
A Classic Linear System Solver
on Modern Hardware Architecture

for Sparse Systems

Nils Urmersbach

Dissertação apresentada
ao

Instituto deMatemática e Estatística
da

Universidade de São Paulo
para

obtenção do título
de

Mestre em Ciéncias

Programa: Matemática Aplicada

Orientador: Prof. Dr. Alexandre Megiorin Roma

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da CAPES

São Paulo, Outubro de 2016

A Classic Linear System Solver
on Modern Hardware Architecture

for Sparse Systems

Esta é a versão original da dissertação elaborada pelo

candidato Nils Urmersbach, tal como

submetida à Comissão Julgadora.

Abstract

URMERSBACH, N. A Classic Linear System Solver on Modern Hardware Architecture for Sparse
Systems. 2016. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de São Paulo,

São Paulo, 2016.

In this work we present our implementations for the Jacobi Method for general sparse linear systems

in the Compressed Sparse Row (CSR) format using OpenMP, OpenACC and CUDA. We apply these

implementations to the linear system derived from the central finite difference discretization of the two-

dimensional Poisson Equation on rectangular domains, and compare the performance of the CSR imple-

mentations to the performance of a direct Poisson Equation solver using the five-point stencil. For our case

study, we consider five different grid size (with up to ∼67.1 million unknowns), both in single precision

and double precision, and a variety of thread numbers for the OpenMP implementation, resulting in 300

different configurations in total that were executed for this work. We discuss the scaling behaviour of the

different implementations and present some profiling results of our parallelized programs.

Keywords: OpenMP, OpenACC, CUDA, Compressed Sparse Row Format, Jacobi Method, Poisson Equa-

tion.

iii

iv

Resumo

URMERSBACH, N. Um solver de sistemas lineares clássico na arquitetura moderna de hardware para
sistemas esparsos. 2016. Dissertação (Mestrado) - Instituto de Matemática e Estatística, Universidade de

São Paulo, São Paulo, 2016.

Nesse trabalho apresentamos as nossas implementações do Método de Jacobi para sistemas lineares

esparsos gerais no formato de Compressed Sparse Row (CSR) usando OpenMP, OpenACC e CUDA. Apli-

camos essas implementações no sistema linear derivado da discretização de diferenças finitas centrais da

Equação de Poisson em duas dimensões em domínios retangulares e comparamos o desempenho das imple-

mentações de CSR com o desempenho de um solver direto da Equação de Poisson usando o estêncil de cinco

pontos. Para nosso estudo de caso nós consideramos cinco tamanhos diferentes de malhas (com até ∼67.1

milhões desconhecidos), ambos precisão simples e dupla, e uma variedade de números de threads para a

implementação de OpenMP, resultando em 300 configurações diferentes executadas para esse trabalho. Nós

discutimos o comportamento de escalagem das implementações diferentes e apresentamos alguns resulta-

dos de perfilamento dos nossos programas paralelizados.

Palavras-chave: OpenMP, OpenACC, CUDA, Formato de Compressed Sparse Row, Método de Jacobi,

Equação de Poisson.

v

vi

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Parallelism . 1

1.1.2 Iterative Solvers for Linear Systems . 2

1.2 Objective . 4

1.3 Organization . 4

2 Parallel Computing 5
2.1 Basic Processor Architecture – The von Neumann Model 5

2.2 Parallel Computing on Shared-Memory Parallel Computers 6

2.2.1 Shared-Memory Architecture . 6

2.2.2 Programming Shared-Memory Parallel Computers: OpenMP 8

2.3 Parallel Computing with GPUs . 12

2.3.1 GPU Architecture . 12

2.3.2 Programming GPUs: CUDA . 15

2.3.3 Programming GPUs: OpenACC . 18

2.4 Performance Metrics for Parallel Programming . 21

3 Mathematical Problem 25
3.1 Discretization of the Two-Dimensional Poisson Equation 25

3.2 Iterative Methods . 28

3.2.1 Jacobi Method . 30

4 Implementations 33
4.1 The Compressed Sparse Row Format . 33

4.2 The Jacobi CSR and “modified” Jacobi CSR Implementations 34

4.3 The Five-Point Jacobi Implementation . 35

5 Results 37

6 Conclusion 55

Appendices 57

vii

viii CONTENTS

A Essential Definitions and Theoretical Results 59
A.1 Vector Norms . 59

A.2 Matrix Norms . 62

A.3 Similarity and Diagonalizability of Matrices . 68

A.4 Unitary and Normal Matrices . 70

B Profiling of OpenMP Implementations using perf 75

Bibliography 85

List of Figures

1.1 “Normalized Power versus Normalized Scalar Performance for Multiple Generations of In-

tel Microprocessors”, Grochowski and Annavaram. The normalization is based on the val-

ues of the i486 processor. 2

1.2 Intel CPU introductions, taken from Sutter [2005]. 3

1.3 Comparison between a single core and an idealised duo-core processor whose capacity is

exactly double the capacity of the single core processor, and whose frequency and voltage

are exactly half of the frequency and voltage of the single core processor. 3

2.1 A sketch of the von Neumann architecture, based on Kirk and Hwu [2013] and Shiva [2007]. 6

2.2 Block diargram of a generic, cache-based dual core processor. Chapman et al. [2007] . . . 7

2.3 Comparison between UMA (a) and NUMA (b) platforms, compare Barney [2016]. 7

2.4 The Fork-Join Model. 8

2.5 Taken from Chapman et al. [2007]. “Schedule kinds supported on the schedule clause – The

static schedule works best for regular workloads. For a more dynamic work allocation

scheme the dynamic or guided schedules may be more suitable.” 9

2.6 Overheads of several common OpenMP directives and constructs. Taken from Chapman et al.

[2007]. Note that the overhead of reduction operations for this compiler is unreasonably

high, and not representative for other compilers. Chapman et al. [2007] 11

2.7 Overheads of different kinds of OpenMP loop schedules. Taken from Chapman et al. [2007]. 11

2.8 A comparison of the schematic architectures of CPUs and GPUs. Taken from Kirk and Hwu

[2013] . 12

2.9 NVIDIA Kepler Block Diagram. Taken from Wolfe [2012]. 13

2.10 Block diagram of the GK110 chip architecture. Taken from NVIDIA [2012]. 14

2.11 Block diagram of a single Streaming Multiprocessor of the GK110 chip. Taken from NVIDIA

[2012]. 14

2.12 Graphic representation of a warp scheduler. Taken from NVIDIA [2012]. 15

2.13 Accelerator model used for OpenACC. Taken from Kirk and Hwu [2013]. 19

2.14 OpenACC fork/join process. Taken from Kirk and Hwu [2013]. 20

2.15 Maximum speedup S achievable according to Equation (2.1) as a function of the parallel

fraction of the program fpar and the number of processors used p. 22

3.1 Plot of (3.15) in dependence of p and q. 32

4.1 The five-point stencil for the laplacian operator. 36

ix

x LIST OF FIGURES

5.1 Graphical representation of the converging process. Depending on how the iteration con-

verges to the exact discrete solution, ûdiscr., (for example due to the choice of of the initial

guess u0) it may be necessary to adapt the chosen tolerance, ε, in order to let the itera-

tive process terminate. An appropriate choice for the tolerance is given in the error bound

Equations (3.3) and (3.4). 38

5.2 OpenMP speedup plot for the (modified) Jacobi CSR implementation when using single

precision. Based on the execution time of the Jacobi method only. 38

5.3 OpenMP speedup plot for the (modified) Jacobi CSR implementation when using double

precision. Based on the execution time of the Jacobi method only. 38

5.4 OpenMP efficiency plot for the (modified) Jacobi CSR implementation when using single

precision. Based on the execution time of the Jacobi method only. 39

5.5 OpenMP efficiency plot for the (modified) Jacobi CSR implementation when using double

precision. Based on the execution time of the Jacobi method only. 39

5.6 Relative execution time difference between the modified and unmodified Jacobi CSR im-

plementations using single precision. 41

5.7 Relative execution time difference between the modified and unmodified Jacobi CSR im-

plementations using double precision. 41

5.8 OpenMP speedup plot for the five-star Jacobi implementation when using single precision.

Based on the execution time of the Jacobi method only. 42

5.9 OpenMP speedup plot for the five-star Jacobi implementation when using double precision.

Based on the execution time of the Jacobi method only. 42

5.10 OpenMP efficiency plot for the five-star Jacobi implementation when using single precision.

Based on the execution time of the Jacobi method only. 43

5.11 OpenMP efficiency plot for the five-star Jacobi implementation when using double preci-

sion. Based on the execution time of the Jacobi method only. 43

5.12 Graphical representation of Table 5.2. 45

5.13 Graphical representation of Table 5.3. 45

5.14 Relative execution time difference between the modified and unmodified Jacobi CSR im-

plementations for the OpenACC and CUDA programs for both single and double precision.

All times based on the Jacobi kernel execution times only. 46

5.15 Plot of the iteration fraction of the modified to unmodified CSR implementation. 46

5.16 Bandwidth utilization of the GPU L1 cache for all implemented Jacobi kernels. 48

5.17 Bandwidth utilization of the GPU L2 cache for all implemented Jacobi kernels. 48

5.18 Bandwidth utilization of the texture memory for all implemented Jacobi kernels. 48

5.19 Bandwidth utilization of the device memory for all implemented Jacobi kernels. 49

5.20 Plot of active warps for all implemented Jacobi kernels, using single precision. 49

5.21 Plot of active warps for all implemented Jacobi kernels, using double precision. 49

5.22 Occupancy plot for all implemented Jacobi kernels, using single precision. 50

5.23 Occupancy plot for all implemented Jacobi kernels, using double precision. 50

5.24 Relative total execution time differences between single and double precision cases for all

implementations used. 53

A.1 Plots of ||x||p = 1 on R2 for different values of p. 60

LIST OF FIGURES xi

A.2 Geometric presentation of the Norm Equivalence Theorem for the l∞ and l2 norms on R2:
√

2
2 ||x||∞ ≤ ||x||2 ≤ ||x||∞ . 62

A.3 Geometric representation of lub(A) = max||x||=1 ||Ax|| (for the l2 norm). 64

B.1 "Number of CPUs utilized" for the unmodified single precision Jacobi CSR implementation. 76

B.2 "Number of CPUs utilized" for the unmodified double precision Jacobi CSR implementation. 76

B.3 "Number of CPUs utilized" for the modified single precision Jacobi CSR implementation. 77

B.4 "Number of CPUs utilized" for the modified double precision Jacobi CSR implementation. 77

B.5 Average CPU frequency achieved for the unmodified single precision Jacobi CSR imple-

mentation. 77

B.6 Average CPU frequency achieved for the unmodified double precision Jacobi CSR imple-

mentation. 77

B.7 Average CPU frequency achieved for the modified single precision Jacobi CSR implemen-

tation. 78

B.8 Average CPU frequency achieved for the modified double precision Jacobi CSR implemen-

tation. 78

B.9 Percentage of the total cache misses (based on all cache references) for the unmodified

single precision Jacobi CSR implementation. 78

B.10 Percentage of the total cache misses (based on all cache references) for the unmodified

double precision Jacobi CSR implementation. 78

B.11 Percentage of the total cache misses (based on all cache references) for the modified single

precision Jacobi CSR implementation. 79

B.12 Percentage of the total cache misses (based on all cache references) for the modified double

precision Jacobi CSR implementation. 79

B.13 Percentage of the L1 cache misses (based on all L1 cache references) for the unmodified

single precision Jacobi CSR implementation. 79

B.14 Percentage of the L1 cache misses (based on all L1 cache references) for the unmodified

double precision Jacobi CSR implementation. 79

B.15 Percentage of the L1 cache misses (based on all L1 cache references) for the modified single

precision Jacobi CSR implementation. 80

B.16 Percentage of the L1 cache misses (based on all L1 cache references) for the modified

double precision Jacobi CSR implementation. 80

B.17 Percentage of the branch misses for the unmodified single precision Jacobi CSR implemen-

tation. 80

B.18 Percentage of the branch misses for the unmodified double precision Jacobi CSR imple-

mentation. 80

B.19 Percentage of the branch misses for the modified single precision Jacobi CSR implementation. 81

B.20 Percentage of the branch misses for the modified double precision Jacobi CSR implementation. 81

B.21 "Number of CPUs utilized" for the single precision five-point Jacobi implementation. . . . 81

B.22 "Number of CPUs utilized" for the double precision five-point Jacobi implementation. . . 81

B.23 Average CPU frequency achieved for the single precision five-point Jacobi implementation. 82

B.24 Average CPU frequency achieved for the double precision five-point Jacobi implementation. 82

B.25 Percentage of the total cache misses (based on all cache references) for the single precision

five-point Jacobi implementation. 82

xii LIST OF FIGURES

B.26 Percentage of the total cache misses (based on all cache references) for the double precision

five-point Jacobi implementation. 82

B.27 Percentage of the L1 cache misses (based on all L1 cache references) for the single precision

five-point Jacobi implementation. 83

B.28 Percentage of the L1 cache misses (based on all L1 cache references) for the double preci-

sion five-point Jacobi implementation. 83

B.29 Percentage of the branch misses for the single precision five-point Jacobi implementation. 83

B.30 Percentage of the branch misses for the double precision five-point Jacobi implementation. 83

List of Tables

2.1 CUDA variable type qualifiers for different memories. Kirk and Hwu [2013] 17

5.1 Number of iterations needed to achieve a tolerance of ε = 0.01 for the problem given in

Equation (5.1) and an initial guess of u(0) ≡ 0. 38

5.2 Summary of all execution times using single precision floating point numbers. For the

OpenMP results 64 threads are used. 44

5.3 Summary of all execution times using double precision floating point numbers. For the

OpenMP results 64 threads are used. 44

5.4 Grid Sizes for the (Modified) Jacobi CSR Implementations 47

5.5 Grid Sizes for the Five-Point Stencil Jacobi Implementations 47

5.6 Kernel Limiters: (Modified) Jacobi CSR, Single Precision. The 1 superscript marks the pri-

mary limiter. 47

5.7 Kernel Limiters: (Modified) Jacobi CSR, Double Precision. The 1 superscript marks the

primary limiter. 51

5.8 Kernel Limiters: Five-Point Stencil Jacobi, Single Precision. The 1 superscript marks the

primary limiter. 51

5.9 Kernel Limiters: Five-Point Stencil Jacobi, double precision. The 1 superscript marks the

primary limiter. 51

5.10 Register restriction: OpenACC, (Modified) Jacobi CSR, Single Precision 52

5.11 Register restriction: OpenACC, (Modified) Jacobi CSR, Double Precision 52

5.12 Register restriction: CUDA, (Modified) Jacobi CSR, Single Precision 52

5.13 Register restriction: CUDA, (Modified) Jacobi CSR, Double Precision 52

5.14 Register restriction: OpenACC, Five-point Jacobi, Single Precision 52

5.15 Register restriction: OpenACC, Five-point Jacobi, Double Precision 52

5.16 Register restriction: CUDA, Five-point Jacobi, Single Precision 52

5.17 Register restriction: CUDA, Five-point Jacobi, Double Precision 52

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

1.1.1 Parallelism

As H. Sutter stated in his publication with the same name Sutter [2005]: “The free lunch is over”. In
former times, in order to let one’s program run faster all one had to do was to buy a new, faster processor
and let the program run on it. This was the case because until recently the clock speed (the frequency of the
processor) increased with every generation, as can be seen representatively in Figure 1.2. Moreover, it can
be seen in Figure 1.2 that the power consumption increased with the clock speed, and even worse, the power
consumption increased faster than the clock speed: In Grochowski and Annavaram, a relationship between
power consumption and performance1 is found to be P = perf 1.74 based on the data of a few Intel single core
processors, compare Figure 1.1. This behaviour describes a power wall: For single core processors boosting
performance gets prohibitively expensive when considering the power consumption. To understand why a
faster processor has a higher power consumption than a slower one, let as consider the following. By letting
C donate the capacity, V donate the voltage and q donate a charge, we have

C =
q
V

or q = CV. (1.1)

Furthermore, by letting W denote the work, we get

W = qV = CV2. (1.2)

Since the power P is defined to be work per unit time, we thus receive

P =
W
t

=
CV2

t
= CV2 f , (1.3)

where f = 1/t is the frequency. Hence the power consumption of a processor is linear in both capacity and
frequency, and quadratic in voltage. Therefore the faster the clock speed of a processor, the more power
it consumes. However, since the power wall has been hit there was a need to find a way to improve the
performance per watt.

For this reason, today a well established practice is to rather increase the number of cores on a processor
chip rather than the frequency of a single core. To understand why this helps reducing the power consump-
tion of a processor consider Figure 1.3 which portrays a single core and an idealised duo-core processor.
The dual core processor is idealized in the sense that it is is built from two single core processors of half
the frequency of the original one connected in parallel in such a way that the capacity is twice the capac-
ity of the single core processor and without voltage spillage, such that each of the processors in parallel
operate with half of the voltage of the single core processor. In this scenario, the duo-core processor only

1The performance in the work of Grochowski and Annavaram is based on SPECint, the integer performance testing component
of the Standard Performance Evaluation Corporation (SPEC) test suite.

1

2 INTRODUCTION 1.1

Figure 1.1: “Normalized Power versus Normalized Scalar Performance for Multiple Generations of Intel Micropro-
cessors”, Grochowski and Annavaram. The normalization is based on the values of the i486 processor.

consumes a forth of the power of the single core processor, while both can potentially operate at the same
overall frequency. However, the natural question to ask is whether an n-core processor is n times as fast as
an equivalent single core processor (or just as fast as a single core processor with the n-fold frequency.)

In the spirit of this questions, is it possible to have an even better performance when using a GPU with
a massive amount of (notably inferior) cores, instead of using a CPU (multicore processor) processor, even
when there are additional data transfer costs? Relatively recent advances in the GPU architecture made it
possible to perform regular computations in a massively parallel manner on the GPU.

Whether computations are done on multicore processors, GPUs or other devices or systems utilizing
parallelism, they all have in common that it is now the user’s responsibility to optimize the code such that
it can be efficiently run on the system. The time in which the user can rely on the hard and smart work of
the hardware engineers has passed, the free lunch is over. Multithreading is here to stay, and it is now the
software developer’s task to write multithreaded programs in order to make use of modern architecture.

1.1.2 Iterative Solvers for Linear Systems

Solving linear systems is among the basic tasks of scientific computation: Many scientific problems
especially in the fields of physics and engineering can be described by differential equations (which involve
an infinite number of unknowns). In many cases, in order to be able to at least approximate the solution of
those differential equations, they will be transferred into a discrete system with a finite number of unknowns.
However there are many other other applications of systems of linear equations in different fields of science
that are not based on differential equations. As those systems for many applications tend to be large, direct
methods become prohibitively expensive (both in data storage and computation) and are therefore solved
by using iterative methods.

1.1 MOTIVATION 3

Figure 1.2: Intel CPU introductions, taken from Sutter [2005].

ProcessorInput Output

f

Processor

Processor

Input Output

f

f/2

f/2

Capacitance: C
Voltage: V
Frequency: f
Power: CV²f

Capacitance: 2C
Voltage: 0.5V
Frequency: 0.5f
Power: 0.25CV²f

Figure 1.3: Comparison between a single core and an idealised duo-core processor whose capacity is exactly double
the capacity of the single core processor, and whose frequency and voltage are exactly half of the frequency and
voltage of the single core processor.

4 INTRODUCTION 1.3

1.2 Objective

As we have motivated in the previous section, parallelism is here to stay and hence will be a necessity for
future generations of developers. By the same token, sparse and big linear systems arise in many scientific
areas and the resolution of these systems can make up a major portion of scientific applications. Parallelism
can help to substantially decrease the time needed to resolve linear systems, though to make efficient use of
the hardware and to optimize the performance, automatic parallelization as offered by several compilers will
not be sufficient, and it will take a certain insight into hardware considerations as well as how the parallel
methodologies are implemented. Specifically how different processors or processor cores have access to
data can not only affect the performance of a program but may also lead to wrong results when not handled
appropriately.

The objective of this work is to implement general sparse linear system solvers using the Jacobi Method
for parallel execution on different types of modern hardware (shared memory parallel computers and GPUs),
and to compare the performance of these implementations applied to a Poisson Equation with the perfor-
mance of a direct Poisson solver implemented on the same systems. Furthermore, we investigate the perfor-
mance behaviour for systems of different size, as well as try to investigate the limitations of the performances
due to the implementations themselves and due to the hardware being used.

1.3 Organization

In Chapter 2, we introduce the hardware offering parallel computation that was used for this work,
and the methodologies that can be used to let one’s programs run on them in parallel, as well as some
performance considerations. This chapter is then finished with a brief discussion on the metrics commonly
used to measure parallel performance.

In Chapter 3, we discuss the mathematical problem that is considered and solved in parallel in this
work, namely the (discrete) Poisson Equation, along with some theoretical considerations of iterative linear
solvers in general and the Jacobi Method in specific.

Chapter 4 starts with a brief introduction into the Compressed Sparse Row (CSR) storage format, and
continues with a presentation of the implementations of the Jacobi Method capable of either solving general
sparse linear systems (if certain convergence criteria presented in Chapter 3 are fulfilled), or only the Poisson
Equation.

In chapter 5, the results of these implementations using OpenMP, OpenACC, and CUDA are presented,
compared, and discussed.

This thesis finishes with the conclusion of this work in Chapter 6.
Additional background that may be required for Chapter 3 is given in the Appendix in A.1 – A.4.

Furthermore, some profiling results for the OpenMP codes are given in Appendix B.

Chapter 2

Parallel Computing

In this chapter we present the basic concepts of parallel programming, in regard to both architecture
as well as to how to program these architectures, using OpenMP, CUDA and OpenACC. However it is
not aimed to give complete introductions to them. For proper proper introductions and/or tutorials see
Chapman et al. [2007], Barney [2016], Kirk and Hwu [2013], as well as http://www.openacc.org/content/
education. The complete Application Programming Interface for OpenMP can be found in Board [2015],
for OpenACC in OpenACC-Standard.org [2015].

We only present the architectures used in this work, namely shared memory systems and GPUs. For the
sake of completeness note however that there is another very important parallel programming architecture
– distributed memory systems. Their communication is commonly controlled with MPI.

