proving that ϕ̃ is conformal, and also that our candidate ρ̂ is really Kleinian, namelly that it is

discrete. The second part will be brie�y discussed on Section 4.4. Regarding the �rst one,

Theorem 68 (Thurston's Double Limit � Particular Case). Let Γ be a Fuchsian group, and let ρn be

the doubly iterated sequence associated to a quasiconformal homeomorphism φ of H2/Γ. Suppose that

ρn is normalized, that H2/Γ is compact, and that φ is a classical pseudo-Anosov homeomorphism.

Then, ρn contains a convergent subsequence.

The proof of this Theorem, that we are not going to give, is by contradiction. Suppose that

ρn diverges. Then, by Corollary 64, its Ahlfors-Bers Coordinates ρ+
n and ρ−n also diverge. In the

conditions of Theorem 68, these sequences can then be looked from the perspective of Thurston's

compacti�cation of the modular action on the Teichmüller space, which provides information on

how the divergence happens, namelly on how these sequences �converge� to the pair of measured

foliations of φ. Also, Γ is �nitely generated and, as a sequence of isometric actions of Γ on H3,

ρn is arboreal (Section 3.3. Therefore, it determine an isometric action on an R-tree. This action
is in the conditions of Skora's Theorem, that gives third measured foliation on H2/Γ. A cautious

look to these three measured foliations, with the fact that two of them ��lls� H2/Γ, provides the

contradiction.

Now, what we want is to get Theorem 68 for Γ associated to punctured generalized pseudo-

Anosov maps, using the generating hypothesis. In this direction, Proposition 46 stablishes that ρ+
n

and ρ−n , as isometric actions of Γ on H2
+ and H2

−, are arboreal. Regarding ρn,

Proposition 69. Let Γ be a Fuchsian group isomorphic to the free group on an in�nite, countable,

number of generators, and let ρn be the doubly iterated sequence associated to a quasiconformal

homeomorphism ϕ of H2/Γ. Suppose that ρn is divergent, and that ϕ is generating. Then, as a

sequence of isometric actions of Γ on H3, ρn contains an arboreal subsequence.

4.4 How to Finish the Hyperbolization

Theorem 70 (Sullivan Rigidity). Let Γ be a Kleinian group. Suppose that ΛΓ = Ĉ, and let µ be a

Γ-invariant Beltrami form de�ned on a positive-measure borelian of Ĉ. Then, µ = 0.
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