2.1 Basic Processor Architecture – The von Neumann Model

The so called von Neumann model was developed in the 1940s and has been “the foundational blueprint
to virtually all modern computers”, Kirk and Hwu [2013]. It describes the architecture of electronic digital
computers, which can be broadly divided into a processing unit containing the arithmetic and logic unit
(ALU), a control unit, processor registers, a memory, and input/output devices. A characteristic of the von
Neumann model is that both program instructions and data are saved in the same memory, consisting of
a Memory Address Register (MAR) and a Memory Data Register (MDR). Note that both instructions and
data are passed from the memory to the processor (consisting of processing and control unit), or vice versa,
via the same path, Shiva [2007].

The control unit maintains a program counter (PC) and an instruction register (IR). The PC contains
the memory address of the next instruction to be executed, moreover it fetches an instruction into the IR.
Those instructions are then used to “determine the action to be taken by all components of the computer”,
Kirk and Hwu [2013]. A sketch of the von Neumann model is given in Figure 2.1.

The von Neumann model describes an architecture that can execute various programs without modi-
fications to the hardware. The execution on it is completely sequential (one instruction is executed after
another), a deterministic program sequence is guaranteed. However, there is one prominent weakness: As
instructions and data share the same path to (and from) the processor, and since the throughput between the
memory and the processor is limited, especially compared to the processor frequency, there is a data/instruc-
tion latency and the processor idles for several cycles in situations in which it has not received the needed
data/instruction. This is called the von Neumann bottleneck, a term coined by John Backus in his 1977 ACM
Turing Award lecture:

“Surely there must be a less primitive way of making big changes in the store than by pushing
vast numbers of words back and forth through the von Neumann bottleneck. Not only is this
tube a literal bottleneck for the data traffic of a problem, but, more importantly, it is an intel-
lectual bottleneck that has kept us tied to word-at-a-time thinking instead of encouraging us to
think in terms of the larger conceptual units of the task at hand. Thus programming is basically

5

6 PARALLEL COMPUTING 2.2

MAR MDR

Memory

Processor

PC IR

Control Unit

ALU
Register

File

Processing Unit

I/O

Address
Data and
instructions

Figure 2.1: A sketch of the von Neumann architecture, based on Kirk and Hwu [2013] and Shiva [2007].

planning and detailing the enormous traffic of words through the von Neumann bottleneck, and
much of that traffic concerns not significant data itself, but where to find it.” Backus [1978]

2.2 Parallel Computing on Shared-Memory Parallel Computers

The first shared-memory parallel computers, which we will abbreviate in accordance with Chapman et al.
[2007] as SMPs in the following text, were already manufactured in the 1980s and have gained popularity
in the server market in where they maintained major importance. There are systems using over a thousand
CPUs, however in recent years those systems gained importance on a much smaller scale, too. Today, virtu-
ally every reasonably modern laptop or desktop computer has a multi-core CPU. No matter the scale, as the
name suggests, all processors in those systems have access to (and thus share) the same memory.

In this section, we will present the basic architecture of SMPs and give an introduction to how one can
take advantage of them for one’s programs using OpenMP.

2.2.1 Shared-Memory Architecture

The setup of a shared-memory architecture is fairly simple. As an example, consider Figure 2.2, which
portrays the architecture of a dual core processor. In this example there are private level 1 caches: the
instruction cache, the data cache, and a Translation-Lookaside Buffer (TLB) which is an address cache.
In level 2 there is a shared unified cache, meaning that both cores have access to it and that the chache
hosts both data and instructions. A higher level number means more distance to the core, which implies that
the caches are bigger but slower. Additionally both cores have equal access to the main memory. This is
an example of a Uniform Memory Access (UMA) architecture, in which all the processors or cores have
the same distance and therefore the same access speed to all the data in the memory. Figure 2.3 shows a
UMA and a Non-Uniform Memory Access (NUMA) platform. A problem of NUMA systems is memory
consistency: “When a processor of an SMP stores results of local computations in its private cache, the new
values are accessible only to code executing on that processor. If no extra precautions are taken, they will
not be available to instructions executing elsewhere on an SMP machine until after the corresponding block
of data is displaced from cache. But it may not be clear when this will happen. Infact, since the old values
might still be in other private caches, code executing on other processors might continue to use them even
then”, Chapman et al. [2007]. Most modern NUMA systems however have mechanisms to prevent such
behaviour, i.e. updates to data on one processor will be communicated to all other processors if needed.
Those systems are hence called cache coherent NUMA (or simply cc-NUMA) systems.

SMP systems can be classified as multiple instruction, multiple data (MIMD), allowing completely
independent control of each of the processors, both in instructions to be executed and data to be processed.

In the following we will only say “processor” even though we may actually refer to a core of a processor.

2.2 PARALLEL COMPUTING ON SHARED-MEMORY PARALLEL COMPUTERS 7

Figure 2.2: Block diargram of a generic, cache-based dual core processor. Chapman et al. [2007]

CPU

CPU

CPUCPU Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

CPU

CPU

CPU

CPU
Memory

BUS
Interconnect

(a)

(b)

Figure 2.3: Comparison between UMA (a) and NUMA (b) platforms, compare Barney [2016].

8 PARALLEL COMPUTING 2.2

......

Fork

Join

Initial Thread

Initial Thread

Team of Threads

Figure 2.4: The Fork-Join Model.

2.2.2 Programming Shared-Memory Parallel Computers: OpenMP

OpenMP is a shared-memory application interface (API), applicable to codes written in Fortran and
C/C++. Rather than being a new programming language it is a set of so-called compiler directives that can be
added to the serial code, as well as runtime library routines and environment variables. OpenMP directives
are instructions in a special format that can only be understood by OpenMP compilers, meaning that for non-
OpenMP compilers (or compilations without the respective OpenMP flag) those instructions will be ignored.
The directives have the appearance of comments (!$omp) for regular Fortran compilers, or of pragmas
(#pragma omp) for regular C/C++ compilers. The directives describe how the work is shared among threads
executed on different processors, as well as how data is shared among different processors. A thread is
“a run-time entity that is able to independently execute a stream of instructions” Chapman et al. [2007],
or, according to Kirk and Hwu [2013], “[a] thread in modern computers is a virtualized von Neumann
processor”.

We use OpenMP to exploit parallelism for the available SMP, however there are other ways to achieve
this, for example POSIX threads (Pthreads) or the Message Passing Interface (MPI), among others. Many
compilers also provide flags for automatic program parallelization, however the compiler often lacks the
necessary information to do a good job. The top priority for the compiler is to ensure the correctness of the
results, thus when it is in doubt whether parallelization might be infringing the correctness of the computa-
tions (for example when there may be data dependence) the compiler will opt for not parallelizing the piece
of code (Chapman et al. [2007]).

A big advantage of OpenMP is that one can parallelize a given sequential code incrementally: It is
possible to parallelize one portion of the initially serial program at a time, thus making sure that the paral-
lelization does not affect the correctness of the program. Furthermore, precisely because its directives are
ignored by non-OpenMP compilers, it lets parallelized programs remain executable on older compilers not
offering OpenMP. OpenMP supports the so-called fork-join model, portrayed in Figure 2.4: The program
begins sequentially with an initial thread until an OpenMP parallel construct is encountered and the ini-
tial thread is creating a team of threads (this is referred to as the fork). Within the team of threads, the initial
thread turns into the master thread of the team. All the members of the team collaborate to execute the part
of the code that is enclosed by the parallel construct. At the end of that construct only the master thread
remains (turning itself back to the initial thread), while all the other threads terminate. This is the join. The
part within the parallel construct is called the parallel region. In general, the different threads will take a
different amount of time to reach the end of the parallel region, and the master thread may have to wait
at the end of that region until all the other threads of the team terminate before it can continue to execute
sequentially.

By default, all data is considered to be shared among the threads (shared). This means that all the data
is copied into the caches of the processors and updated in all caches whenever the data changes. Though
for certain situations this behaviour can be a problem and it is desired to give each thread a private copy of
some variable from the master thread (firstprivate) or to create variables within the parallel region (or
within some construct inside the parallel region) that stay private to each thread (private). Observe that
private data is undefined before that construct is entered or exited. If it is necessary to preserve the value of
a variable after such a construct, lastprivate will need to be used. The default behaviour can be changed
using the default clause, though.

2.2 PARALLEL COMPUTING ON SHARED-MEMORY PARALLEL COMPUTERS 9

Figure 2.5: Taken from Chapman et al. [2007]. “Schedule kinds supported on the schedule clause – The static
schedule works best for regular workloads. For a more dynamic work allocation scheme the dynamic or guided
schedules may be more suitable.”

Another important aspect of parallel programming (at least for SMPs and GPUs) is that thread execution
is not in order. This means that given a set of processors p1, . . . , pn and a set of threads t1, . . . , tn one cannot
foresee which thread ti is run on which processor p j, or even which thread is run first and so forth. Moreover,
when rerunning the programming in parallel it is observable that the order in which the threads are run (or
on which processor they are run) is arbitrary once more. For this reason it is important to write parallel
programs whose results do not depend on the order of execution of the threads. The errors in results due to
this order dependence are known as (data) race conditions.

Sometimes it is important for all threads to wait until all threads terminated a given portion of the pro-
gram before they enter the next one in order to prevent data corruption, so that data is not read before it has
been completely (created or) modified, or vice versa. This is known as synchronization or as a barrier. The
barrier directive offers this in OpenMP. However there is an implied barrier after work sharing constructs
(do/for, sections, single, or workshare (Fortran only)) as well as after a parallel region, too. If the
implicit barrier after work-sharing constructs is not desired, one can put the nowait directive after it to
disable synchronization at that point.

In many applications it is desirable to parallelize loops in which each loop iteration is independent
of the other iterations. It is necessary to know beforehand how many loop iterations will be performed;
while-loops are not parallelizable in general. There are different ways how a loop can be parallelized with
OpenMP, using different schedule clauses, compare Figure 2.5. The parallelization of a given loop can be
classified as SIMD, or single instruction, multiple data. For tightly nested loops it is possible to let the
compiler collapse them (or a portion of them) into one single big loop using the collapse directive which
is then executed in parallel according to the schedule clause.

Reduction operations significantly prosper from parallelism, too. A reduction operation is an operation
that reduces an array of values into a single value while using only one single mathematical operation like

10 PARALLEL COMPUTING 2.2

+,−, ∗, /,min, or max, among others. A variable that will be reduced needs to be declared as such at the
beginning of the corresponding parallel region in the same way a private or shared variable needs to be
declared. In fact, it can be considered to be a special kind of merger between a shared and private variable:
“At the end of the reduction, the reduction variable is applied to all private copies of the shared variable,
and the final result is written to the global shared variable.” Barney [2016]

In the following we will briefly discuss some performance considerations for programs using OpenMP.
For further details we refer to Chapman et al. [2007]. It should be no surprise that achieving good perfor-
mance for parallel programs requires even more care than for serial programs. For both serial and parallel
programs memory access patterns have a great impact on performance, however for programs parallelized
using OpenMP there are additional factors, for example:

• Fraction of work in the parallel region that is sequential or replicated;

• Amount of time handling OpenMP constructs (directives and routines in OpenMP come with over-
heads);

• Load imbalance between synchronization points;

• Other synchronizations costs.

Replicated work are instructions in the parallel section that already have been performed by the initial thread
before forking. Work is being serialized within a parallel region by using the critical, atomic, single
or master constructs. The OpenMP overhead is additional work or computational cost incurred by the
creation and handling of parallelism like starting and ending parallel regions, sharing work among threads
or all kinds of synchronization. The sources of overheads include

• starting up threads and creating their execution environment;

• encapsulation of a parallel region within a separate function;

• computing schedules;

• (un)blocking threads;

• threads fetching work and signalling that they are ready.

The amount of overheads depend on the OpenMP translation strategy used by the compiler, the character-
istics of the run-time library routines and the way they are used, the target platform, and how the compiler
optimizes the code. Different examples of overheads are portrayed in Figures 2.6 and 2.7 which are mea-
sured on the EPCC microbenchmarks for the first version of the OpenUH compiler. Note that, for example,
even though the dynamic schedule is substantially more expensive than the static schedule, its use may
still lead to a better overall performance due to a reduction of thread idle times in situations of high load
imbalance.

There are some general broad rules of thumb of how to achieve good performance with OpenMP. For
example, as discussed previously, synchronization operations are expensive and should therefore be used
as little as possible though as much as necessary to guarantee correct computations, for instance, skip-
ping implicit barriers whenever they are not explicitly required. Furthermore, it is advisable to maximize
parallel regions, to avoid large critical regions, to avoid parallel regions in inner loops (as this leads to po-
tentially extensive overheads), as well as to address poor load balance. Whereas those rules of thumb will
generally yield a better performance, there are some considerations that may have a notable impact on the
performance, though depend on different factors like target platform, the compiler, and the code itself. For
example one may gain performance by using the single rather than the master construct (or vice versa),
or by letting certain data be private rather than shared (or vice versa).

Another more intricate aspect is the so-called false sharing, which is a side effect of cache line gran-
ularity of cache coherence implemented on SMPs. In order to understand what false sharing is consider
the following situation. When different caches contain the same cache line of some shared data and a bit

2.2 PARALLEL COMPUTING ON SHARED-MEMORY PARALLEL COMPUTERS 11

Figure 2.6: Overheads of several common OpenMP directives and constructs. Taken from Chapman et al. [2007].
Note that the overhead of reduction operations for this compiler is unreasonably high, and not representative for
other compilers. Chapman et al. [2007]

Figure 2.7: Overheads of different kinds of OpenMP loop schedules. Taken from Chapman et al. [2007].

(or more) of this cache line is modified on one cache then the “state bits” of that line on the other caches
indicates that data within the cache line is no longer valid. There is no mechanism to indicate that only a
portion (or even which portion) of the cache line is invalidated, hence the entire cache line will be updated.
Depending on the implementation this update may be fetched from the cache of another processor or from
the main memory. False sharing is the effect caused by two or more threads updating different data elements
in the same cache line. An extreme example would be an array arr (partially) stored in a given cache line
and every element of arr in that cache line being modified by a different thread. In this scenario, after one
thread modified an element of arr in that cache line within its cache, the cache line in all other caches needs
to be updated before the next thread could modify another element of arr in this cache line, and so forth.
It is stated in Chapman et al. [2007] though that modest amounts of false sharing do not have a significant
impact on performance, but will do if all of the following three conditions are satisfied:

1. Shared data is modified by multiple threads;

2. The access pattern is such that multiple threads modify the same cache line(s);

3. These modifications occur in rapid succession.

12 PARALLEL COMPUTING 2.3

It is noted that private data substantially reduces the risk of false sharing1, and that read-only data does not
create false sharing.

In order to achieve high performance for an OpenMP program both experimentation and analysis are
needed, especially for the more important program regions. Even though OpenMP directives can be directly
added to an existent serial code, sometimes it might be advantageous to rewrite certain parts of the code
in a way that more parallelism can be exploited. For example optimizations of the parallelization of loops
may include loop unrolling (and jamming), loop interchanges, loop fusion/fission, or loop tiling, compare
Chapman et al. [2007].

2.3 Parallel Computing with GPUs

In this section we will treat CUDA GPUs. CUDA (an acronym for Compute Unified Device Architec-
ture) is both a parallel computing platform and an programming model created by NVIDIA which was first
“unveiled” in 20062.

The GPU is used as an accelerator, meaning that a program is still started and processed on the CPU
which then sends data-parallel functions, so called kernels, and the necessary data for their execution to the
GPU. The GPU then runs the kernels in an ideally highly parallel manner.

The GPU is commonly referred to as device whereas the rest of the computer is called host.

2.3.1 GPU Architecture

The architecture of GPUs is tremendously more intricate than of SMP systems. The CUDA architecture
varies notably from one generation to the next (this seems to be especially true for the GPU chip), however
some architecture aspects remain constant. For example, as can be seen in Figure 2.8, considerably more
transistors are used as ALUs (or cores in general) on a GPU than on a CPU.

“A GPU is connected to a host through a high speed IO bus slot, typically PCI-Express in current high
performance systems”, Wolfe [2012]. Off-chip, the GPU possesses its own DRAM memory up to several
gigabytes. It is used for the global (often called device memory) and local memory of the GPU. Between
the GPU and the host memories, data is usually transferred using direct memory access (DMA), see Figure
2.9. “The device memory supports a very high data bandwidth using a wide data path. On NVIDIA GPUs,
it’s 512-bits wide, allowing sixteen consecutive 32-bit words to be fetched from memory in a single cycle”,
Wolfe [2012]. For GPUs it is therefore of major importance to access memory consecutively, as strided
accesses cause severe effective bandwidth degradation.

Note however that “[t]here is a trend to integrate CPUs and GPUs into the same chip package, commonly
referred to as fusion. Fusion architectures often have a unified memory space for host and devices. There
are new programming frameworks, such as GMAC, that take advantage of the unified memory space and
eliminate data copying costs”, Kirk and Hwu [2013].

As an example for a general CUDA capable GPU architecture, we will focus on the architecture of the
Kepler GK110 GPU chip NVIDIA [2012], which is built in the Tesla K40 GPU used for our work. The

1According to Chapman et al. [2007] false sharing can still happen when there are different private data in the same cache line.
2See http://www.nvidia.com/object/cuda_home_new.html, accessed 01.09.2016

Figure 2.8: A comparison of the schematic architectures of CPUs and GPUs. Taken from Kirk and Hwu [2013]

2.3 PARALLEL COMPUTING WITH GPUS 13

Figure 2.9: NVIDIA Kepler Block Diagram. Taken from Wolfe [2012].

GK110 GPU chip consists of 15 streaming multiprocessors (in this specific generation called SMX, though
normally referred to as SM), an L2 cache, memory controllers, and the GigaThread engine (which schedules
thread blocks to various SMs, see Section 2.3.2), compare Figure 2.10. A more detailed block diagram of the
architecture of a single SM is given in Figure 2.11. The SM mostly consists of 192 single precision and 64
double precision cores (in Figure 2.11 labelled as Core and DP Unit respectively), as well as various different
kinds of memory: The instruction cache, register files, shared memory/L1 cache, read only cache, and the
texture memory (Tex) which is another read only memory. Observe that the shared memory is a user- (or
software-) managed data cache, and that the shared memory/L1 cache can be configured to be 32 kB/32 kB,
48 kB/16 kb, or 16 kB/48 kB. Furthermore the SM has 32 special function units (SFU) (for example for
functions like the sine, tangent, or the exponential) and 32 load/store units (LD/ST). Additionally, the SM
inhibits four warp schedulers and eight instruction dispatch units. This means that for the GK110 chip four
warps can run concurrently per SM with two independent instructions per cycle, compare Figure 2.12. A
warp is a group of 32 parallel threads. NVIDIA calls the parallelism in which a warp executes its work
SIMT (single instruction, multiple threads). SIMT is very similar to SIMD parallelism, though handles
conditional operations somewhat differently than SIMD (see the discussion on control divergence in Section
2.3.2). As is shown in Figure 2.8, a substantial part of the transistors of a CPU is used for the cache. And
as a matter of fact, a great deal of the performance of a CPU is due to cache optimizations: All data is
ideally available in some level of the cache whenever it is needed by the computation of the CPU. That
is, CPUs are latency optimised, where latency is the time needed from the request of some data until it is
available to the processing unit. Even though GPUs have been equipped with L1 and L2 caches in recent
CUDA architectures, they remain to be designed for throughput computing and therefore handle memory
performance differently than CPUs. GPUs work with latency hiding: Even though a memory request to the
device memory can take up to several hundred clock cycles, GPUs tolerate this high latency by using a
high degree of parallelism or multithreading. For example, the GK100 architecture supports up to 64 active
warps on each SM (though only four warps can work on an SM concurrently at any given time). Hence,
when a warp stalls due to a memory operation, another warp is selected by the control unit that has all the
data available to perform its computations. As long as there is enough work for the data available to the
cores, they will be kept busy and the memory operation will virtually not affect the overall performance.

Note that different GPU generations may have a different number of streaming multiprocessors, as well
as a varying amount of single/double precision cores per streaming multiprocessor and differently sized
memories, to name only a few architecture changes. Additionally, earlier GPU generations may not carry
an L2 cache.

The newest CUDA architecture (as of the time of this writing), namely the P100 chip, can be found at
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf. To emphasize the
architectural difference to the GK100 chip, note that the P100 includes 56 SMs of 64 single precision and

14 PARALLEL COMPUTING 2.3

Figure 2.10: Block diagram of the GK110 chip architecture. Taken from NVIDIA [2012].

Figure 2.11: Block diagram of a single Streaming Multiprocessor of the GK110 chip. Taken from NVIDIA [2012].

2.3 PARALLEL COMPUTING WITH GPUS 15

Figure 2.12: Graphic representation of a warp scheduler. Taken from NVIDIA [2012].

32 double precision cores each, for example.

2.3.2 Programming GPUs: CUDA

The programs using CUDA in this work were written in CUDA Fortran, which is based on the CUDA C
runtime API. “There are a few differences in how CUDA concepts are expressed using Fortran 90 constructs,
but the programming model for both CUDA Fortran and CUDA C is the same.

“The CUDA programming model is a heterogeneous model in which both the CPU and GPU are used.
In CUDA, the host refers to the CPU and its memory, while the device refers to the GPU and its memory.
Code run on the host can manage memory on both the host and device, and also launches kernels which are
functions executed on the device. These kernels are executed by many GPU threads in parallel.

“Given the heterogeneous nature of the CUDA programming model, a typical sequence of operations
for a CUDA Fortran program is:

1. Declare and allocate host and device memory.

2. Initialize host data.

3. Transfer data from the host to the device.

4. Execute one or more kernels.

5. Transfer results from the device to the host.” Ruetsch [2012]

In order to declare a device variable (or array) in the host code it is necessary to use the device variable
attribute. This implies that any host variable cannot be used on the device and vice versa. It is therefore
common practice that, for example, if a host variable has the name var, then the counterpart variable on
the device will be called var_d. For CUDA Fortran it is possible to not only allocate the device memory
in the host code but also to copy host data to or from the device directly (for example by writing var_d =
var). For CUDA C, this option is not available and it is necessary to use the CudaMemCpy function (which
is available to CUDA Fortran, too).

When launching a kernel one has to define a grid of thread blocks in the following way.
call kernel_name <<< grid,tBlock >>>(var-list...)

In between the triple chevrons is the so-called execution configuration. As a bare minimum one has to de-
clare how many thread blocks shall be launched in the kernel’s grid (grid variable) as well as how many
threads per thread block (tBlock variable). Both of these variables can either be one-dimensional or of

16 PARALLEL COMPUTING 2.3

the derived type dim3 which contains the x, y and z components. The choice of dimensions for each of
these variables is independent of one another, for example we can choose to have a one-dimensional grid
of two-dimensional thread blocks. There is a hardware limit of how many blocks per SM and how many
threads (warps) per SM can be launched, for example.3 An optional though frequently used argument in the
execution is the shared memory allocation size per thread block (in bytes). It is put after the blocks/grid and
threads/block arguments.

As was discussed in Section 2.3.1, a group of 32 threads creates a thread unit called warp which operates
in an SIMT fashion. It is possible to select the above variable tBlock in such a way that it is not a multiple
of 32 in any of the components, however when the kernel is launched its thread block will be padded to
form a multiple of 32 threads (and all of these threads will perform the same SIMT operations). In those
situations special care must be taken that those extra threads do not modify data elements: Observe that
every thread within thread block has local indices (ThreadIdx%x, ThreadIdx%y, ThreadIdx%z). Together
with the block indices (BlockIdx%x, BlockIdx%y, BlockIdx%z) and the block dimensions (BlockDim%x,
BlockDim%y, BlockDim%z) it is possible to calculate the global index of a thread:

id_x = ThreadIdx%x + BlockIdx%x ∗ (BlockDim%x − 1)

or, for C/C++,

id_x = ThreadIdx.x + BlockIdx.x ∗ BlockDim.x

In this manner it is possible to let different threads access different elements of the same data. But those
threads that were created to pad thread blocks into multiples of 32 have those local thread indices, too.
Therefore, unless we specifically exclude them from taking any action (after letting them determine their
global indices), they will access data in the same way as all the other requested threads do. This can be done
in the following way (for a one-dimensional block and grid):

attributes(global) subroutine kernel(num_threads_requested, ...)
implicit none
integer :: num_threads_requested
...

id_x = threadIdx%x + BlockIdx%x*(BlockDim%x-1)
if (id_x <= num_threads_requested) then
! do some work
...

endif

end subroutine kernel

There are a couple of things to discuss from the above code snippet. First of all, note that the attributes(global)
indicates that this subroutine is called from the host and executed on the device. Analogously, attributes(device)
indicates that a subroutine is called from and executed on the device. There is also an optional attributes(host)
qualifier stating that the subroutine is called from and executed on the host, however in practice this is rarely
used (if ever). Next, we see that only the threads that were requested in the execution configuration will be
performing the work of this kernel. Lastly, we already briefly mentioned in Section 2.3.1 that the SIMT
parallelism handles conditionals somewhat different than SIMD. This is an important aspect of the perfor-
mance of GPUs: The GPU cannot execute different conditional paths concurrently. It rather first executes all
the threads for which the condition is true in the if-construct. Afterwards all threads will be executed that
satisfy the else if-condition(s) (if there are any), and finally it executes all the threads in the else path.
This means that all these paths will be executed sequentially one after another, hence degrading parallel
performance substantially. For that reason it is advised to divide work among the warps such that ideally all
threads of a given warp follow the same conditional path.

A different issue to keep in mind when launching a kernel on the device is that while the use of registers
3For the GK100, these limits are 64 warps/SM, 16 thread blocks/SM and 1024 threads per thread block.

2.3 PARALLEL COMPUTING WITH GPUS 17

Table 2.1: CUDA variable type qualifiers for different memories. Kirk and Hwu [2013]

Variable Declaration Memory Scope Lifetime

Automatic variables other than arrays Register Thread Kernel

Automatic array variables Local Thread Kernel

Fortran: integer, device, shared :: SharedVar
C: __device__ __shared__ int SharedVar; Shared Block Kernel

Fortran: integer, device :: GlobalVar
C: __device__ int GlobalVar; Global Grid Application

Fortran: integer, device, constant :: ConstVar
C: __device__ __constant__ int ConstVar; Constant Grid Application

and especially shared memory can be extremely helpful to reduce the access to global memory and therefore
can potentially increase performance drastically (as variables residing in these memories can be accessed at
“very high speed in a highly parallel manner”, Kirk and Hwu [2013]), extensive use of these resources can
actually limit parallelism. This is due to the fact that these memory resources are limited on the SM. This
implies that if a block exceeds these capacities less and less threads will be able to run concurrently on the
SM. As an example, on the GK100 chip used for our work, each SM can host up to 2048 threads and 65536
registers. This means that to make use of all the threads available on the SM each thread can only use 32
registers, for if they would require using 33 registers, less threads will be available to run concurrently on
the SM. Such a reduction in threads is realized at block granularity. For example, if each block launched
in this kernel would consist of 512 threads, the need to use 33 registers would result in there only being
2048 − 512 = 1536 threads available on the SM – a thread reduction of 25% for an increase of 3.125%
of registers per thread. Analogous behaviour occurs for the shared memory. On the GK100 each SM has
up to 48 kB of shared memory and can hold up to 16 thread blocks. To achieve the maximum number of
thread blocks (assuming that every thread block has no more than 128 threads) each block must not use
more than 3 kB of shared memory in this configuration (if the shared memory/L1 cache is not configured to
be 48 kB/16 kB for this architecture, each block will have less shared memory available in order to let all 16
blocks run on the SM).

Shared memory is very effective for non-coalesced memory accesses (for example for accesses along
the rows in Fortran, or along the columns in C, or other strided memory accesses). One can load the elements
into the shared memory in a coalesced manner from the global memory and then access those elements in
whatever fashion in the shared memory, as accesses to shared memory are significantly less expensive than
to global memory.

Table 2.1 lists how variables are put in different CUDA memories, and what their scope and lifetime is.
Observe that the texture memory is omitted in this table as handling it is substantially more intricate. See
Gupta [2013] for an introduction to using texture memory in CUDA.

Constant variables are stored in the global memory but are aggressively cached. It “supports short-
latency, high-bandwidth, read-only access by the device when all threads simultaneously access the same
location”, Kirk and Hwu [2013].

As was already discussed for OpenMP in Section 2.2.2, synchronization is one of the major aspects of
parallel programming. For GPUs this is just as valid, though slightly more complicated as for SMPs, as
“GPUs do not support a fully coherent memory model that would allow [SMs] to synchronize with each
other” Wolfe [2012]. However, it is possible to synchronize threads within the same block. Synchronizing all
threads of the grid is only possible at the end of a kernel, before a new kernel launched from the same stream
starts. It is possible to let different kernels execute simultaneously when they are launched via different
streams, however often the kernels are sufficiently large to fill the entire device one by one.

Threads of one SM cannot send results to threads of other SMs, nor is it possible to create “a critical
section among all threads of the whole system. [. . .] Threads in a single block will be executed on a single

18 PARALLEL COMPUTING 2.3

[SM], sharing the same [shared memory], and can synchronize and share data with threads in the same
block [. . .]. [The threads of a different block] may be assigned to different [SMs] concurrently, to the same
[SM] concurrently (using multithreading), or may be assigned to the same or different [SMs] at different
times, depending on how the blocks are scheduled dynamically”, Wolfe [2012]. As stated in Section 2.3,
due to latency hiding, warps become inactive when executing global memory operations and other warps
that have all the resources available for execution become active instead. Since warps cannot migrate from
one SM to another, the inactive warp will resume its execution on the same SM after its memory operation
has finished.

Note that as of the Kepler architecture generation it is possible for kernels to launch sub-kernels, which is
called dynamic parallelism by NVIDIA. This helps the device to “generate new work for itself, synchronize
on results, and control the scheduling of that work via dedicated, accelerated hardware paths”, NVIDIA
[2012], all without involving the host.

The most severe difference between CUDA Fortran and CUDA C is probably that CUDA Fortran pro-
vides “kernel CUDA Fortran loop directives”, also called CUF kernels, to parallelize loops or perform
reductions on the device in the host code without having to write an explicit kernel. This is a huge advan-
tage, as writing efficient reduction operations is no trivial task. As an example for CUF kernels consider the
following code snippet.

!$cuf kernel do <<<*,*>>>
do i=1,N
y_d(i) = y_d(i) + a*x_d(i)
xsum = xsum + x_d(i)

enddo

y=y_d

Here, between the triple chevrons, once more we have the execution configuration. But unlike earlier when
we invoked a proper CUDA kernel, by writing asterisks in it we can also opt for letting the compiler choose
a configuration. If the left-hand side of an expression within a CUF loop kernel is a host scalar variable,
a reduction operation will be performed on the device – in this loop, this is created by xsum = xsum +
x_d(i). Note that reduction operations on the GPU always include control divergence at some point of the
process.

However, the one big disadvantage of CUDA Fortran is that there is only one (commercial) compiler
offered for it, namely the PG Fortran compiler (at least this is the case at the time of this writing). In contrast,
CUDA C is provided for free by the NVIDIA C comipler (nvcc), which results in a bigger community with
more active and more extensive user forums. Additionally there are more debugging applications for CUDA
C than for CUDA Fortran.

As stated in Wolfe [2012], “[p]erformance tuning on NVIDIA GPUs requires optimizing all these ar-
chitectural features:

• Finding and exploiting enough parallelism to populate all the [SMs].

• Finding and exploiting enough additional parallelism to allow multithreading to keep the cores busy.

• Optimizing [global] memory accesses for contiguous data, essentially optimizing for stride-1 memory
accesses.

• Utilizing the [shared memory] to store intermediate results or to reorganize data that would otherwise
require non-stride-1 [global] memory accesses”. Wolfe [2012]

2.3.3 Programming GPUs: OpenACC

If it is desired to parallelize a given serial code with CUDA it is not possible to simply add some di-
rectives, in contrast to using OpenMP, or even to let a CUDA code run sequentially if the compiler has no

2.3 PARALLEL COMPUTING WITH GPUS 19

Figure 2.13: Accelerator model used for OpenACC. Taken from Kirk and Hwu [2013].

CUDA capability. OpenACC offers the same characteristics and advantages as OpenMP for GPUs. Equiva-
lent to OpenMP, OpenACC is an API providing a set of compiler directives, library routines, and environ-
ment variables, and can be applied to codes written in Fortran and C/C++ in order to let them execute in
parallel on accelerator devices, including GPUs. With OpenACC the threshold for scientists to let their code
run on GPUs is diminished as they do not need to invest the time in learning CUDA and rewriting already
existing code. Instead, it is possible to add some directives in the sequential codes in order to take advantage
of the GPU. This is a great advantage for debugging purposes, too, because it is possible to incrementally
parallelize an existing serial code and compare the results of the parallelized version with the sequential
one. Its syntax is very similar to OpenMP. All of this is not very surprising when taking into consideration
that the OpenMP Architecture Review Board (ARB) “has formed an accelerator working group to extend
OpenMP support on accelerators [and that] [a]ll OpenACC founding members are members of this group”,
Kirk and Hwu [2013]. Furthermore, it is intended by this group to merge both specifications into a common
one.

As OpenACC can parallelize serial code on different accelerator devices (not only GPUs), it considers a
more general kind of architecture model, portrayed in Figure 2.13. In this architecture model, three levels of
parallelism are considered. “At the outermost course-grain level, there are multiple execution units. Within
each execution unit, there are multiple threads. At the innermost level, each thread is capable of executing
vector operations”, Kirk and Hwu [2013]. Due to its accelerator architecture model, its execution model is
not divided into warps, blocks, and grids, but rather into vectors, workers, and gangs. “On a GPU, a possible
implementation is to map a gang to a CUDA block, a worker to a CUDA warp, and a vector element to a
thread within a warp. However, this is not mandated by the OpenACC specification and an implementation
(compiler/runtime) may choose a different mapping based on the code pattern within an accelerator region
for best performance”, Kirk and Hwu [2013].

Another difference to CUDA is that some OpenACC directives are merely hints to the compiler, which
may or may not be able to take full advantage of such hints. For this reason it is of paramount importance to
check the information given on the parallelization by the compiler during compilation (for the PGI compiler
this is done by the -Minfo=accel flag). The performance of an OpenACC program greatly depends on
the capability of the OpenACC compiler, whereas for CUDA the parallelization of a program is expressed
explicitly and therefore does not rely so much on the compiler. Additionally, the parallelization model of an
OpenACC program is based on forking and joining, similarly to OpenMP. The joining process is the only
way for synchronization with OpenACC. Compare Figure 2.14 for an example of an OpenACC fork/join
process. Another characteristic of OpenACC is that there is no “reliable way to allow one execution unit to
consume data produced by another execution unit. [. . .] Therefore, in OpenACC, different execution units
are expected to work on disjoint memory sets. Threads within an execution unit can also share memory and
threads have coherent memory”, Kirk and Hwu [2013].

An OpenACC directive is preceded by !$acc (Fortran) or #pragma acc (C/C++). OpenACC offers two
constructs that specify which part of the program is supposed to be executed on the accelerator: parallel
and kernels. While both may be able to yield the same accelerator execution behaviour there are some

20 PARALLEL COMPUTING 2.3

Figure 2.14: OpenACC fork/join process. Taken from Kirk and Hwu [2013].

important differences.
Using the parallel construct, a gang of workers are created, though only one worker will execute the

parallel region initially and other workers will be deployed once there is more parallel work at an inner
level. It is possible to specify the number of gangs, workers, as well as the length of the vector after the
parallel construct using the num_gangs, num_workers, and vector_length clauses. If not specified
by the user the implementation will select these values at runtime. In both cases these numbers are fixed
for the remainder of the parallel section. Note while there is initially only one active worker per gang (in
Kirk and Hwu [2013] described as gang lead) executing the code within the parallel region, unless specified
otherwise, this code will be executed redundantly by all gangs (each using the gang lead) if the number of
gangs is greater than one.

Similar to OpenMP’s do (Fortran) or for (C/C++) constructs, OpenACC has a loop construct to par-
allelize loops in a parallel region. OpenACC also offers the reduction and collapse clause, and even
a tile clause4 which is not offered by OpenMP. As was mentioned earlier, OpenACC offers three levels
of parallelism which also reflects on the loop constructs: The iterations of a loop can be be shared among
gangs, workers and vectors, using the gang, worker, or vector clause afte the loop construct. The gang
loop is shared among all gang leads and is used for outermost loops. When wanting to parallelize an inner
loop one can use a worker loop which distributes the loop iterations among all workers within a gang. The
vector loop is often used to parallelize the innermost loop in an SIMD fashion. This way of parallelizing
loops is especially helpful for loops that are not tightly nested and therefore cannot be collapsed.

The kernels construct opens a region that may contain more than one kernel and each of these kernels

4From the OpenACC API OpenACC-Standard.org [2015] we have:

“The tile(size-expr-list) clause specifies that the implementation should split each loop in the loop nest into
two loops, with an outer set of tile loops and an inner set of element loops. The argument to the tile clause is a list
of one or more tile sizes, where each tile size is a constant positive integer expression or an asterisk. If there are n
tile sizes in the list, the loop construct must be immediately followed by n tightly-nested loops. The first argument
in the size-expr-list corresponds to the innermost loop of the n associated loops, and the last element corresponds
to the outermost associated loop. If the tile size is specified with an asterisk, the implementation will choose an
appropriate value. Each loop in the nest will be split or strip-mined into two loops, an outer tile loop and an inner
element loop. The trip count of the element loop will be limited to the corresponding tile size from the size-expr-list.
The tile loops will be reordered to be outside all the element loops, and the element loops will all be inside the tile
loops.”

2.4 PERFORMANCE METRICS FOR PARALLEL PROGRAMMING 21

may have a different configuration of gangs, workers and vector lengths. For this reason, the num_gangs,
num_workers, and vector_length clauses are optional on a loop construct within a kernels region but
are not used on the kernels construct itself. The other big difference to the parallel construct is that the
kernels construct is more descriptive, it tells the compiler the intentions of the user, however it is up to
the compiler to create kernels within this region. There are two common reasons for the compiler to not
generate a kernel for a loop construct: Safety and performance. Safety in this context means that the result
of the parallel execution of the loop is the same as for the serial execution. If there is a data-dependency
between two loop iterations this safety is not given.

The kernels construct is probably facilitating the porting of programs to OpenACC in a greater manner,
however the “quality” of the generated accelerator code strongly depends on the capability of the compiler.
The user has more control over the accelerator code using the more prescriptive parallel construct, which
offers no safety net for data dependence however. Sometimes the compiler has not enough information
available to guarantee that there is no risk of data dependence for a given loop. In those situations, the
user can force parallelization using the independent clause to the loop construct, it is then the user’s
responsibility to guarantee that the parallelization indeed does not affect correct computation.

Efficient data management is even more crucial for OpenACC than for OpenMP, as data transfer from
the host to the device (or vice versa) is highly expensive. It is therefore of major importance to let data
reside as long as needed on the device memory. While it is possible to have data copied to and from the
device for every kernel it is highly recommendable to set up data regions using the data construct before
parallel/kernels regions. The data construct has the same data clauses available as other constructs such as
parallel, kernels, or loop:

• copyin in order to copy data from the host to the device upon entering the data region;

• copyout in order to copy data from the device to the host immediately after the data region;

• copy which implies both copyin and copyout;

• create when only the allocation of data on the device memory is needed without copying the data
back to the host after the data region.

Additionally, there is the present clause, however, from OpenACC 2.5 on all of the data clauses mentioned
above behave like present_or_copyin etc. meaning that if there already is the desired data present on the
accelerator, the present copy will be used, otherwise the data will be copied to or created on the device
memory.

The same remarks regarding performance for OpenMP at the end of Section 2.2.2 are also valid for
OpenACC (aside from false sharing).

2.4 Performance Metrics for Parallel Programming

For both, parallel programming on SMPs and GPUs there are certain metrics in order to gauge perfor-
mance and to analyse potential ways to improve it. Due to the differences in architecture those metrics are
not the same for these platforms either.

For example, for homogeneous SMPs in which one has various core within the same processors and/or
various identical processors it makes sense to measure the speedup which compares the execution time of
the serial program relative to the parallel one:

S =
Tser

Tp
,

where Tser is the serial execution time and Tp the parallel one (with p denoting the number of processors
used). The obvious question is whether a given program will get an arbitrary speedup if a sufficient amount
of processors are available. The well-known Amdahl’s law5 answers this question from a theoretical point

5Amdahl’s law is actually not a physical law but rather a model.

22 PARALLEL COMPUTING 2.4

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

Number of processors p

S
pe

ed
up

S

f
par

 =0.8

f
par

 =0.85

f
par

 =0.9

f
par

 =0.95

f
par

 =0.98

Student Version of MATLAB

Figure 2.15: Maximum speedup S achievable according to Equation (2.1) as a function of the parallel fraction of the
program fpar and the number of processors used p.

of view. The maximum speedup achievable due to Amdahl’s law is

S =
1

fpar
p + (1 − fpar)

, (2.1)

with fpar being the parallel fraction of the program and p being the number of processors, Chapman et al.
[2007]. For fpar = 1 Equation (2.1) yields S = p, and for fpar = 0 Equation (2.1) reduces to S = 1.
Speedups according to Equation (2.1) with other choices of fpar and in function of p can be found in Figure
2.15.

It must be understood, though, that Amdahl’s law is based on linear speedup in the sense of that the
maximum speedup cannot be greater than the number of processors used. But as is stated in Chapman et al.
[2007], “a parallel program has more aggregate cache capacity at its disposal, since each thread will have
will have some amount of local cache. This might result in a superlinear speedup: the speedup exceeds the
number of processors used.” This positive effect can offset some of the performance loss caused by serial
code and the various overheads.

Another popular metric used for SMP systems is the parallel efficiency

E =
S
p
.

Moreover, within the field of high performance computing, frequent metrics are strong scaling and weak
scaling. Scalability in general describes how solving a bigger problem is handled with additional hardware
resources. A program is said to be scalable if adding more processors reduces execution time in some
proportionality to the processors added. In this context, strong scaling describes how the execution time of
a program changes with the number of processors for a fixed total problem size. Weak scaling, on the other
hand, describes how the execution time of a program changes with the number of processors for a fixed
problem size per processor. With the given definitions it can easily be seen that speedup and strong scaling
are identical.

For GPUs, the concept of speedup of a program does not work as for SMPs. This is due to differences
in architecture, there is no connection between the execution time of the serial program on a CPU and the
parallel execution on the GPU. Even though one is ultimately still interested in letting the program run as

2.4 PERFORMANCE METRICS FOR PARALLEL PROGRAMMING 23

fast as possible using the GPU, the metrics used for GPU programming refer rather to the exploitation of the
GPU architecture. For example one way to gauge GPU performance of a program is the ratio of computation
to global memory access (CGMA): The more computation can be done for every unit of data retrieved from
global memory, the higher the efficiency of the GPU code will be.

Furthermore, it is desired for a GPU application to yield as much giga floating point operations per
second (GFLOPS) as possible on the given GPU. As was discussed in Section 2.3.2 the performance bot-
tlenecks of a GPU are the global memory accesses (high latency, high but limited bandwidth), divergence,
and the limited resources of an SM. All of these factors can result in lower GFLOPS of a program than the
maximum possible GFLOPS of a GPU.

These and other metrics (for example how the resources of a SM are used) of how efficiently the GPU
is utilized can be given via profiling software, like the NVIDIA CUDA Profiling Tools Interface (which
already contains the NVIDIA Visual Profiler).

Overall, however, one is mostly interested in the acceleration of a program, meaning how fast it is
possible to let the program execute with the help of the GPU.

24 PARALLEL COMPUTING 2.4

Chapter 3

Mathematical Problem

In this chapter we discuss the mathematical problem we solve numerically. The necessary mathematical
basis for this discussion can be found in the Appendix in Sections A.1 – A.4.

3.1 Discretization of the Two-Dimensional Poisson Equation

The Poisson Equation has many applications in steady state phenomena. For example it is used to
describe the stationary pressure distribution in an incompressible flow field, stationary heat transfer via
conduction, stationary mass transfer via diffusion, or for electrostatics and magnetostatics.

Let us now consider the continuous two-dimensional Poisson Equation with boundary conditions Φ on
a rectangle {

−∆ũ = −(ũxx + ũyy) = f (x, y), (x, y) ∈ Ω = (0, a) × (0, b)
ũ(x, y) = Φ(x, y), (x, y) ∈ ∂Ω.

Here, the solution of the continuous problem is denoted with ũ, whereas we will denote the numerical
solution of the discrete problem simply with u. We will discretize the derivations using centered finite
differences:

∆hu =
ui−1, j − 2ui, j + ui+1, j

h2
x

+
ui, j−1 − 2ui, j + ui, j+1

h2
y

,

with

hx =
a

n + 1
, hy =

b
m + 1

,

ui, j = u(ihx, jhy), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and

u0, j = Φ(0, jhy), uN+1, j = Φ(a, jhy),

ui,0 = Φ(ihx, 0), ui,M+1 = Φ(ihy, b).

This way, the discrete problem can be stated as{
−∆hu = f , (xi, y j) ∈ Ωh = {1 ≤ i ≤ n, 1 ≤ j ≤ m}

u(xi, yy) = Φ(xi, y j), (xi, y j) ∈ ∂Ωh = {0 ≤ i ≤ n + 1, 0 ≤ j ≤ m + 1}\Ωh.

In accordance to Isaacson and Keller [1996], let us now define

δ2 =
h2

xh2
y

2(h2
x + h2

y)
, θx =

h2
y

2(h2
x + h2

y)
, and θy =

h2
x

2(h2
x + h2

y)
,

25

26 MATHEMATICAL PROBLEM 3.1

so that we can write the discrete two-dimensional Poisson Equation as

Au = δ2F,

A =

B −θxI
−θxI B −θxI

. . .
. . .

. . .

−θxI B −θxI
−θxI B

,

B =

1 −θy

−θy 1 −θy
. . .

. . .
. . .

−θy 1 −θy

−θy 1

,

u =

u1,1
u2,1
...

un,1
u1,2
u2,2
...

un,2
...
...
...

un,m

, F =

f1 +
w1
h2

x
+
Φ0
h2

y

f2 +
w2
h2

x
...

fk +
wk
h2

x
...

fm−1 +
w[m−1]

h2
x

fm +
wm
h2

x
+
Φm+1

h2
y

,

fi =

f1,i
f2,i
...

fn,i

 , wi =

Φ0,i
0
...

0
Φn+1,i

, Φi =

Φ1,i
Φ2,i
...

Φn,i

 ,

(3.1)

where I in matrix A denotes the unit matrix of dimension n × n. We know that this system has a unique
solution, since A is real symmetric and therefore normal, which implies that A−1 exists, compare Section
A.4 in the Appendix. For this reason the system Au = δ2f has the unique solution u = δ2A−1f.

Often we set up and solve a discrete system trying to approximate the solution of the continuous prob-
lem. For this reason, the question of how good that approximate discrete solution actually is naturally arises.
As in general the true solution is not known, it is not possible to answer this question directly, though it is
possible to analyse how much they can differ at most via error bounds. Next we will give an error bound for
the discretization of the two-dimensional Poisson Equation.

In accordance with Isaacson and Keller [1996], let us first introduce the local truncation error as

τ{ϕ(x, y)} = ∆hϕ(x, y) − ∆ϕ(x, y),

where we assume that ϕ(x, y) is sufficiently smooth on the considered domain. Then we have

τ{ũ(x, y)} = ∆hũ(x, y) − ∆ũ(x, y) = ∆hũ(x, y) + f (x, y), (x, y) ∈ Ωh

3.1 DISCRETIZATION OF THE TWO-DIMENSIONAL POISSON EQUATION 27

but since both the continuous and discrete problem use the same right-hand side f (x, y), this is equivalent to

τ{ũ(x, y)} = −∆h[u(x, y) − ũ(x, y)].

Moreover, ũ and u respect the same boundary conditions, and thus

u(x, y) − ũ(x, y) = 0 (on the boundary).

Next, applying

Theorem 1. Let V(x, y) = {Vi j} be any net function defined on the sets Ωh and ∂Ωh. Then

max
Ωh
|V | ≤ max

∂Ωh
|V | +

a2

2
max

Ωh
|∆hV |. Isaacson and Keller [1996]

to our net function u(x, y) − ũ(x, y) yields

max
Ωh
|u(x, y) − ũ(x, y)| ≤

a2

2
max

Ωh
|τ{ũ(x, y)}|

or, when defining || · || = maxΩh | · |,

||u(x, y) − ũ(x, y)|| ≤
a2

2
||τ{ũ(x, y)}||

which means that the error bound is proportional to the local truncation error. Assuming that ũ has continu-
ous fourth derivatives, we can Taylor-expand

ũ(x ± hx, y) = ũ(x, y) ± hx
∂ũ(x, y)
∂x

+
h2

x

2!
∂2ũ(x, y)
∂x2 ±

h3
x

3!
∂3ũ(x, y)
∂x3

+
h4

x

4!
∂4ũ(x + θ±hx, y)

∂x4 , |θ±| < 1.

And with this we get

ũi−1, j − 2ũi, j + ũi+1, j

h2
x

−
∂2ũ
∂x2 =

h2
x

12
∂4ũ(x + θhx, y)

∂x4 , |θ| < 1

as well as the analogous result for the y-derivatives. And therefore

τ{ũ(x, y)} =
1

12

h2
x
∂4ũ(x + θhx, y)

∂x4 + h2
y
∂4ũ(x, y + θhy)

∂y4

 ,
or, when denoting M(4)

x and M(4)
y as the suprema for the respective fourth order derivatives,

||τ{ũ(x, y)}|| ≤
1
12

(
h2

xM(4)
x + h2

y M(4)
y

)
. (3.2)

With that we can finally express the error bound:

||u(x, y) − ũ(x, y)|| ≤
a2

24

(
h2

xM(4)
x + h2

y M(4)
y

)
(3.3)

For the sake of completeness it shall be mentioned that Isaacson and Keller [1996] also deduces an error
bound expression for the matrix formulation, which will not be derived but merely given here:

||u − ũ||2 ≤
a2b2

π2(a2 + b2)
||τ||2 ·

[
1 + O(h2

x + h2
y)
]
. (3.4)

28 MATHEMATICAL PROBLEM 3.2

From Equation (3.2) we see that the chosen discretization scheme is consistent with order m = 2 for
ũ ∈ C4(Ω), and from Equation (3.3) we see that, moreover, this scheme is convergent (to the continuous
solution), since ||u(xi, y j) − ũ(xi, y j)|| → 0 as h→ 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.

3.2 Iterative Methods

Let us consider a linear system
Au = f (3.5)

which we desire to solve with an iterative method. We are going to split the matrix A into two parts which
depend on the method itself:

A = M − N,

so that we can rewrite (3.5) as

(M − N)u = f,

or, in terms of iterations

Mu(k+1) = Nu(k) + f.

It is assumed that M is an invertible matrix, therefore we can write

u(k+1) = M−1Nu(k) + M−1f ≡ Gu(k) + b. (3.6)

G = M−1N is called the iteration matrix of the respective method. Note that if (I −G) is non-singular then
(I −G)u = b has a unique solution.

Now, representing the exact solution of (3.5) with û and substituting û in (3.6) yields a fixed point
problem:

û = Gû + b. (3.7)

Introducing the the error vector as e(k) = u(k) − û, we receive from (3.6)–(3.7) that

e(k+1) = Ge(k) = · · · = Gk+1e(0). (3.8)

Thus, if Gk → 0, as k → ∞, then the method will converge from any initial guess u(0).

Now we will analyse when it is true that Gk k→∞
−−−−→ 0. For the sake of simplicity it is supposed that G

is normal (meaning that it commutes with its conjugate transpose, compare Section A.4 of the Appendix)
and thus diagonizable, that is an eigenvalue λi of G of order n has exactly n corresponding eigenvectors
vi,1, vi,2, . . . , vi,n. Then we can write

G = RΛR−1,

where R is the (unitary) matrix of right eigenvectors of G, and Λ is the diagonal matrix of eigenvalues
λ1, λ2, . . . , λm, and

Gk = RΛkR−1,

with Λk = diag(λk
1, λ

k
2, . . . , λ

k
m), see Theorem 19 in Section A.3 of the Appendix.

With these assumptions and definitions we can analyse the rate of convergence of an iterative method.
We have

||e(k)||2 = ||Gke(0)||2 ≤ ||Gk||2||e(0)||2

3.2 ITERATIVE METHODS 29

and

||Gk||2||e(0)||2 ≤ ||R||2||Λk||2||R−1||2||e(0)||2 = ρkκ2(R)||e(0)||2, (3.9)

where ρ = ρ(G) is the spectral radius of G, and κ2(R) = ||R||2||R−1||2 is the condition number of R using the
euclidean norm. But since R is unitary we know that κ2(R) = 1, as is shown in Theorem 21 in Section A.4
of the Appendix.

For normal G we therefore have
||e(k)||2 ≤ ρ

k||e(0)||2. (3.10)

In the case of a normal G we can also estimate the approximate number of iterations needed to achieve
a given precision ε in the same way as Isaacson and Keller [1996], namely

||e(k)||2 ≤ ε||e(0)||2, (3.11)

or, written slightly differently, ε limits the relative error ||e(k)||2/||e(0)||2. Substituting (3.11) into (3.10) then
yields

ε||e(0)||2 ≤ ρ
k||e(0)||2

⇔ k ≥
ln(ε)
ln(ρ)

, (3.12)

or, in other words, ln(ε)
ln(ρ) is an approximate lower bound for the number of iterations needed to achieve the

relative tolerance ε according to (3.11). However, Equation (3.12) has one big flaw as it does not account
for initial approximation effects: Whether one starts the iterative process with an initial approximation that
equals the exact discrete solution or with an initial approximation that is far off, Equation (3.12) will yield
the same number of iterations k.

In a similar though different approach we can demand that

||e(k̂)||2 ≤ ρ
k̂||e(0)||2

!
≤ ε̂.

which results in an estimate for the number of iterations needed to achieve an absolute tolerance ε̂ in the
form of

k̂ ≥
ln (ε̂/||e(0) ||2)

ln(ρ)
, (3.13)

From the above discussion we see that ||Gk||2, or ρk, respectively, can be used as a strict upper bound
estimate for the ratio ||e(k) ||2/||e(0) ||2, when e(0) is not the nullvector.

As we have seen in Equation (3.10), the iterative method will converge if ρ(G) < 1, moreover this

implies that Gk k→∞
−−−−→ 0. It can easily be observed that the smaller ρ, the faster the method will converge.

The above discussion is based on Isaacson and Keller [1996]. Ortega [1972] summarizes this result for
general matrices G in the following

Theorem 2 (Fundamental Theorem of Linear Iterative Methods). Let G ∈ Cn×n and assume that the equa-
tion u = Gu + b has a unique solution û. Then the iteration u(k+1) = Gu(k) + b converge to û for any u(0) if
and only if ρ(G) < 1.

Proof. This is an immediate result of Theorem 14 (Section A.2 of the Appendix) applied to Equation (3.8).
�

Definition 1. Let A and B be two n × n complex matrices. If, for some positive integer k, ||Ak|| < 1, then

<(Ak) := − ln[(||Ak||)(1/k)] = −
ln[||AK ||]

k

30 MATHEMATICAL PROBLEM 3.2

is the average rate of convergence for k iterations of the matrix A. If <(Ak) < <(Bk), then B is iteratively
faster than A for k iterations.

From ||e(k)|| ≤ ||Ak|| ||e(0)||, k ≥ 0, it can be seen that σ :=
(
||e(k) ||/||e(0) ||

)1/k
is the average reduction factor

per iteration. If ||Ak|| < 1, then by definition

σ ≤ ||Ak||1/k = exp(−<(Ak)).

Hence,<(Ak) is the the exponential decay rate for a sharp upper bound of the average error reduction σ per
iteration. Varga [1962]

Theorem 3. Let A be a convergent (meaning convergent to the null matrix) n× n complex matrix. Then, the
average rate of convergence for k iterations<(Ak) satisfies

lim
k→∞
<(Ak) = − ln ρ(A) =: <∞(A),

where<∞(A) is the asymptotic rate of convergence of the matrix A.

Corollary 1. If A is an arbitrary convergent n × n complex matrix, then

<∞(A) ≥ <(Ak)

for any positive integer k for which ||Ak|| < 1.

According to Varga [1962], the asymptotic rate of convergence<∞(A) for a convergent matrix A is by
far the simplest practical measure of rapidity of convergence of a matrix which is in common use, though
its indiscriminate use can give quite misleading information.

Missing proofs can be found in Varga [1962].

3.2.1 Jacobi Method

As discussed in Section 3.2, we can decompose matrix A into A = M − N. For the Jacobi Method we
have seen above that M = D, N = L + U, where D is the diagonal of matrix A, and L and U are the strictly
lower and upper triangular matrix parts of Matrix A, respectively. Hence, we get for the Jacobi iteration
matrix

GJac = M−1N = D−1(L + U) = D−1(D − A) = I − D−1A.

Since the iteration matrix GJac of the matrix A derived in Section 3.1 is real and symmetric it is also normal,
and therefore ||Gk

Jac||2 ≤ ρ
k because with normal GJac we have κ2(RJac) = 1, compare (3.9). For that reason

the approximations for the number of iterations given in the Equations (3.12) or (3.13), respectively are
valid. In order to use this approximation for a given tolerance ε we still need to determine the spectral radius
of GJac. Isaacson and Keller [1996] discusses the eigenvalues of A from (3.1):

λp,q(A) = 4θx sin2
(

phxπ

2a

)
+ 4θy sin2

(
qhyπ

2b

)
, p = 1, 2, . . . ,N, q = 1, 2, . . . ,M.

When applying the eigenvectors of A (Avp,q = λp,qvp,q) to GJac from our model problem from Section 3.1
we get

GJacvp,q =
[
I − D−1A

]
vp,q = (1 − λp,q)︸ ︷︷ ︸

=λ̂p,q=λp,q(GJac)

vp,q

= 1 − 4
[
θx sin2

(
phxπ

2a

)
+ θy sin2

(
qhyπ

2b

)]
vp,q (3.14)

= 1 − 2
[
θx

(
1 − cos

(
phxπ

a

))
+ θy

(
1 − cos

(
qhyπ

b

))]
vp,q, (3.15)

3.2 ITERATIVE METHODS 31

where we used the identity 1− cos(2α) = 2 sin2(α). From (3.14), or by looking at Figure 3.1, we see that by
choosing p = q = 1 we obtain the spectral radius of GJac:

ρJac = 1 − 2
[
θx

(
1 − cos

(
hxπ

a

))
+ θy

(
1 − cos

(
hyπ

b

))]
, (3.16)

or in terms of n and m

ρJac = 1 − 2
[
θx

(
1 − cos

(
π

n + 1

))
+ θy

(
1 − cos

(
π

m + 1

))]
.

In the special case of a = b and h = hx = hy, which implies θx = θy = 1
4 we have

ρJac = cos
(
hπ
a

)
= cos

(
π

n + 1

)
.

Hence, the Jacobi Method indeed converges for the system described in Section 3.1. However, there is an
easier way to determine whether or not the Jacobi Method converges for a given system, Ortega [1972]:

Theorem 4. Let A ∈ Rn×n be an M-matrix1 and let b ∈ Rn be arbitrary. Then the Jacobi Method converges
to A−1b for any u(0).

Definition 2. For n ≥ 2, a matrix A ∈ Cn×n is reducible if there exists permutation matrix P ∈ Cn×n such
that

PAPT =

[
A11 A12
0 A22

]
,

where A11 is an r×r submatrix and A22 is an (n−r)×(n−r) submatrix with 1 ≤ r < n. If no such permutation
matrix exists, then A is irreducible. If A is a 1 × 1 complex matrix, then A is irreducible if its single entry is
nonzero, and reducible otherwise. Varga [1962]

Definition 3. (ai j) = A ∈ Cn×n is diagonally dominant if

|aii| ≥

n∑
j=1
j,i

|ai j| ∀1 ≤ i ≤ n.

An n×n matrix A is strictly diagonally dominant if strict inequality holds in the above equation. Furthermore,
A is irreducibly diagonally dominant if A is irreducible and diagonally dominant, with strict inequality in
the above equation for at least one i.

Theorem 5. Assume that b ∈ Rn is arbitrary and that A ∈ Rn×n is either strictly or irreducibly diagonal
dominant. Then the Jacobi Method converges to A−1b for any u(0).

Note that these Theorems are valid for the Gauss-Seidel Method as well. The proofs are given in Ortega
[1972].

In this Section as well as in the previous Section (3.2) we stated Theorems and discussed results in a
general manner for an arbitrary matrix A, however in this work it is desired to apply these results specifically
to the matrix A from our discretization of the Poisson Equation in Equation (3.1). We showed that the
spectral radius of the Jacobi iteration matrix of this system is ρ(GJac) < 1, and therefore, according to
Theorem 2, the Jacobi iteration for this system will converge. We could have received the same result in
a less cumbersome way without having to determine the spectral radius in Equation (3.16): Since A is an
M-matrix and irreducibly diagonal dominant, the convergence of the Jacobi Method applied to A is also
given by either Theorem 4 or 5, respectively.

1An M-Matrix is a matrix whose off-diagonal elements are non-positive and whose principal minor determinants are positive.
Another definition can be found in Definition 7 in Section A.2 of the Appendix.

32 MATHEMATICAL PROBLEM 3.2

0

5

10

15

20 0

5

10

15

20

−1

−0.5

0

0.5

1

q
p

λ
(G

Ja
c)

Student Version of MATLAB

Figure 3.1: Plot of (3.15) in dependence of p and q.

On a different note, it can be seen that the Jacobi Method u(k+1) = (I − D−1A)u(k) + D−1f depends only
on values of the last iteration u(k) to calculate the solution vector of the new iteration u(k+1). Since in every
iteration step the values of u(k) are readily available, every computation of u(k+1)

i is independent of u(k+1)
j ,

j , i, and therefore these computations can be performed concurrently in any order. In parallel computing,
a problem that can be broken into completely independent pieces that can run simultaneously is said to be
embarrassingly parallel.

Chapter 4

Implementations

The goal of our work was to implement a linear solver for sparse linear systems of various forms using
the Jacobi Method. In order to be able to solve sparse systems of different forms (that satisfy a certain
convergence criterion as described in Section 3.2.1), we us the Compressed Sparse Row (CSR) format. The
flexibility of such an implementation comes with a cost, as it is not possible to make use of optimizations
for the specific sparse linear system. It is therefore of interest to know how expensive such a flexible system
is when applied to a given system, compared to a first “optimization” for the same system. In our work we
decided to solve the well-known Poisson Equation (see 3.1), and want to compare the performance of the
flexible implementation against the specific implementation that can only solve the Poisson Equation. First
we will introduce the CSR format and then we will describe our implementations.

4.1 The Compressed Sparse Row Format

For large sparse matrices saving the matrix in the memory of a computer “as is” can be prohibitively
expensive, and in some instances the complete matrix may not even fit into the memory. Hence it is desired
to only store that part of the matrix that really contains information and discard as many zero elements of
the matrix as possible.

The Compressed Sparse Row (CSR) format is one of many formats that can be used to store a sparse
matrix. In contrast to other formats (like the Diagonal (DIAG) format) it is relatively efficient for a variety
of sparse matrices as it only stores the non-zero elements of a matrix together with their column indices and
a vector that contains the pointers to the elements starting a new row.

For example, consider the following sparse matrix.

A =

1.0 0 0 2.0 0
0 0 3.0 0 4.0
0 5.0 0 0 0
0 0 6.0 7.0 0

8.0 0 0 0 9.0

The CSR format of A looks as follows:

val = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0],

colInd = [1, 4, 3, 5, 2, 3, 4, 1, 5],

rowPtr = [1, 3, 5, 6, 8, 10].

Here, the vector val stores the values of the non-zero elements in the order of how they appear in the
columns, row per row. Obviously the size of this vector equals the number of non-zero elements (NNZ).
The vector colInd is of the same size and stores the column indices of the elements stored in val. The
vector rowPtr “points” to the element of val that starts a new row. If the matrix A has n rows and m
columns, then rowPtr will store n+1 elements. Note that the n+1st element of rowPtr always is NNZ +1.

33

34 IMPLEMENTATIONS 4.2

In general the vector val stores floating point numbers, whereas the vectors colInd and rowPtr store
integer elements.

However, the more compact a matrix is stored, the more the information about its structure will be lost.
For example, accessing the element ai, j of matrix A is a straight forward operation when storing a matrix
in the usual way. However for the CSR format, for example, this operation becomes more expensive as one
first has to “recover” the element ai, j from val using colInd and rowPtr (assuming that ai, j is not a zero
element) as follows:

ai, j ⇐⇒ val(k) with colInd(k) = j and rowPtr(i) ≤ k ≤ rowPtr(i + 1).

For an introduction to other popular sparse matrix storing formats see Saad [2000], for example.

4.2 The Jacobi CSR and “modified” Jacobi CSR Implementations

We implemented two different Jacobi solver for sparse matrices that do satisfy the convergence con-
ditions presented in Chapter 3 using the CSR storage format. The first one is the straight forward Jacobi
Method applied to the CSR format, as is portrayed in Pseudo-Code Snippet 1. As was discussed in Chap-

loop (iteration loop)
for k=1,n*m do (loop in parallel)
• determine line i of matrix A in the val vector
• determine the diagonal element of A in the val vector for line i (Aii)
• compute unew(k) =

f(k)−
∑

l val(l)u(colInd(l))
Aii

end for

• Check if the desired tolerance is reached (in parallel)

for k=1,nm do (loop in parallel)
• update u(k) = unew(k)

end for
end loop

Pseudo-Code Snippet 1: First Jacobi CSR implementation.

ter 2, it is not possible to parallelize loops that do not have a known number of iterations beforehand. For
this reason, this implementation creates a parallel region in every single iteration which incurs mentionable
overheads for systems that take a greater number of iterations to attain a desired precision (OpenMP/Ope-
nACC). Note that for all the CUDA implementations in this work, computing unew, checking for tolerance,
and updating u are separate kernels to ensure synchronization of all CUDA blocks in the grid.

The second (“modified”) Jacobi CSR implementation, shown in Pseudo-Code Snippet 2, introduces an
iteration-chunks loop which has a fixed number of iterations enabling to open the parallel region around this
loop, therefore reducing the parallelization overhead. Moreover, the attained precision will only be checked
after each iteration-chunk, hence also decreasing the mathematical overhead.

4.3 THE FIVE-POINT JACOBI IMPLEMENTATION 35

loop (outer loop)
for iter=1,chunk_size do (iteration-chunk loop)

for k=1,n*m do (loop in parallel)
• determine line i of matrix A in the val vector
• determine the diagonal element of A in the val vector for line i (Aii)
• compute unew(k) =

f(k)−
∑

l val(l)u(colInd(l))
Aii

end for

for k=1,nm do (loop in parallel)
• update u(k) = unew(k)

end for
end for

• Check if the desired tolerance is reached (in parallel)

end loop
Pseudo-Code Snippet 2: “Modified” Jacobi CSR implementation.

4.3 The Five-Point Jacobi Implementation

The five-point Jacobi implementation, displayed in Pseudo-Code Snippet 3, differs from the CSR imple-
mentations in several ways: First of all, it is only able to solve the Poisson Equation. Since it does not rely
on the CSR format the solution array u or unew, repectively, can be set up to be 2 dimensional, the boundary
conditions will be added to those arrays as extra elements, and in contrast to the CSR implementations not
included in the right-hand side f, as described in Section 3.1. Moreover, unew can be computed directly, as
the terms can be directly taken from the five-point stencil (shown in Figure 4.1).

As for the previous implementations, the CUDA code for the five-point stencil is divided into 3 separate
kernels in order to provide the synchronization needed for the Jacobi Method.

loop (iteration loop)
for j=1,m do (loop in parallel)

for i=1,n do (loop in parallel)
• compute unew(i, j) = 0.25(f(i, j)− (u(i-1,j) + u(i+1,j) +

+ u(i,j-1) + u(i,j+1)))
end for

end for

• Check if the desired tolerance is reached (in parallel)

for j=1,m do (loop in parallel)
for i=1,n do (loop in parallel)
• update u(i, j) = unew(i, j)

end for
end for

end loop
Pseudo-Code Snippet 3: Jacobi implementation using the five-point stencil for the laplacian operator.

36 IMPLEMENTATIONS 4.3

Figure 4.1: The five-point stencil for the laplacian operator.

Chapter 5

Results

In this Chapter we present the results of our work. We used three different implementations (Jacobi
CSR, modified Jacobi CSR, five-point stencil Jacobi), three different parallelization paradigms (OpenMP,
OpenACC, CUDA), five different grid sizes (n = m = {512, 1024, 2048, 4096, 8192}), and both single and
double precision, yielding 90 different configurations. When additionally considering the different number
of processors used in order to create the speedup and efficiency graphs (serial, p = 1, 2, 4, 8, 16, 32, 64 where
p is the number of processors used in parallel), this even results in 300 different configurations run for this
work.

The OpenMP results were obtained on a Silicon Graphics machine with four AMD Opteron 6376 pro-
cessors with each 16 cores of 2.3 GHz, and with 8 × 2 MB L2 cache and 16 MB L3 cache, while the Ope-
nACC and CUDA codes were run on a computer with an Intel Core i7-4770 processor with 3.4 GHz and
8 MB cache, and a NVIDIA Tesla K40 GPU. The Tesla K40 has 2880 single precision cores and 960 double
precision cores, divided on 15 Streaming Multiprocessors with a clock rate of 745 MHz each. All four AMD
Opteron 6376 processors use the same memory. The Silicon Graphics machine uses Debian 7.0 and gfortran
4.7.2 which supports the OpenMP 3.1 specification, whereas the computer with the Tesla K40 GPU uses
Ubuntu 14.04 and pgfortran 16.9 which supports all OpenACC 2.0 features, except for the features Declare
Link and Nested parallelism, as well as the CUDA 7.5 toolkit. No special flags have been used other than
-mcmodel=large and -mcmodel=medium on the Silicon Graphics and the GPU machine, respectively, as
well as the -ta=tesla:cc35 flag for the GPU codes. For the execution of the OpenMP code we used the
CPU affinity “0 − 63 : 64

p ” where p is the number of processor cores used. It shall be noted that we only run
one thread on each processor core.

We consider the two-dimensional Poisson Equation with Dirichlet boundary conditions

uxx + uyy = 2π2 sin(πx) sin(πy), x, y ∈ Ω = (0, 120) × (0, 120),

u(x, y) = 0, x, y ∈ ∂Ω,
(5.1)

whose exact solution is u(x, y) = sin(πx) sin(πy). We chose the computational domain to be [0, 120]×[0, 120]
as we know that the method will converge faster the smaller the spectral radius of the Jacobi iteration matrix
ρJac, (3.16), will be and that furthermore ρJac = 1 − O(h2). Table 5.1 exhibits the number of iterations
necessary to achieve an absolute error of ||u(k)

i, j − sin(πihx) sin(π jhy)||∞ ≤ ε = 0.01 for an initial guess of

u(0)
i, j = 0 for all 1 ≤ i ≤ N, 1 ≤ j ≤ M on the considered regular grids. This means that we approximate the

exact solution of the continuous problem with the solution of the discrete system, while the iterative process
will converge to the exact solution of the discrete problem. For that reason it is not possible to achieve an
arbitrarily small tolerance for the approximation to the exact continuous solution, compare Figure 5.1.

For the modified Jacobi CSR implementation, we chose two different iteration-chunk sizes: 10 for the
grids with 512 and 1024 points in each direction, and 100 for the other grids. We chose a different number
for the iteration chunk of the smaller grids because for a greater number of iterations the iterative process
may not yield the desired tolerance to the exact continuous solution, but rather increases the error ||u(k)

i, j −

sin(πihx) sin(π jhy)||∞ with every iteration. This is due to the fact that the process will converge to the exact
discrete solution, as mentioned before.

37

38 RESULTS 5.0

Table 5.1: Number of iterations needed to achieve a tolerance of ε = 0.01 for the problem given in Equation (5.1) and
an initial guess of u(0) ≡ 0.

Grid points per direction Number of iterations

512 10
1024 56
2048 257
4096 1071
8192 4333

u0

udiscr.^
ucont.
^

u ucont.
^| - | < ε

ucont.
^

u ucont.
^| - | < ε

u ucont.
^| - | < ε*

u0

udiscr.^

Figure 5.1: Graphical representation of the converging process. Depending on how the iteration converges to the
exact discrete solution, ûdiscr., (for example due to the choice of of the initial guess u0) it may be necessary to adapt
the chosen tolerance, ε, in order to let the iterative process terminate. An appropriate choice for the tolerance is given
in the error bound Equations (3.3) and (3.4).

1 2 4 8 16 32 64

 1

 2

 4

 8

16

32

64

S
pe

ed
up

 S

 =
 T

se
r/ T

p

Number of Threads

ideal scaling
N=M=512 CSR; size:14.0 MB
N=M=1024 CSR; size:56.0 MB
N=M=2048 CSR; size:223.9 MB
N=M=4096 CSR; size:895.9 MB
N=M=8192 CSR; size:3.5 GB
N=M=512 CSR mod.; size:14.0 MB
N=M=1024 CSR mod.; size:56.0 MB
N=M=2048 CSR mod.; size:223.9 MB
N=M=4096 CSR mod.; size:895.9 MB
N=M=8192 CSR mod.; size:3.5 GB

Student Version of MATLAB

Figure 5.2: OpenMP speedup plot for the (modified) Ja-
cobi CSR implementation when using single precision.
Based on the execution time of the Jacobi method only.

1 2 4 8 16 32 64

 1

 2

 4

 8

16

32

64

S
pe

ed
up

 S

 =
 T

se
r/ T

p

Number of Threads

ideal scaling
N=M=512 CSR; size:22.0 MB
N=M=1024 CSR; size:88.0 MB
N=M=2048 CSR; size:351.9 MB
N=M=4096 CSR; size:1.4 GB
N=M=8192 CSR; size:5.5 GB
N=M=512 CSR mod.; size:22.0 MB
N=M=1024 CSR mod.; size:88.0 MB
N=M=2048 CSR mod.; size:351.9 MB
N=M=4096 CSR mod.; size:1.4 GB
N=M=8192 CSR mod.; size:5.5 GB

Student Version of MATLAB

Figure 5.3: OpenMP speedup plot for the (modified) Ja-
cobi CSR implementation when using double precision.
Based on the execution time of the Jacobi method only.

5.0 39

1 2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

 E
 =

 T
se

r/(
p

⋅ T
p)

Number of Threads

N=M=512 CSR; size:14.0 MB
N=M=1024 CSR; size:56.0 MB
N=M=2048 CSR; size:223.9 MB
N=M=4096 CSR; size:895.9 MB
N=M=8192 CSR; size:3.5 GB
N=M=512 CSR mod.; size:14.0 MB
N=M=1024 CSR mod.; size:56.0 MB
N=M=2048 CSR mod.; size:223.9 MB
N=M=4096 CSR mod.; size:895.9 MB
N=M=8192 CSR mod.; size:3.5 GB

Student Version of MATLAB

Figure 5.4: OpenMP efficiency plot for the (modified)
Jacobi CSR implementation when using single preci-
sion. Based on the execution time of the Jacobi method
only.

1 2 4 8 16 32 64
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

 E
 =

 T
se

r/(
p

⋅ T
p)

Number of Threads

N=M=512 CSR; size:22.0 MB
N=M=1024 CSR; size:88.0 MB
N=M=2048 CSR; size:351.9 MB
N=M=4096 CSR; size:1.4 GB
N=M=8192 CSR; size:5.5 GB
N=M=512 CSR mod.; size:22.0 MB
N=M=1024 CSR mod.; size:88.0 MB
N=M=2048 CSR mod.; size:351.9 MB
N=M=4096 CSR mod.; size:1.4 GB
N=M=8192 CSR mod.; size:5.5 GB

Student Version of MATLAB

Figure 5.5: OpenMP efficiency plot for the (modified)
Jacobi CSR implementation when using double preci-
sion. Based on the execution time of the Jacobi method
only.

Note that all results presented here are based on a single run of each respective program and not av-
eraged. Due to different background processes of the operating system, the programs run under different
conditions and repeated execution of the programs yield somewhat varying results.

We first consider the results of the OpenMP implementations. For these implementations we analyse
the speedup and efficiency behaviour of the respective Jacobi subroutines. These are not based on the total
execution time of the programs but merely on the time spent for the iterative solution of the system. There-
fore, creating the right-hand side of the system and the CSR-format, among other things, do not affect the
speedup and efficiency plots.

Focussing on the (modified) Jacobi CSR implementations first, Figures 5.2 and 5.3 exhibit the speedup
behaviour, whereas Figures 5.4 and 5.5 portray the efficiency behaviour in single and double precision,
respectively. As described in Section 2.4, the efficiency is simply the speedup normalized by the number
of processors used, therefore they both display equivalent information. Each of these Figures reveal the
results of both the modified and unmodified Jacobi CSR implementations for all grids (with N = M =

{512, 1024, 2048, 4096, 8192}), using p = {1, 2, 4, 8, 16, 32, 64} threads. Figures 5.2 and 5.4 use single pre-
cision floats, while Figures 5.3 and 5.5 use double precision floats. In the legend of these Figures we also
added the amount of memory that will be needed to store the variables for the specific precision and grid
size (counting the current and previous approximations, the CSR format, and the right-hand side of the
linear system). In addition to the results obtained from the programs’ performance, we added ideal linear
scaling to the speedup Figures 5.2 – 5.3 for comparison purposes. The equivalent in Figures 5.4 – 5.5 for
ideal scaling is simply E ≡ 1.

We see in Figures 5.2 – 5.5 that using OpenMP with one single thread is already notably slower than the
“purely serial” counterpart. That is because even when using only one thread with OpenMP and therefore
letting the code run serially, still there are overheads from the data management, the creation of the “parallel”
region and the scheduling of the “parallel” loop. Moreover, it can be concluded that the modified Jacobi CSR
implementation involves more overhead, since its efficiency behaviour using one thread is notably worse
than the unmodified equivalent, with exceptions of only N=M=512 in single precision and N=M=1024 in

40 RESULTS 5.0

double precision. However, since these cases involve only a small number of iterations and therefore finish
comparatively fast, they are more prone to be affected by disturbances caused by background processes. The
trend that the modified Jacobi CSR implementation has weaker scaling performance in general continues
when increasing the number of threads used, with the exception of the modified CSR implementation for
the grid with N = M = 1024. This implementation has a very similar scaling behaviour to its unmodified
correspondent, especially when using double precision.

Looking at the efficiency plots in Figures 5.4 – 5.5, it can be observed that the efficiency does not vary
mentionably when using eight threads or less (except when using the smallest grid with N = M = 512)
and then starts to degrade quickly when using 16 or more threads. When using eight processor cores on
the Silicon Graphics machine, every processor core has access to its own L2 cache in our work. From
16 processor cores on, each L2 cache will be shared among two processor cores. This may explain the
steep decline in efficiency when using 16 threads or more, though further investigation may be needed for
confirmation. The scaling performance of the cases with the smallest grid considered here, however, already
starts degrading when using eight or more threads. This behaviour might be explained by not being able to
provide each processor cores enough work to stay busy for a lower number of threads used with this small
grid. In general the performance degradation of scaling (or equivalently efficiency) is “steeper” when using
double precision.

An interesting difference between the single precision and double precision cases is that resolving the
grid with 20482 grid points with the unmodified CSR implementation using single precision has the overall
best scaling performance except when using all 64 processors provided by the Silicon Graphics machine.
When using all 64 processors, resolving the largest grid with 81922 grid points with the unmodified CSR
implementation in single precision offers the best scaling performance. Focussing on the double precision
cases, on the other hand, one can observe a different scaling behaviour: Here, resolving the biggest grid
(N=M=8192) with the unmodified CSR implementation offers the best efficiency when using up to 32
threads. For 64 threads, both the modified and unmodified CSR implementation for the grid with 10242

grid points surpass the efficiency of the unmodified implementation for N = M = 1024. Note that for both
single and double precision, the scaling behaviour of the modified and unmodified implementations differ
(with an exception for the grid using 10242 points). For example, the unmodified CSR implementation for
the N = M = 8192 grid has the best efficiency in the lower thread regime, whereas the modified CSR
implementation for this grid has the worst efficiency when using four threads or less. Broadly speaking, the
scaling (or equivalently efficiency) sequence of resolved grids for a given number of threads is not the same
for the modified/unmodified CSR implementation.

Note however that better scaling does not imply a faster execution time, as can be seen in Figures 5.6 and
5.7, for the results in single and double precision, respectively. Both figures portray the relative execution
time difference

τrel =
(tmod.CS R − tCS R)

tCS R

based only on the execution times of the respective Jacobi Method (and not of the entire program). These
graphs show that the modified CSR implementation is roughly 63–15% faster than its unmodified coun-
terpart. With the exceptions of the cases N = M = 512 (single precision) and N = M = 1024 (single
and double precision), the overall trend is that serial execution (without using OpenMP) has the biggest
absolute |τrel| which then decreases with the number of threads used. When using double precision vari-
ables |τrel| decreases faster with the number of threads than when using single precision variables. The
relative execution time difference τrel for the grid with 10242 grid points is fairly constant (both for sin-
gle and double precision) when varying the number of threads and for the serial execution. As mentioned
before, the other exception is the solution of the system with 5122 unknowns when using single precision
and 64 threads: Here τrel has a similar value as for the serial execution, whereas when using 8–32 threads
decreases with the number of threads. All this translates directly to the results presented in the speedup
and efficiency plots (Figures 5.2 – 5.5). As τrel for the linear systems using 10242 unknowns does not vary
mentionably, the speedup and efficiency for the modified and unmodified Jacobi CSR implementations of
these systems behave equivalently similar. In the same way, as τrel for the single precision version of the
grid with N = M = 512 has virtually the same value when using one thread and 64 threads, the speedup

5.0 41

Ser 1 2 4 8 16 32 64

−0.6

−0.4

−0.2

0
N=M=512

τ re
l [

−
]

Ser 1 2 4 8 16 32 64
−0.6

−0.4

−0.2

0
N=M=1024

τ re
l [

−
]

Ser 1 2 4 8 16 32 64
−0.6

−0.4

−0.2

0
N=M=2048

τ re
l [

−
]

Ser 1 2 4 8 16 32 64

−0.6

−0.4

−0.2

0
N=M=4096

τ re
l [

−
]

Ser 1 2 4 8 16 32 64

−0.6

−0.4

−0.2

0
N=M=8192

τ re
l [

−
]

τ rel =
(tmod. C SR − tCSR)

tC SR

Student Version of MATLAB

Figure 5.6: Relative execution time difference between
the modified and unmodified Jacobi CSR implementa-
tions using single precision.

Ser 1 2 4 8 16 32 64
−0.6

−0.4

−0.2

0
N=M=512

τ re
l [

−
]

Ser 1 2 4 8 16 32 64
−0.6

−0.4

−0.2

0
N=M=1024

τ re
l [

−
]

Ser 1 2 4 8 16 32 64
−0.6

−0.4

−0.2

0
N=M=2048

τ re
l [

−
]

Ser 1 2 4 8 16 32 64

−0.6

−0.4

−0.2

0
N=M=4096

τ re
l [

−
]

Ser 1 2 4 8 16 32 64

−0.6

−0.4

−0.2

0
N=M=8192

τ re
l [

−
]

τ rel =
(tmod. C SR − tCSR)

tC SR

Student Version of MATLAB

Figure 5.7: Relative execution time difference between
the modified and unmodified Jacobi CSR implementa-
tions using double precision.

and efficiency for the (un)modified implementations at these points are almost identical, compare Figure
5.2 and 5.4. Moreover, the more τrel decreases in Figures 5.6 and 5.7, the more the scaling performance of
the modified implementations degrades in relation to the unmodified implementations in Figures 5.2 – 5.5.
This general behaviour of the relative time difference τrel underlines that the reduction operation becomes
more efficient with more concurrent threads available. However, why the increase in threads does not affect
τrel for N = M = 1024 in our programs still requires more investigation.

Next we will discuss the results of the OpenMP implementations of the five-point Jacobi, given in Fig-
ures 5.8 – 5.11. Analogously to the CSR implementations, we see that the systems with 5122 unknowns are
the outliers, performance wise. Overall, when comparing the speedup plots of the five-point implementation
with the unmodified CSR implementation, one can instantly see that the graphs for the five-point imple-
mentation scatter less, when neglecting the N = M = 512 cases, and moreover the speedup does not flatten
as much as the CSR implementations when using a higher number of threads. Studying the efficiency plots
reveal even more details. Again, while neglecting the smallest grid used in our work, we see that the graphs
for the five-point cases are overall smoother and the range of the efficiency is smaller. To be more precise
it can be observed that the efficiency is flatter compared to the respective unmodified CSR analogue. The
unmodified CSR single precision implementations stay above E = 0.9 for eight or less threads (except for
the system with 5122 unknowns), while all but the system with 10242 unknowns start below E = 0.9 for the
five-point correspondents. This trend is then reversed for a greater number of threads used: Neglecting the
N = M = 512 case, the five-point single precision implementation stays around or above 60% efficiency,
though all except the biggest case (N = M = 8192) for the unmodified CSR implementations stay below
60% efficiency for 64 threads. The double precision cases behave similarly. As was the case for the CSR
implementations, the grid with the best scaling behaviour in general is different for the single precision and
double precision case. When considering single precision floating point numbers for the five-point imple-
mentation, the overall best scaling is given by the grid with N = M = 1024 (with exception to the case when
using 64 threads), whereas the overall best scaling when using double precision floating point numbers is
given by the biggest grid considered here (N = M = 8192), except when using 32 threads in the presented

42 RESULTS 5.0

1 2 4 8 16 32 64

 1

 2

 4

 8

16

32

64

S
pe

ed
up

 S

 =
 T

se
r/ T

p

Number of Threads

ideal scaling
N=M=512 5−point; size:3.0 MB
N=M=1024 5−point; size:12.0 MB
N=M=2048 5−point; size:48.0 MB
N=M=4096 5−point; size:192.0 MB
N=M=8192 5−point; size:768.0 MB

Student Version of MATLAB

Figure 5.8: OpenMP speedup plot for the five-star Ja-
cobi implementation when using single precision. Based
on the execution time of the Jacobi method only.

1 2 4 8 16 32 64

 1

 2

 4

 8

16

32

64

S
pe

ed
up

 S

 =
 T

se
r/ T

p

Number of Threads

ideal scaling
N=M=512 5−point; size:6.0 MB
N=M=1024 5−point; size:24.0 MB
N=M=2048 5−point; size:96.0 MB
N=M=4096 5−point; size:384.0 MB
N=M=8192 5−point; size:1.5 GB

Student Version of MATLAB

Figure 5.9: OpenMP speedup plot for the five-star
Jacobi implementation when using double precision.
Based on the execution time of the Jacobi method only.

work. A similar behaviour was shown for the double precision unmodified CSR implementation earlier,
however for the single precision case it can be seen that the grid with 20482 grid points had mostly the best
scaling for the unmodified CSR implementation.

It has been attempted to explain the scaling behaviour of the OpenMP codes with the perf profiling
tool, however the profiling results are not conclusive. The results given from this profiling are given in the
Appendix B.

Next we present and discuss the results given by the OpenACC and CUDA applications and compare
them with the OpenMP results. Table 5.2 presents the absolute program execution times for all single pre-
cision implementations of this work. The OpenMP execution times given is based on the execution with 64
threads. Figure 5.12 is the graphical representation of Table 5.2. Analogously, Table 5.3 and Figure 5.13
show the double precision results. All these execution times are measured with the bash command time
(using the real time given by this command), in order to also measure allocating memory on the GPU
which is important for the CUDA programs. These results contain (among other things) the execution time
for the creation of the CSR structure and of the right-hand side of the linear system. The right-hand side is
created in parallel by all parallel methods. Though it was not possible to parallelize the creation of the CSR
structure with OpenACC. Therefore we create the CSR format serially on the CPU and then transfer it to the
GPU. The OpenMP and CUDA programs do parallelize the CSR creation, however. Note that in contrast to
our OpenACC implementation, CUDA allocates the memory for both the right-hand side and CSR structure
on the GPU’s global memory and creates it directly there with no need to copy them from the host.

One clear distinction between the execution time of OpenMP programs and OpenACC/CUDA programs
can be seen immediately: For the smaller grid sizes, OpenMP is substantially faster than the GPU codes.
However in this grid size regime, the OpenMP execution time increases significantly more rapid with the
grid size than the GPU execution times. This is due to the fact that in this regime the execution times of
the GPU codes is dominated by the data transfer between the host and the device and/or memory allocation
on the device. Once there is more computation involved, the effect of data transfer and device memory
allocation is more and more negligible. For the bigger grids, the GPU codes run several times faster than the
OpenMP codes. And even more so, Table 5.2 exhibits that for the grids with 40962 and 81922 grid points, the

5.0 43

1 2 4 8 16 32 64

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

 E
 =

 T
se

r/(
p

⋅ T
p)

Number of Threads

N=M=512 5−point; size:3.0 MB
N=M=1024 5−point; size:12.0 MB
N=M=2048 5−point; size:48.0 MB
N=M=4096 5−point; size:192.0 MB
N=M=8192 5−point; size:768.0 MB

Student Version of MATLAB

Figure 5.10: OpenMP efficiency plot for the five-star Ja-
cobi implementation when using single precision. Based
on the execution time of the Jacobi method only.

1 2 4 8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi

ci
en

cy

 E
 =

 T
se

r/(
p

⋅ T
p)

Number of Threads

N=M=512 5−point; size:6.0 MB
N=M=1024 5−point; size:24.0 MB
N=M=2048 5−point; size:96.0 MB
N=M=4096 5−point; size:384.0 MB
N=M=8192 5−point; size:1.5 GB

Student Version of MATLAB

Figure 5.11: OpenMP efficiency plot for the five-star
Jacobi implementation when using double precision.
Based on the execution time of the Jacobi method only.

OpenACC version of the five-point Jacobi even is one order of magnitude faster than the OpenMP version.
However this is not fully achieved using double precision, as the maximum total execution time difference
factor achieved between the OpenMP and OpenACC implementations is only ∼9.8 (for the five-point Jacobi
with N=M=8192), whereas the maximum total execution time difference factor for the single precision case
is ∼17.3. Another aspect when comparing the performance of the OpenMP and GPU programs is that on the
right side of the plots in Figures 5.12 and 5.13 the slopes of all three parallelization methods considered here
are fairly similar with the only exception being the OpenACC five-point Jacobi implementation in single
precision. It is observable that the impact of the modification to the CSR version of the Jacobi Method is
fairly small for the GPU programs compared to the impact the modification has when using OpenMP. The
total execution times of the CSR implementations using OpenACC and CUDA are very similar even though
our OpenACC versions have the disadvantage that the creation of the CSR format is executed in serial1.

That the impact of the CSR modification is smaller for the GPU programs becomes even more evident
with a look on Figure 5.14. Similar to Figures 5.6 and 5.7, Figure 5.14 exhibits the relative time difference
between the unmodified and modified Jacobi CSR implementation:

τrel =
(tmod.CS R − tCS R)

tCS R
.

From these bar plots and can be seen that the modification to the CSR implementation has only a neglectable
impact for the OpenACC programs (this is especially true for the single precision cases). Overall, τrel

stays relatively constant when varying the size of the linear system for the GPU programs. This may be
counterintuitive when considering that the ratio of iterations performed of the modified to unmodified CSR

1As an example of this impact, using the time command we measured the real execution time to allocate and create the CSR
structure on the GPU (CUDA) or to create the CSR structure serially and copy it to the GPU (OpenACC) for the case using single
precision and N = M = 8192:

• CUDA: 2.070 s

• OpenACC: 3.281 s

44 RESULTS 5.0

Table 5.2: Summary of all execution times using single precision floating point numbers. For the OpenMP results 64
threads are used.

N=M=512 N=M=1024 N=M=2048 N=M=4096 N=M=8192

CSR
OpenMP 0.051 s 0.317 s 4.369 s 74.118 s 1219.251 s
OpenACC 2.023 s 2.107 s 2.871 s 14.478 s 200.365 s
CUDA 2.019 s 2.077 s 2.875 s 16.030 s 231.274 s

Modified CSR
OpenMP 0.049 s 0.189 s 2.246 s 56.407 s 845.732 s
OpenACC 2.022 s 2.087 s 2.946 s 14.381 s 199.863 s
CUDA 2.012 s 2.073 s 2.869 s 14.083 s 194.606 s

Five-Point Stencil
OpenMP 0.035 s 0.245 s 3.613 s 55.711 s 864.825 s
OpenACC 2.019 s 2.041 s 2.257 s 5.417 s 48.916 s
CUDA 2.023 s 2.053 s 2.401 s 8.007 s 103.168 s

Table 5.3: Summary of all execution times using double precision floating point numbers. For the OpenMP results 64
threads are used.

N=M=512 N=M=1024 N=M=2048 N=M=4096 N=M=8192

CSR
OpenMP 0.060 s 0.365 s 5.771 s 94.853 s 1534.282 s
OpenACC 2.034 s 2.127 s 3.223 s 19.799 s 338.902 s
CUDA 2.028 s 2.103 s 3.316 s 22.965 s 338.503 s

Modified CSR
OpenMP 0.057 s 0.198 s 4.552 s 79.046 s 1225.102 s
OpenACC 2.023 s 2.117 s 3.316 s 19.184 s 329.543 s
CUDA 2.026 s 2.088 s 3.185 s 18.818 s 269.225 s

Five-Point Stencil
OpenMP 0.040 s 0.273 s 3.937 s 55.711 s 873.874 s
OpenACC 2.024 s 2.071 s 2.421 s 7.805 s 89.037 s
CUDA 2.024 s 2.064 s 2.638 s 11.813 s 158.706 s

versions vary with the size of the linear system, compare Figure 5.15. The CUDA double precision values
for τrel are approximately equivalent to the 64 threads OpenMP double precision values for the three biggest
linear systems. A difference in behaviour of τrel between the OpenMP and CUDA is however that for CUDA
the relative time difference of the single precision case is smaller in absolute values than its double precision
analogue, while for the 64 thread OpenMP the single precision case results in a bigger absolute value of τrel

compared to its double precision equivalent. That the single precision case for GPU the values of |τrel| are
smaller than the double precision analogue can be connected to the fact that there are three times as many
single precision cores on the Tesla K40 GPU than double precision cores. For this reason the reduction
operations can be performed more efficiently. It is still needed to investigate why the values of τrel differ
mentionably between the OpenACC and CUDA programs, especially since for both versions the reduction
process was left to the compiler, as the intrinsic CUDA Fortran (CUF) directive was used for the reduction
operation in the CUDA programs.

Having dealt with the general difference between CPU and GPU execution of our programs, we will
now compare the performance of OpenACC and CUDA. As can be easily observed, the execution times of
CUDA and OpenACC for the CSR codes are rather similar here, even though the CSR format is created
serially in the OpenACC version. However for the five-point stencil Jacobi Method, the OpenACC version
clearly outperforms the CUDA version for the two biggest grids considered in this work. To understand why

5.0 45

512 1024 2048 4096 8192
10−2

10−1

100

101

102

103

104

Grid points per direction

 T
ot

al
 e

xe
cu

tio
n

tim
e

[s
]

Jacobi CSR
Jacobi CSR (modified)
Jacobi 5−point stencil
OpenMP (64 threads)
OpenACC
CUDA

Student Version of MATLAB

Figure 5.12: Graphical representation of Table 5.2.

512 1024 2048 4096 8192
10−2

10−1

100

101

102

103

104

Grid points per direction
 T

ot
al

 e
xe

cu
tio

n
tim

e
[s

]

Jacobi CSR
Jacobi CSR (modified)
Jacobi 5−point stencil
OpenMP (64 threads)
OpenACC
CUDA

Student Version of MATLAB

Figure 5.13: Graphical representation of Table 5.3.

this is the case it is necessary to look at some profiling results. The data in the following figures and tables
were received using the NVIDIA Visual Profiler tool. There is actually only one Jacobi Jacobi CSR kernel
to be considered here as the modification is done on the host. This means that even though we still have a
modified and an unmodified CSR Jacobi implementation, the actual Jacobi kernel is identical in both cases.

Note that for all GPU programs we use a block size of [128,1,1]. The CUDA grid sizes are listed in
Tables 5.4 and 5.5 for the (modified) CSR and five-point Jacobi versions, respectively. The CUDA grid
sizes for the OpenACC programs were left to the compiler, whereas the CUDA kernels were programmed
in a manner that would use one thread for every unknown or grid point. For reference, the maximum grid
dimension achievable on the Tesla K40 is [2147483647, 65535, 65535]. As can be seen in Table 5.4, the
OpenACC Jacobi CSR kernel is invoked with the same grid size as the respective CUDA kernel for the first
three computational grids, N = M = {512, 1024, 2048}. But from the computational grid with N = M =

4096 on, the CUDA grid size acquires the maximum number of blocks achievable in the x- or y-coordinate
for its x-value. In contrast to that, the CUDA grids continue to have the x-coordinate of the last smaller grid
multiplied by four in order to guarantee that every thread calculates exactly one unknown. Looking at the
grid sizes for the five-point implementation the difference in number of threads is even more prominent.
For the CUDA versions, the CUDA grid sizes are equivalent to the ones used for the CSR cases, with the
difference that now a two-dimensional CUDA grid is used: The y-coordinate of the CUDA grid equals M,
while the x-coordinate equals N/128. The OpenACC version of the five-point implementation on the other
hand remains to use a one-dimensional CUDA grid with the x-coordinate being N = M, there using 4 –
128 times less threads than the CUDA counterpart for the considered computational grids. This means that
every thread in the OpenACC version calculates up to 128 unknowns. This keeps each thread busy and less
warp scheduling is needed compared to the five-point CUDA kernel.

Tables 5.6 – 5.9 list the limiters for the Jacobi Kernels on the GPU. One limitation that every of our
implementations suffer is the instruction latency, however only in some cases is it the primary limiter of the
kernels. Due to memory dependence, instruction execution is stalling excessively resulting in the GPU not
having enough work. In the analysis report created by NVIDIA’s Visual Profiler it is explained that in this
case

“[a] load/store cannot be made because the required resources are not available or are fully
utilized, or too many requests of a given type are outstanding. Data request stalls can potentially
be reduced by optimizing memory alignment and access patterns.”

Computation and function unit utilization, on the other hand, never limit the kernels’ performance. Another

46 RESULTS 5.0

OpenACC CUDA

−0.2

−0.15

−0.1

−0.05

0
N=M=512

τ re
l [

−
]

Single Precision
Double Precision

OpenACC CUDA

−0.2

−0.15

−0.1

−0.05

0
N=M=1024

τ re
l [

−
]

OpenACC CUDA

−0.2

−0.15

−0.1

−0.05

0
N=M=2048

τ re
l [

−
]

OpenACC CUDA

−0.2

−0.15

−0.1

−0.05

0
N=M=4096

τ re
l [

−
]

OpenACC CUDA

−0.2

−0.15

−0.1

−0.05

0
N=M=8192

τ re
l [

−
]

τr el =
(tmod. C SR − tCSR)

tC SR

Student Version of MATLAB

Figure 5.14: Relative execution time difference between the modified and unmodified Jacobi CSR implementations
for the OpenACC and CUDA programs for both single and double precision. All times based on the Jacobi kernel
execution times only.

512 1024 2048 4096 8192

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

ite
ra

tio
ns

(m
od

. C
S

R
)

/ i
te

ra
tio

ns
(C

S
R

)

Grid points per direction

Student Version of MATLAB

Figure 5.15: Plot of the iteration fraction of the modified to unmodified CSR implementation.

5.0 47

Table 5.4: Grid Sizes for the (Modified) Jacobi
CSR Implementations

Grid Size
OpenACC CUDA

512 [2048,1,1] [2048,1,1]
1024 [8192,1,1] [8192,1,1]
2048 [32768,1,1] [32768,1,1]
4096 [65535,1,1] [131072,1,1]
8192 [65535,1,1] [524288,1,1]

Table 5.5: Grid Sizes for the Five-Point Stencil
Jacobi Implementations

Grid Size
OpenACC CUDA

512 [512,1,1] [4,512,1]
1024 [1024,1,1] [8,1024,1]
2048 [2048,1,1] [16,2048,1]
4096 [4096,1,1] [32,4096,1]
8192 [8192,1,1] [64,8192,1]

limitation to the performance of the kernels on the GPU is memory bandwidth. In most cases presented
here the bandwidth of the L2 cache is the limiter, however the device memory bandwidth is a limiter for the
OpenACC implementations on the grid with 81922 grid points, as well as the double precisions versions of
the five-point implementations (OpenACC and CUDA). The bandwidth usage of the L1 cache, L2 cache,
texture memory, and device memory for all kernels is portrayed in Figures 5.16 – 5.19. Observe that the
L1 cache is hardly used, whereas the texture memory is used a lot (even though it was not specifically
declared in the source code) and offers a significantly higher bandwidth than the other memories. The
number of registers needed for each thread is a limiting factor for the CSR implementations using double
precision and all five-point implementations. Tables 5.10 – 5.17 show how much registers per thread are
used for every case and how many blocks and warps can therefore execute simultaneously on each SM.
Note that the maximum number of blocks per SM on the Tesla K40 is 16 and the maximum number of
warps is 64. As can be seen in Tables 5.10 and 5.12, the SM is optimally occupied with blocks and warps,
increasing or decreasing the block size would therefore decrease GPU performance. Another detail of these
implementations observable in Tables 5.10 – 5.17 is that the CUDA versions generally use less registers
than the OpenACC versions. This can be linked to the fact that each thread in the CUDA implementation
performs less computations and therefore needs less data. Additionally, Figures 5.20 – 5.21 display the
theoretical and achieved number of active warps per SM, and Figures 5.22 – 5.23 show the theoretical and
achieved occupancy of the GPU for each implementation. Occupancy is the percentage of active warps on
the GPU relative to the maximum number of warps supported by the GPU. The theoretical values are upper
bounds, while the achieved values are indications for the actual values on the GPU.

Table 5.6: Kernel Limiters: (Modified) Jacobi CSR, Single Precision. The 1 superscript marks the primary limiter.

OpenACC CUDA

512 1024 2048 4096 8192 512 1024 2048 4096 8192

Instruction Latency �1 � � � � �1 � � � �

Memory Bandwidth �

(L2)

�1

(L2)

�1

(L2)

�1

(L2)

�1

(L2 + Device)

�

(L2)

�1

(L2)

�1

(L2)

�1

(L2)

�1

(L2)

Computation

Registers

Function Unit Utilization

Intra-Warp Divergence � �

Finally, we present a comparison of the performance between the single precision and double precision
cases in Figure 5.24. Again the OpenMP values are based on the execution with 64 threads and therefore
using all processor cores available on the Silicon Graphics machine. It must be noted again that all these
results are achieved after a single execution of the respective program and case, and therefore do not give a
statistical representation of the general behaviour.

The bars in Figure 5.24 indicate how much faster the single precision cases are compared and normalized
to their double precision equivalent. For the OpenMP versions it can be observed that the unmodified CSR

48 RESULTS 5.0

512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

L1
 C

ac
he

 B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

ACC CSR sp
ACC 5−Point sp
ACC CSR dp
ACC 5−Point dp

512 1024 2048 4096 8192
0

10

20

30

40

50

60

70

L1
 C

ac
he

 B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

CUDA CSR sp
CUDA 5−Point sp
CUDA CSR dp
CUDA 5−Point dp

Student Version of MATLAB

Figure 5.16: Bandwidth utilization of the GPU L1 cache for all implemented Jacobi kernels.

512 1024 2048 4096 8192

150

200

250

300

350

400

450

500

L2
 C

ac
he

 B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

ACC CSR sp
ACC 5−Point sp
ACC CSR dp
ACC 5−Point dp

512 1024 2048 4096 8192

150

200

250

300

350

400

450

500

L2
 C

ac
he

 B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

CUDA CSR sp
CUDA 5−Point sp
CUDA CSR dp
CUDA 5−Point dp

Student Version of MATLAB

Figure 5.17: Bandwidth utilization of the GPU L2 cache for all implemented Jacobi kernels.

512 1024 2048 4096 8192

200

300

400

500

600

700

800

T
ex

tu
re

 M
em

or
y

B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

ACC CSR sp
ACC 5−Point sp
ACC CSR dp
ACC 5−Point dp

512 1024 2048 4096 8192

200

300

400

500

600

700

800

T
ex

tu
re

 M
em

or
y

B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

CUDA CSR sp
CUDA 5−Point sp
CUDA CSR dp
CUDA 5−Point dp

Student Version of MATLAB

Figure 5.18: Bandwidth utilization of the texture memory for all implemented Jacobi kernels.

5.0 49

512 1024 2048 4096 8192
80

100

120

140

160

180

200

220

240

D
ev

ic
e

M
em

or
y

B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

ACC CSR sp
ACC 5−Point sp
ACC CSR dp
ACC 5−Point dp

512 1024 2048 4096 8192
80

100

120

140

160

180

200

220

240

D
ev

ic
e

M
em

or
y

B
an

dw
id

th
 [G

B
/s

]

Grid Points per Direction

CUDA CSR sp
CUDA 5−Point sp
CUDA CSR dp
CUDA 5−Point dp

Student Version of MATLAB

Figure 5.19: Bandwidth utilization of the device memory for all implemented Jacobi kernels.

512 1024 2048 4096 8192

35

40

45

50

55

60

65

A
ct

iv
e

W
ar

ps

Grid Points per Direction

ACC CSR sp; Theoretical
ACC 5−Point sp; Theoretical
ACC CSR sp; Achieved
ACC 5−Point sp; Achieved

512 1024 2048 4096 8192

35

40

45

50

55

60

65

A
ct

iv
e

W
ar

ps

Grid Points per Direction

CUDA CSR sp; Theoretical
CUDA 5−Point sp; Theoretical
CUDA CSR sp; Achieved
CUDA 5−Point sp; Achieved

Student Version of MATLAB

Figure 5.20: Plot of active warps for all implemented Jacobi kernels, using single precision.

512 1024 2048 4096 8192

35

40

45

50

55

A
ct

iv
e

W
ar

ps

Grid Points per Direction

ACC CSR dp; Theoretical
ACC 5−Point dp; Theoretical
ACC CSR dp; Achieved
ACC 5−Point dp; Achieved

512 1024 2048 4096 8192

35

40

45

50

55

A
ct

iv
e

W
ar

ps

Grid Points per Direction

CUDA CSR dp; Theoretical
CUDA 5−Point dp; Theoretical
CUDA CSR dp; Achieved
CUDA 5−Point dp; Achieved

Student Version of MATLAB

Figure 5.21: Plot of active warps for all implemented Jacobi kernels, using double precision.

50 RESULTS 5.0

512 1024 2048 4096 8192

40

50

60

70

80

90

100
O

cc
up

an
cy

 (
%

)

Grid Points per Direction

ACC CSR sp; Theoretical
ACC 5−Point sp; Theoretical
ACC CSR sp; Achieved
ACC 5−Point sp; Achieved

512 1024 2048 4096 8192

40

50

60

70

80

90

100

O
cc

up
an

cy
 (

%
)

Grid Points per Direction

CUDA CSR sp; Theoretical
CUDA 5−Point sp; Theoretical
CUDA CSR sp; Achieved
CUDA 5−Point sp; Achieved

Student Version of MATLAB

Figure 5.22: Occupancy plot for all implemented Jacobi kernels, using single precision.

512 1024 2048 4096 8192
50

55

60

65

70

75

80

85

90

95

100

O
cc

up
an

cy
 (

%
)

Grid Points per Direction

ACC CSR dp; Theoretical
ACC 5−Point dp; Theoretical
ACC CSR dp; Achieved
ACC 5−Point dp; Achieved

512 1024 2048 4096 8192
50

55

60

65

70

75

80

85

90

95

100

O
cc

up
an

cy
 (

%
)

Grid Points per Direction

CUDA CSR dp; Theoretical
CUDA 5−Point dp; Theoretical
CUDA CSR dp; Achieved
CUDA 5−Point dp; Achieved

Student Version of MATLAB

Figure 5.23: Occupancy plot for all implemented Jacobi kernels, using double precision.

5.0 51

Table 5.7: Kernel Limiters: (Modified) Jacobi CSR, Double Precision. The 1 superscript marks the primary limiter.

OpenACC CUDA

512 1024 2048 4096 8192 512 1024 2048 4096 8192

Instruction Latency �1 � � � � �1 � � � �

Memory Bandwidth �

(L2)

�1

(L2)

�1

(L2)

�1

(L2)

�1

(Device)

�

(L2)

�1

(L2)

�1

(L2)

�1

(L2)

�1

(L2)

Computation

Registers � � � � � � � � � �

Function Unit Utilization

Intra-Warp Divergence � �

Table 5.8: Kernel Limiters: Five-Point Stencil Jacobi, Single Precision. The 1 superscript marks the primary limiter.

OpenACC CUDA

512 1024 2048 4096 8192 512 1024 2048 4096 8192

Instruction Latency �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

Memory Bandwidth �

(Device)

Computation

Registers � � � � � � � � � �

Function Unit Utilization

Intra-Warp Divergence

Table 5.9: Kernel Limiters: Five-Point Stencil Jacobi, double precision. The 1 superscript marks the primary limiter.

OpenACC CUDA

512 1024 2048 4096 8192 512 1024 2048 4096 8192

Instruction Latency �1 � � � � �1 �1 �1 �1 �1

Memory Bandwidth �

(Device)

�1

(Device)

�1

(Device)

�1

(Device)

�1

(Device)

�

(Device)

�

(Device)

�

(Device)

�

(Device)

Computation

Registers � � � � � � � � � �

Function Unit Utilization

Intra-Warp Divergence

implementation’s relative total execution time difference between single and double precision

τrel =
(tsingleprec. − tdoubleprec.)

tdoubleprec.

varies very little, τrel ≈ 1.5 for the two smallest grids considered here and τrel ≈ 2 − 2.3 for the rest
of the grids considered. For the two other OpenMP implementations (modified CSR and five-point) no
clear pattern can be observed. The GPU codes have a similar order of magnitude for τrel for any given
computational grid. For the two smallest grids there is no mentionable relative time difference due to the
impact of allocating and copying data to the GPU. With bigger computational grid sizes, however, the
computation dominates the total execution time and |τrel| increases. As was mentioned in Section 2.3, the
Tesla K40 has three times as many single precision cores as double precision cores, nonetheless the single
precision versions are not three times as fast as the double precision pendant. The reason for this is that the
(single precision) integer operations prevail for all the Jacobi implementations (CSR and five-point).

As a final remark, it shall be mentioned that the two-dimensional Poisson Equation exhibits relatively
little work per grid point. A greater speedup can be expected for parallelizations of systems that require

52 RESULTS 5.0

Table 5.10: Register restriction: OpenACC,
(Modified) Jacobi CSR, Single Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 23 23 23 23 20

Blocks/SM
(simultaneously)

16 16 16 16 16

Warps/SM
(simultaneously)

64 64 64 64 64

Table 5.11: Register restriction: OpenACC,
(Modified) Jacobi CSR, Double Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 36 36 36 36 36

Blocks/SM
(simultaneously)

12 12 12 12 12

Warps/SM
(simultaneously)

48 48 48 48 48

Table 5.12: Register restriction: CUDA, (Mod-
ified) Jacobi CSR, Single Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 17 17 17 17 17

Blocks/SM
(simultaneously)

16 16 16 16 16

Warps/SM
(simultaneously)

64 64 64 64 64

Table 5.13: Register restriction: CUDA, (Mod-
ified) Jacobi CSR, Double Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 36 36 36 36 36

Blocks/SM
(simultaneously)

12 12 12 12 12

Warps/SM
(simultaneously)

48 48 48 48 48

Table 5.14: Register restriction: OpenACC,
Five-point Jacobi, Single Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 45 45 45 45 39

Blocks/SM
(simultaneously)

10 10 10 10 12

Warps/SM
(simultaneously)

40 40 40 40 48

Table 5.15: Register restriction: OpenACC,
Five-point Jacobi, Double Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 45 45 45 45 39

Blocks/SM
(simultaneously)

10 10 10 10 12

Warps/SM
(simultaneously)

40 40 40 40 48

Table 5.16: Register restriction: CUDA, Five-
point Jacobi, Single Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 35 35 35 35 35

Blocks/SM
(simultaneously)

12 12 12 12 12

Warps/SM
(simultaneously)

48 48 48 48 48

Table 5.17: Register restriction: CUDA, Five-
point Jacobi, Double Precision

51
2

10
24

20
48

40
96

81
92

Registers/Thread 36 36 36 36 36

Blocks/SM
(simultaneously)

12 12 12 12 12

Warps/SM
(simultaneously)

48 48 48 48 48

5.0 53

OpenMP OpenACC CUDA

−0.3

−0.2

−0.1

0
N=M=512

τ re
l [

−
]

CSR
mod. CSR
5−point

OpenMP OpenACC CUDA

−0.1

−0.05

0
N=M=1024

τ re
l [

−
]

OpenMP OpenACC CUDA
−0.5
−0.4
−0.3

−0.2
−0.1

N=M=2048

τ re
l [

−
]

OpenMP OpenACC CUDA

−0.3

−0.2

−0.1

0
N=M=4096

τ re
l [

−
]

OpenMP OpenACC CUDA

−0.4

−0.3

−0.2

−0.1

0
N=M=8192

τ re
l [

−
]

τr el =
(tsing le pr. − tdouble pr.)

tdouble pr.

Student Version of MATLAB

Figure 5.24: Relative total execution time differences between single and double precision cases for all implementa-
tions used.

54 RESULTS 5.0

more computational work per grid point, like the three-dimensional Poisson Equation or the Navier-Stokes
Equations in two or more dimensions, to name only a few. The CSR implementations require more work per
thread than the five-point analogue, however this extra work is not parallelizable. In this work, especially
the grid with 5122 grid points do not require sufficiently much computation to keep the processors busy.
Moreover, keep in mind that in Tables 5.2 and 5.3, as well as in Figures 5.12, 5.13, and 5.24, we use all 64
processor cores of the Silicon Graphics machine for the OpenMP programs as it yields the biggest speedup.
This way, though, it can be expected that the performance is more affected by background processes, as there
are no free processors run daemons or other operating system tasks. More context switches will occur as a
result, and threads that have run on one processor may continue to run on another which makes it necessary
to copy the data needed for the computations in the respective caches. Due to this sensitivity to background
processes performance suffers and the reproducibility will depend more on the state of the system.

Chapter 6

Conclusion

Parallelism will become more and more important, if not to say a necessity, in order to make use of
modern hardware. In general the parallelization of a program is a iterative process which may require mul-
tiple profiling and optimization stages to make the most use of a given hardware. Even though there are
parallelization methodologies like OpenMP and OpenACC that offer to parallelize am already existing pro-
gram in the same source code by simply adding directives and library routines, however in the optimization
stages it may be necessary to rewrite the serial code in order to be able to exploit more parallelism when
adding the respective directives and library routines. It should be evident that one is able to make more use
of the optimization stages the more one knows how the parallelization process is performed in the respec-
tive hardware and what the bottlenecks and potential factors that could boost the performance of a specific
application on a given hardware are.

In this work we consider two implementations of a Jacobi solver for general sparse linear systems using
the CSR format which are parallelized using OpenMP, OpenACC and CUDA. We apply this solver to the
two-dimensional Poisson Equation which is discretized using finite differences and compared it to a direct
Poisson equation solver based on the finite difference scheme and compared the performances of different
configurations for different computational grid sizes and when using single precision or double precision,
respectively. It was attempted to explain the performance behaviour of the different cases based on profilings
of the respective programs.

Unfortunately, the profiling for the OpenMP programs using the perf profiling tool is not conclusive1.
We observe different scaling behaviours of the different Jacobi implementations using OpenMP, also when
comparing the single precision and double precision versions of the respective implementation. Note that
even though the Jacobi method is embarrassingly parallel an ideal linear speedup was not achieved due to
the necessity of synchronization. The only behaviour we notice to be shared among all configurations is a
rapid scaling degradation when using more than eight threads or processor cores (except for the smallest
grid considered in our work which already exhibits this behaviour for more than four threads). When using
eight processor cores on our Silicon Graphics machine, there will be two active cores per processor each
being able to use an entire L2 cache only for themselves. Whether the need to share the L2 cache with
other cores when increasing the number of threads is the reason for the loss in efficiency may require
further investigation. Moreover it is observed that the modified CSR Jacobi version in general exhibits
worse scaling than the unmodified equivalent, however still execute faster. Why there is a loss in scaling
with the modification is still left to be determined. Similarly we are not able to explain why the scaling of
CSR implementations differ from the five-point implementations for different grid sizes.

Comparing the execution times of the GPU codes we find that the overall execution time for the CSR
implementations are quite similar for the CUDA and OpenACC programs. This however is only the case
because the creation of the CSR format has not been successfully parallelized with OpenACC and there-
fore run serially in this case which overall results in a slightly faster execution time of the Jacobi Method
for OpenACC. This execution time difference between OpenACC and CUDA is even more obvious when
looking at the five-point Jacobi solver. Here the the OpenACC version is up to two times faster than the
CUDA equivalent for the biggest computational grid considered. We link these execution time differences

1The results of perf profilings are given in Appendix B

55

56 CONCLUSION

to optimizations performed by the compiler for the OpenACC code. These optimization result in more work
per thread, while we only solve one unknown per thread with our CUDA program. Furthermore, we sus-
pect compiler optimizations to result in an only insignificant relative execution time difference between the
modified and unmodified CSR implementations for OpenACC.

As SMPs have comparatively few but fast processors and no expensive data transfer to their memory is
needed, whereas GPUs comprise a high number of comparatively slow processing units and data first needs
to be copied from the host, OpenMP is more advantageous for smaller to medium sized problems. This is
because for those situations the performance of the GPU codes are dominated by the data transfer. For bigger
problems, however, data transfer cost becomes less important and computation becomes the dominant factor.
For problems that exhibit a sufficient amount of parallelism the GPU codes will perform drastically faster
than an SMP code with up to 64 threads. OpenACC offers a good option for novice GPU developers and in
situation in which it is desired to parallelize an already existing big serial code for the GPU. The compiler
can already provide effective optimizations for the OpenACC application. However with OpenACC there
is a lack of control since the entire parallelization is performed by the compiler, it is therefore not possible
for the programmer to explicitly optimize the code for the GPU. CUDA provides such control and it can
therefore be used to explicitly optimize program execution in the source code. It is possible to make use
of all OpenMP, OpenACC and CUDA in one single code. This way these parallelization paradigms can be
used in a way that combines the best properties of each.

When comparing the CSR and five-point Jacobi implementations it is observable that the price one has
to pay for generality is a higher execution time and less optimizabilty. Because the CSR Jacobi is designed
to solve a general sparse system it is not possible modify the code in a way that guarantees that the data
needed to solve the linear system will be closer together in the cache. For the five-point Poisson Equation
solver, though, it is possible to divide the computational domain into tiles that can be completely stored
in the cache of a processor core and let every processor cache solve a different tile. Moreover, in order to
make better use of the GPU and increase the compute to global memory access (CGMA) ratio it would
be beneficial iterate several times on a given tile before synchronization occurs. In a future work it can be
investigated how such a domain decomposition affects the GPU performance and what the impact on the
iteration number needed to achieve a specific tolerance is. Another part of the five-point implementation that
can be optimized in a future work is the update copy u_old = u. A more efficient implementation would
iterate twice while implicitly updating u_old in the second iteration:

1) u(i, j) = δ2f(i, j) +

 θx

θy θy

θx

 u_old(i, j)
2) u_old(i, j) = δ2f(i, j) +

 θx

θy θy

θx

 u(i, j)
Moreover, as discussed in Appendix B, in a future work it may be desired to perform various instances of
profilings per OpenMP program, each measuring a different set of events, in order to overcome multiplexing
effects.

Appendices

57

Appendix A

Essential Definitions and Theoretical
Results

Here we give the basic mathematical background for the discussion in Chapter 3.

A.1 Vector Norms

Whenever a linear system is solved numerically, whether it is by means of direct or iterative methods,
in general it is only possible to achieve an approximate solution x that differs from the exact solution x̂ of a
linear system

Ax̂ = f.

Therefore, in order to be able to judge the accuracy of a numerical (approximate) solution it is necessary
to measure the distance between two n-dimensional vectors. With such a measure it will also be possible to
answer the question of whether an n-dimensional vector sequence will converge.

In the following we will only consider the vector space Cn which reduces to Rn as a special case.

Definition 4 (Vector norm Stoer and Bulirsch [1980]). A vector norm is a real-valued function ||·|| : Cn → R

with the following properties:
(i) ||x|| > 0 ∀x ∈ Cn, x , 0; ||x|| = 0 only if x = 0 (non-negativity)

(ii) ||αx|| = |α| ||x|| ∀α ∈ C, x ∈ Cn (homogeneity)

(iii) ||x + y|| ≤ ||x|| + ||y|| (triangle inequality)

The most commonly used norms in numeric analysis are:

l1 norm ||x||1 =
∑n

i=1 xi;

l2 norm ||x||2 =
(
xHx

)1/2
;

l∞ norm ||x||∞ = maxi |xi|.

The superscript H stands for the hermitian operator:

xH = (x̄1, x̄2, . . . , x̄n)T ,

where the superscript T denotes the transpose operator and x̄i is the complex conjugate of xi. All of the
above vector norms belong to the class of p-norms

||x||p =

 n∑
i=1

|xi|
p

1/p

.

59

60 APPENDIX A

Figure A.1: Plots of ||x||p = 1 on R2 for different values of p.

For the l1 and l2 norm this is obvious, for the l∞ norm consider the following: Obviously

|xk| ≤

 n∑
i=1

|xi|
p

1/p

= ||x||p

holds for any p ≥ 1 and 1 ≤ k ≤ n. Therefore, we have

||x||∞ ≤ ||x||p, ∀p ≥ 1,

and thus specifically

||x||∞ ≤ lim
p→∞
||x||p.

On the other hand,

lim
p→∞
||x||p = lim

p→∞
max

k
|xk|

 n∑
i=1

(
|xi|

|xk|

)p1/p

≤ lim
p→∞

max
k
|xk| · n1/p = ||x||∞.

Which shows that ||x||∞ = limp→∞ ||x||p, in other words the l∞ norm belongs to the class of p-norms.
Figure A.1 portrays the graphs of ||x||p = 1 on R2 for different values of p.

Note, however, that there are also different kind of vector norms. For an example see

Theorem 6. Let || · || be an arbitrary norm on Cn and P an arbitrary non-singular n × n complex matrix.
Then ||x||′ = ||Px|| defines a norm on Cn. Ortega [1972]

Proof. Define y := Px and note that since P is non-singular, it is a bijective mapping. It then follows that
||x||′ = ||y|| is a norm since || · || is a norm for all y ∈ Cn. �

The distance between two n-dimensional vectors x, y ∈ Cn is defined as ||x − y||.

Lemma 1. For each norm the inequality

||x − y|| ≥ | ||x|| − ||y|| | , ∀x, y ∈ Cn (A.1)

holds.

VECTOR NORMS 61

Proof. From the triangle inequality in Definition 4 we have

||x|| = ||(x − y) + y|| ≤ ||x − y|| + ||y||,

and therefore ||x − y|| ≥ ||x|| − ||y||. Furthermore, using the homogeneity property of Definition 4 we see that

||x − y|| = ||y − x|| ≥ ||y|| − ||x||,

which proves Equation (A.1). Stoer and Bulirsch [1980] �

Theorem 7. Each norm || · || is a uniformly continuous function with respect to the metric

m(x, y) = max
i
|xi − yi|, x, y ∈ Cn.

Proof. From the inequality (A.1) we have

| ||x = h|| − ||x|| | ≤ ||h||.

Since we can write h as h =
∑n

i=1 hiei, where h = (h1, h2, . . . , hn)T , and ei being the canonical basis vectors
of Cn. It follows that

||h|| ≤
n∑

i=1

|hi| ||ei|| ≤ max
i
|hi|

n∑
j=1

||e j|| + M max
i
|hi|,

where we defined M :=
∑n

j=1 ||e j||. Thus, for each ε > 0 and all h satisfying maxi|hi| ≤ ε/M, the inaquality

| ||x + b f h|| − ||x|| | ≤ ε

holds, which proves that || · || is uniformly continuous. Stoer and Bulirsch [1980] �

This result can be used for the following

Theorem 8 (Norm Equivalence Theorem). Let || · || and || · ||′ be any two norms on Cn. Then there are
constants c2 ≥ c1 > 0 such that

c1||x|| ≤ ||x||′ ≤ c2||x||, ∀x ∈ Cn.

Proof. It suffices to prove this only for the special case that ||x|| = ||x||∞ = maxi |xi|, as the general result
will then follow from this one. We consider the compact set

S =

{
x ∈ Cn|max

i
|xi| = 1

}
.

From Theorem 7 we know that ||x||′ is continuous, which means that it will attain its minimum and maximum
on S :

c1 = min
x∈S
||x||′, c2 = max

x∈S
||x||′.

Therefore, it follows for all y , 0, since y
||y|| ∈ S , that

c1 ≤

∣∣∣∣∣∣∣∣∣∣ y
||y||

∣∣∣∣∣∣∣∣∣∣′ =
1
||y||
||y||′ ≤ c2,

and moreover that c1||x|| ≤ ||x||′ ≤ c2||x||. Stoer and Bulirsch [1980] �

A sketch portraying a specific case described in Theorem 8 is shown in Figure A.2.

Definition 5. A sequence
{
x(k)

}∞
k=1

of vectors is said to converge to x with respect to norm || · || if, given any
ε > 0, there exists an integer N(ε) such that

||x(k) − x|| < ε, ∀k ≥ N(ε).Burden and Faires [1989]

62 APPENDIX A

||x||∞ ≤
√

2
2

||x||2 ≤ 1 ||x||∞ ≤ 1

Figure A.2: Geometric presentation of the Norm Equivalence Theorem for the l∞ and l2 norms on R2:
√

2
2 ||x||∞ ≤

||x||2 ≤ ||x||∞

Theorem 9. The sequence of vectors
{
x(k)

}∞
k=1

converges to x with respect to ||.||∞ if and only if limk→∞ x(k)
i =

xi for each i = 1, 2, . . . , n.

Proof. Assuming that
{
x(k)

}
converges to x with respect to the l∞ norm, that is for any arbitrarily small ε > 0

we can find a k ≥ N(ε) such that

||x(k) − x||∞ = max
i
|x(k)

i − xi| < ε,

which implies limk→∞ x(k)
i = xi for each i = 1, 2, . . . , n.

Conversely, if limk→∞ x(k)
i = xi is true for every 1 ≤ i ≤ n, then, given any ε > 0, there exist integers Ni(ε)

such that
|x(ki)

i − xi| < ε, ∀ki ≥ Ni(ε).

Defining N(ε) := maxi Ni(ε) leads to

||x(k) − x||∞ < ε, ∀k ≥ N(ε).

�

But from the Norm Equivalence Theorem 8 we know that if the vector sequence
{
x(k)

}∞
k=1

converges in
one norm (like the l∞ norm as in the Theorem above) then it also converges in any other vector norm.

A.2 Matrix Norms

Analogous to vector norms it is possible to define matrix norms to express a “distance” between matri-
ces. Unless where indicated otherwise, this subsection is based on Stoer and Bulirsch [1980].

Since we can interpret a matrix A ∈ Cn×m as a vector in a nm-dimensional space, analogously to vector
norms we can introduce

Definition 6 (Matrix norm). A matrix norm is a real-valued function ||·|| : Cn×m → R with the following
properties for all A, B ∈ Cn×m and all α ∈ C:

MATRIX NORMS 63

(i) ||A|| > 0, ∀A , 0 (||A|| = 0⇔ A = 0);
(ii) ||αA|| = |α| ||A||;

(iii) ||A + B|| ≤ ||A|| + ||B||.

However, one may want to be even more restrictive regarding the properties of matrix norms. For ex-
ample, one may desire that a matrix norm ||·|| is consistent with the vector norms ||·||a on Cn and ||·||b on
Cm,

||Ax||a ≤ ||A|| ||x||b, x ∈ Cm, A ∈ Cn×m,

or, that a matrix norm ||·|| is submultiplicative,

||AB|| ≤ ||A|| ||B||, ∀A, B ∈ Cn×n.

Examples of matrix norms are

||A|| = max
i

n∑
k=1

|aik| (row-sum norm); (A.2a)

||A|| =

 n∑
i,k=1

|aik|
2

1/2

(Schur norm); (A.2b)

||A|| = max
i,k
|aik|, (A.2c)

where (a) and (b) are submultiplicative (in contrast to (c)), and (b) is consistent with the l2 vector norm.
Furthermore, a special class of matrix norms for square matrices is the subordinate matrix norm (also

called induced matrix norm) for any given vector norm ||x||:

lub(A) := max
x,0

||Ax||
||x||

= max
||x||=1

||Ax||,

see Figure A.3. It is easy to see that this matrix norm is consistent with the vector matrix norm ||·|| that
defined it:

||Ax|| ≤ lub(A) ||x||. (A.3)

And even more so, lub(A) is the smallest of all norms ||A|| that are consistent with the vector norm ||x||:

||Ax|| ≤ ||A|| ||x||, ∀x ∈ Cn ⇒ lub(A) ≤ ||A||.

Equation (A.3) expresses that lub(A) is the maximum magnification that a vector x can attain under the
mapping Ax, as it is the factor by which the source point ||x|| is magnified in the image point ||Ax||.
Moreover, one can show that each subordinate matrix norm lub(·) is submultiplicative:

lub(AB) = max
x,0

||ABx||
||x||

= max
x,0

||A(Bx)||
|Bx|

||Bx||
||x||

≤ max
y,0

||Ay||
||y||

max
x,0

||Bx||
||x||

= lub(A) lub(B).

Also note that
lub(I) = max

x,0

||Ix||
||x||

= 1.

From now on we will only consider subordinate matrix norms and will write ||A|| instead of lub(A).
Until indicated otherwise, the following is based on Ortega [1972]. In general it is quite difficult to

compute ||A|| explicitly for an arbitrary norm (as we shall see that is even true for the l2 norm), however

64 APPENDIX A

||x||2 = 1

||Ax||2 for ||x||2 = 1

lub2(A
)

Figure A.3: Geometric representation of lub(A) = max||x||=1 ||Ax|| (for the l2 norm).

Theorem 10. Let A ∈ Cn×n. Then

||A||1 ≡ max
||x||1=1

||Ax||1 = max
1≤ j≤n

n∑
i=1

|ai j| (A.4)

and

||A||∞ ≡ max
||x||∞=1

||Ax||∞ = max
1≤i≤n

n∑
j=1

|ai j| (A.5)

Proof. First, consider the l1 norm: For any x ∈ Cn we have

||Ax||1 =

n∑
i=1

∣∣∣∣∣∣∣∣
n∑

j=1

ai jx j

∣∣∣∣∣∣∣∣ ≤
n∑

i=1

n∑
j=1

|ai j| |x j| =

n∑
i=1

|ai j|

n∑
j=1

|x j| ≤ max
j

n∑
i=1

|ai j| ||x||1.

Now, to show that there exists some x with ||x||1 = 1 for which Equation (A.4) attains equality, define k such
that

n∑
i=1

|aik| = max
j

n∑
i=1

|ai j|.

Then with the kth coordintae vector, ek, and the kth column vector of A, ak, we see that

||Aek||1 = ||ak||1 =

n∑
i=1

|aik|.

The proof for ||A||∞ is analogous, using the maximum on the vector defined by

xi =

{
aki/|aki|, aki , 0
1, aki = 1

where k is defined is chosen such that the maximum in Equation (A.5) is attained. �

Calculating the l2 norm of a matrix is unfortunately mentionably more cumbersome:

Theorem 11. Let A ∈ Cn×n. Then

||A||2 ≡ max
||x||2=1

||Ax||2 =
[
ρ(AHA)

]1/2
. (A.6)

In order to prove Theorem 11 we will first introduce

MATRIX NORMS 65

Lemma 2. Let B ∈ Cn×n be hermitian with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

λ1xHx ≤ xH Bx ≤ λnxHx, ∀x ∈ Cn.

Proof. Since B is hermitian it is normal and there exist a unitary matrix P such that

PH BP = diag(λ1, λ2, . . . , λn).

For this reason, with y = PHx, we have

xH Bx = yHPH BPy =

n∑
i=1

λiy2
i ≤ λnyHy = λnxHx.

The other inequality is proved analogously. �

Proof of Theorem 11. Set µ =
[
ρ(AHA)

]1/2
, then for any x ∈ Cn the previous Lemma yields

||Ax||22 = xHAHAx ≤ µ2xHx,

which implies that

||A||2 = max
||x||2=1

||Ax||2 ≤ µ.

However, if u is an eigenvector of AHA corresponding the µ2, then

uHAHAu = µ2uHu,

which shows that equality holds in Equation (A.6). �

For a real symmetric A ∈ Rn×n, Theorem 11 obviously reduces to

||A||2 = ρ(A).

However, this can be considered a special case indeed, as generally we know that

||A|| ≥
||Ax||
||x||

= |λ|

which then specifically implies that furthermore

||A|| ≥ ρ(A).

As a matter of fact we have

Theorem 12. Let A ∈ Cn×n. Then given any ε > 0 there is a matrix norm ||·|| : Cn×m → R such that

||A|| ≤ ρ(A) + ε.

Proof. Let A = PJP−1, J being the Jordan form of A, and let

D = diag(1, ε, ε2, . . . , εn−1).

Then note that Ĵ = D−1JD is J with every off-diagonal 1 in J substituted with ε. Therefore

||Ĵ||∞ ≤ ρ(A) + ε.

Setting Q = PD, we can define ||x|| = ||Q−1x||in f ty which is a vector norm as discussed in Section A.1. It

66 APPENDIX A

then follows that

||A|| = max
||x||=1

||Ax|| = max
||Q−1x||∞=1

||Q−1Ax||∞ = max
||y||∞=1

||Q−1AQy||∞

= max
||y||∞=1

||Ĵy||∞ = ||Ĵ||∞

≤ ρ(A) + ε.

�

Nonetheless, there exists a special class of matrices for which we can obtain ||A|| = ρ(A), namely:

Definition 7 (Matrices of class M). A matrix A ∈ Cn×n is of class M if and only if A is similar to a matrix
of the form [

D 0
0 B

]
where D is diagonal with ρ(D) = ρ(A), and ρ(B) < ρ(A).

This means, however, that for every eigenvalue λ with |λ| = ρ(A) the associated Jordan block is 1 × 1,
which is an equivalent form of defining matrices of class M.

We can now state

Theorem 13. Let A ∈ Cn×n. Then there is a matrix norm ||·|| : Cn×m → R such that ||A|| = ρ(A) holds if and
only if A is of class M.

Proof. Assume there there is an ε > 0 so small that |λ|+ ε < ρ(A), where λ denotes any eigenvalue of A that
satisfies |λ| < ρ(A). Then following the nomenclature from the proof of Theorem 12, certainly ||Ĵ||∞ = ρ(A)
holds.

Conversely, assuming that we have ||A|| = ρ(A) for some norm, and that there is a an m×m Jordan block
(m ≥ 2) associated with an eigenvalue λ which satisfies |λ| = ρ(A), which means that A is not of class M.
We only consider λ , 0, as otherwise we get ||A|| = 0 and thus A = 0. Therefore, considering the Jordan
block

J =

λ 1

. . .
. . .
. . . 1

λ

 , λ , 0

we need to show that ||J|| = |λ| is not possible in any norm. If we assume that ||J|| = |λ| and set Ĵ = λ−1J
then we would obviously have ||Ĵ|| = 1. However, a direct computation shows that Ĵke2 = (k/λ, 1, 0, . . . , 0)T

(where e2 denotes the second standard unit vector (0, 1, 0, . . . , 0)T), hence limk→∞ ||Ĵke2|| = ∞, which con-
tradicts the assumption ||Ĵk|| = 1. �

This theorem shows that real symmetric matrices are of class M, which will be even more obvious in
Section A.4.

As for the question when a matrix A converges, meaning when it is true that limk=∞ Ak = 0, where 0 is
the zero matrix with only zero matrix elements we state

Theorem 14. Let A ∈ Cn×n. Then limk=∞ Ak = 0 if and only if ρ(A) < 1. Moreover, ||Ak|| is bounded as
k → ∞ if and only if ρ(A) < 1, or ρ(A) = 1 and A is of class M.

Proof. If ρ(A) < 1, then by Theorem 12 we can choose a norm such that

||A|| < 1.

Thus

||Ak||2 = ||A||k2 → 0 as k → ∞.

MATRIX NORMS 67

Conversely, suppose that ρ(A) ≥ 1 and let some eigenvalue λ be such that |λ| ≥ 1. Let x be the corresponding
eigenvector, then

||Akx|| = ||λkx|| ≥ ||x||,

which implies that ||Ak|| ≥ 1 for all k. �

As stated in the beginning of this subsection, an n×m matrix can be considered a nm-dimensional vector
and we can give analogous results:

Theorem 15. Each matrix norm ||·|| is a uniformly continuous function with respect to the metric

m(A, B) = max
i, j
|ai j − bi j|, A, B ∈ Cn×m

Theorem 16. Let ||·|| and ||·||′ be any two matrix norms on Cn×m. Then there are constants c2 ≥ c1 ≥ 0 such
that

c1||A|| ≤ ||A||′ ≤ c2||A||, ∀A ∈ Cn×m.

Finally, connected to matrix norms is the notion of the condition number or condition of A: κ(A) =

||A|| ||A−1||. The condition number is “a measure of the sensitivity of the relative error in the solution to
changes in the right-hand side” of a linear system Ax = b. Stoer and Bulirsch [1980] Moreover, it can be
used for bounding the relative error in the solution to changes in the matrix A itself. The remainder of this
Section is based on Stoer and Bulirsch [1980].

Let x be the solution of

Ax = b

and x + ∆x be the solution of

A(x + ∆x) = b + ∆b.

Subtraction and solving for ∆x then yields

∆x = A−1∆b

and

||∆x|| ≤ ||A−1|| ||∆b||.

Now, it follows from ||b|| = ||Ax|| ≤ ||A|| ||x|| that

||∆x||
||x||

≤ ||A|| ||A−1||
||∆b||
||b||

= κ(A)
||∆b||
||b||

,

which shows that indeed κ(A) is a measure of the influence on the relative error of the solution to relative
errors in the right-hand side of a linear system.

Theorem 17. Let A ∈ Cn×n be nonsingular, B = A(I + F), ||F|| < 1, and x and ∆x defined by Ax = b and
B(x + ∆x) = b. Then

||∆x||
||x||

≤
||F||

1 − ||F||

and

||∆x||
||x||

≤
κ(A)

1 − κ(A) ||B−A||
||A||

||B − A||
||A||

.

In order to prove this Theorem let us first introduce

68 APPENDIX A

Lemma 3. If F ∈ Cn×n is such that ||F|| < 1 then (I + F)−1 exists and respects

||(I + F)−1|| ≤
1

1 − ||F||
.

Proof. As shown in the previously,
||x − y|| ≥ | ||x|| − ||y|| |

hold for all x, y ∈ Cn and each vector norm. Hence it follows for all x that

||(I + F)x|| = ||x + Fx|| ≥ ||x|| − ||Fx|| ≥ (1 − ||F||)||x||.

From 1 − ||F|| > 0 it is obvious that ||(I + F)x|| >)|| if x , 0. This implies, however, that (I + F)x = 0 has
only the trivial solution x and that (I + F) is nonsingular.

For the second part we introduce the abbreviation C := (I + F)−1. Note that

1 = ||I|| = ||(I + F)C|| = ||C + FC||

≥ ||C|| − ||C|| ||F||

= ||C||(1 − ||F||) > 0,

from which follows the desired inequality. �

Proof of Theorem 17. From Lemma 3 it follows that B−1 exists, and we can write

∆x = B−1b − A−1b = B−1(A − B)A−1b,

since x = A−1b. Therefore,

||∆x||
||x||

≤ ||B−1(A − B)|| = || − (I + F)−1A−1AF||

≤ ||(I + F)−1|| ||F||

≤
||F||

1 − ||F||
.

To conclude the proof, note that F + A−1(B − A) and ||F|| ≤ κ(A) ||B − A||/||A||. �

Note that for any matrix A and any induced matrix norm

κ(A) = ||A|| ||A−1|| ≥ ||AA−1|| = ||I|| = 1

is valid.

A.3 Similarity and Diagonalizability of Matrices

This section is based on Noble and Daniel [1998] and introduces the concepts of similarity and diago-
nalization of matrices.

Definition 8. If there exists a nonsingular matrix P such that P−1AP = B then B is said to be similar to A
and to be obtained from A by means of a similarity transformation.

Theorem 18.
(i) Similar matrices have the same characteristic polynomial and the same eigenvalues;

(ii) Suppose that B is similar to A with B = P−1AP. Then x is an eigenvector of A associated with the
eigenvalue λ if and only if P−1x is an eigenvector of B associated with the eigenvalue λ.

SIMILARITY AND DIAGONALIZABILITY OF MATRICES 69

Proof.
(i) The characteristic polynomials are identical because

det(B − λI) = det[P−1(A − λI)P]

= det(P−1) det(A − λI) det(P)

= det(P−1P) det(A − λI)

= det(A − λI).

Furthermore the eigenvalues are identical since they are merely the roots of the characteristic polyno-
mial.

(ii) From the definition of eigenvectors and eigenvalues we know that x is an eigenvector of A correspond-
ing to the eigenvalue λ if and only if

Ax = λx,

but since B is similar to A we have

(PBP−1)x = λx

or equivalently

B(P−1x) = λ(P−1x).

�

Theorem 19. Suppose that B is similar to A with B = P−1AP. Then:
(i) For each positive integer k, Bk is similar to Ak with Bk = P−1AkP;

(ii) det(B) = det(A);
(iii) B is nonsingular if and only if A is nonsingular;
(iv) If A and B are nonsingular, then Bk is similar to Ak with Bk = P−1AkP for negative integers k as well,

so that in particular B−1 = P−1A−1P;
(v) If f is a polynomial with f (x) = amxm + · · · + a1x + a0 and if f (X) for a square matrix X denotes

f (X) = amXm + · · · + a1X + a0I, then f (B) is similar to f (A) with f (B) = P−1 f (A)P.

Proof.
(i) Bk =

∏k
i=1(P−1AP) = (P−1AP)(P−1AP) · · · (P−1AP) but due to the associativity of matrix multipli-

cation the parenthesis can be removed and the product collapses to P−1AkP because PP−1 can be
repeatedly evaluated to I.

(ii) det B = det(P−1AP) = det(P−1) det(A) det(P) = det(P−1P) det(A) = det(A).
(iii) is a consequence of (ii) and the fact that a matrix is nonsingular if and only if its determinant in

nonzero.
(iv) B−1 = (P−1AP)−1 = P−1A−1(P−1)−1 = P−1A−1P. For general negative k, the result is shown by

applying (i) to B−1 and A−1 with |k|.
(v) Simple calculation verifies that

f (B) = amP−1AmP + · · · + a1P−1A1P + a0P−1P

= P−1(amAm + · · · + a1A + a0I)P

= P−1 f (A)P.

�

We can use the concept of similarity to introduce a special class of matrices:

70 APPENDIX A

Definition 9. The matrix A is diagonalizable if it is similar to diagonal matrix, which means that there
is an invertible matrix P and a diagonal matrix D such that P−1AP = D. In this case we say that P is a
diogonalizing matrix for A or that P diagonalizes A.

Theorem 20. A ∈ Cn×n has a linearly independent set of n eigenvectors if and only if there exists a non-
singular matrix P and a diagonal matrix Λ for which A = PΛP−1 (and equivalently Λ = P−1AP. These
compositions hold if and only if the columns x1, x2, . . . , xn of P = [x1, x2, . . . , xn] form a linear indepen-
dent set of eigenvectors associated with the eigenvalues λ1, λ2, . . . , λn which are the diagonal entries of
Λ = diag(λ1, λ2, . . . , λn).

Proof. Assume that P = [x1, . . . , xn] is formed from a linearly independent set of eigenvectors and Λ =

diag(λ1, . . . , λn) is formed from the associated eigenvalues. Then from Axi = λixi we have AP = PΛ. But
since P has full rank it is invertible and we have A = PΛP−1 or equivalently Λ = P−1AP.
Conversely, if A = PΛP−1 with Λ being a diagonal matrix. Applying the rules of partitioned-matrix multi-
plication result in Axi = λixi, xi being the columns of P and λi the diagonal element of Λ (taken from the
some column number). Since P is invertible, the xi form a linearly independent set (and are nonzero), hence
they form a linearly independent set of n eigenvectors. �

A.4 Unitary and Normal Matrices

As in the previous section, this section is based on Noble and Daniel [1998]. Here we introduce the
concepts of some special classes of matrices and their properties which will be used in the discussion of
Chapter 3.

Definition 10. A matrix P ∈ Cn×n for which P−1 = PH , so that PPH = PHP = I, is said to be unitary. An
orthogonal matrix is a real unitary matrix P ∈ Rn×n, so that P−1 = PT and PPT = PT P = I.

Note that a unitary (orthogonal) matrix is a matrix whose columns form an orthonormal set of vectors
with the standard inner product:

xH
i xi = 1 (xT

i xi = 1), ∀i

and

xH
i x j = 0 (xT

i x j = 0), ∀i , j.

A matrix A is unitarily (orthogonally) similar to B if there exists a unitary (orthogonal) matrix P such
that

A = PH BP (A = PT BP).

In the following only (complex) unitary matrices are considered and orthogonal matrices are to be taken
as the real case of unitary matrices.

Theorem 21.
(i) P ∈ Cn×n is unitary if and only if its columns form an orthonormal set;

(ii) P ∈ Cn×n is unitary if and only if its rows form an orthonormal set;
(iii) If P is unitary, then | det(P)| = 1;
(iv) If P and Q are both unitary, then so is PQ;
(v) If P is unitary and 〈· , ·〉 is the standard inner product, then

1. 〈Px, Py〉 = 〈x, y〉, ∀x, y (the angle between x and y is preserved by P);
2. ||Px||2 = ||x||2, ∀x (the length of x is preserved by P);
3. ||P||2 = 1;

(vi) If λ is an eigenvalue of the unitary matrix P, then |λ| = 1;
(vii) If P ∈ is n × n and unitary while A is n × m and B is m × n, then

||PA||2 = ||A||2 and ||BP||2 = ||B||2.

UNITARY AND NORMAL MATRICES 71

Proof.
(i) First, suppose that x1, . . . , xn is a orthonormal set on Cn with the standard inner product, that is{

xH
i xi = 1 ∀i,

xH
i x j = 0 ∀i , j.

Then obviously for the matrix P = [x1, . . . , xn] we have

PHP = I

⇔PH = P−1.

Conversely, assume that P is unitary, then by definition PH = P−1. However this implies that PHP = I
and the columns then form an orthonormal set.

(ii) This follows by applying (i) to PH .
(iii) Follows from 1 = det(I) = det(PHP) = det(PH) det(P) = | det(P)|2.
(iv) (PQ)H(PQ) = QHPHPQ = QH IQ = I.
(v)

1. 〈Px, Py〉 = (Px)H(Py) = xHPHPy = xHy = 〈x, y〉.
2. This is a direct result of (v)1. for x = y.
3. Applying the definition of matrix norms and unitary matrices yields:

||P||2 = max
||x||2=1

||Px||2 = max
||x||2=1

[
(Px)H(Px)

]1/2

= max
||x||2=1

[
xHPHPx

]1/2
= max
||x||2=1

[
xHx

]1/2
= max
||x||2=1

||x||2

= 1.

(vi) If Px = λx then applying (v)2. we have

||x||2 = ||Px||2 = ||λx||2 = |λ| ||x||,

and since x , 0 this means that |λ| = 1.
(vii) We have

||PA||2 = max
||x||2=1

||PAx||2
(v)2.
= max
||x||2=1

||Ax||2 = ||A||2

and

||BP||2 = max
||x||2,0

||BPx||2
||x||2

(v)2.
= max
||x||2,0

||BPx||2
||Px||2

= max
||y||2,0

||By||2
||y||2

= ||B||2.

�

From Theorem 21 (v) 3. it directly follows that if P is unitary then κ2(P) = 1, since if P is unitary then
certainly so is PH .

Definition 11. A matrix A ∈ Cn×n is said to be normal if AHA = AAH .

From this definition it follows that

• hermitian matrices (AH = A) are normal;

• real symmetric matrices (AT = A) are normal;

• unitary matrices (AHA = AAH = I) are normal;

72 APPENDIX A

• orthogonal matrices (AT A = AAT = I) are normal.

In Theorem 22 we will introduce the Schur form and will use this concept and its attributes later to prove
Theorem 23 which states the first special property of normal matrices.

Theorem 22. Let A ∈ Cn×n.
(i) A is unitarily similar to an upper-triangular matrix T = PHAP with P unitary and with the eigenvalues

of A (repeated according to their algebraic multiplicities) on the main diagonal of T . T is called a
Schur form of A and the decomposition A = PT PH a Schur decomposition of A.

(ii) If A and its eigenvalues are real, then P may be taken real and thus orthogonal.

Proof. We will prove this theorem via induction. Both parts are trivially satisfied for n = 1. Thus, assuming
that the Theorem is valid for n = k we will prove that it stays valid for n = k + 1. For this reason we consider
the (n + 1) × (n + 1) matrix A with eigenvalue λ1 and associated normalized eigenvector x1, i.e. ||x1||2 = 1.

Note that if A and λ1 are real then we can take x1 to be real as well, since for a general associated
complex eigenvector x̂1 = u + iv, with real u, v we have

A(u + iv) = λ1(u + iv)

and can choose x1 to be either u or v, for example.
We can extend {x1} to form a basis for Ck+1 (or, if x1 is real, Rk+1) and then use the Gram-Schmidt pro-

cess to create an orthonormal basis from it. Then there is a set of vectors y1, . . . , yk such that {x1, y1, . . . yk}

is orthonormal and the matrix
U = [x1, y1, . . . yk] = [x1,Y]

is unitary (or orthogonal if x1 is real). We can now compute

B = UHAU = [x1,Y]HA[x1,Y] = [x1,Y]H[Ax1, AY]

= [x1,Y]H[λ1x1, AY]

=

[
λ1 xH

1 AY
0 YHAY

]
=

[
λ1 bH

0 C

]
,

since ||x1||2 = 1 and since YHx1 = 0 because U is unitary. The eigenvalues of B and A are identical since
A and B are similar. Now, by expanding det(B − λI) by its first column, it is evident that the characteristic
polynomial of B is (λ1 − λ) det(C − λI), this means that the eigenvalues of B besides λ1 are the eigenvalues
of C. But C is k × k and our inductive hypothesis holds for it and we can find a unitary matrix V such that
VHCV = T̂ , where T̂ is an upper-triangular matrix with the eigenvalues of C (and therefore A) on its main
diagonal. Finally, defining P as

P = U
[

1 0
0 V

]
, then PHAP =

[
λ1 bHV
0 T̂

]
,

which has the desired proper form and hence proves that since the inductive hypothesis is also valid for
n = k + 1, it is actually true for all n. �

Theorem 23. A ∈ Cn×n is normal if and only if A is unitarily similar to a diagonal matrix Λ = PHAP, where
P is unitary and Λ is diagonal with the eigenvalues of A (repeated according to their algebraic multiplicity)
as the diagonal elements.
If A and its eigenvalues are real, then P can be taken real and therefore orthogonal.

Proof. Suppose there exists a unitary matrix P with PHAP = Λ diagonal. A is then normal as diagonal
matrices commute:

AHA = (PλPH)H(PλPH) = PΛHPHPΛPH

= PΛHΛPH = PΛPHPΛHPH = (PΛPH)(PΛP)H

= AAH .

UNITARY AND NORMAL MATRICES 73

Conversely, assume that A is normal, then let T be a Schur form with T = PHAP. T is normal since

T HT = (PHAP)H(PHAP) = PHAHAP = PHAAHP = (PHAP)(PHAP)H

= TT H .

Now, letting ti j denote [T]i j, we know that ti j = 0 for i > j. Since TT H = T HT their diagonal entries must
be equal. We have

[TT H]ii = |tii|2 + |ti,i+1|
2 + · · · + |tin|2

as well as

[T HT]ii = |t1i|
2 + |t2i|

2 + · · · + |tii|2.

Equating both expressions while subtracting the common term |tii|2 yields

|ti,i+1|
2 + · · · + |tin|2 = |t1i|

2 + · · · + |ti−1,i|
2

for all i. Then, for i = 1, we find that the right-hand side is zero (since there are no terms) which results
for the left-hand side in t12 = t13 = · · · = t1n = 0. Next, for i = 2, we find on the right-hand side t12 which
we know is zero. This leaves for the left-hand side t23 = t24=···=t2n=0. Continuing in this manner reveals that
indeed T is diagonal, and we know from Theorem 22 that the diagonal of T is formed by the eigenvalues of
A. Therefore we can write T = Λ. The second part of this Theorem regarding the reality of P follows from
Theorem 22 (ii). �

Theorem 24. A ∈ Cn×n is normal if and only if A has a linearly independent set of n eigenvectors that may
be chosen in so as to form an orthonormal set.

Proof. This follows immediately from Theorems 20 and 23. �

Corollary 2. The eigenvalues of an n× n hermitian matrix A are real, and the associated eigenvectors may
be chosen so as to form an orthonormal set of n vectors.

Proof. For the first part note that we can write A = PΛPH with Λ = diag(λ1, . . . , λn). Since AH = A,

ΛH = (PHAP)H = PHAHP = PHAP = Λ

shows that Λ indeed is real.
The second part follows from the normality of A by Theorem 24. �

74 APPENDIX A

Appendix B

Profiling of OpenMP Implementations
using perf

perf is a profiling tool for Linux based systems which is used as a command line interface.
“The perf tool supports a list of measurable events. The tool and underlying kernel interface can measure

events coming from different sources. For instance, some event are pure kernel counters, in this case they
are called software events. Examples include: context-switches, minor-faults.

Another source of events is the processor itself and its Performance Monitoring Unit (PMU). It provides
a list of events to measure micro-architectural events such as the number of cycles, instructions retired, L1
cache misses and so on. Those events are called PMU hardware events or hardware events for short. They
vary with each processor type and model”, https://perf.wiki.kernel.org/index.php/Tutorial.

For our work we measured the following events:

• task clock,

• cycles,

• instructions,

• cache references,

• cache misses,

• L1 data cache loads,

• L1 data cache load misses,

• branches,

• branch misses,

among some other events that seemed to have no relevancy as they were rarely or not detected. Additionally
perf also measure the the time that elapsed while running the (profiling for the) program.

Based on these events, perf automatically determines such values like instructions per cycle, the aver-
age CPU frequency, the “number of CPUs utilized”, as well as the percentages of the total cache misses,
L1 cache misses, and branch misses. The number of CPUs utilized and the averages CPU frequency is
calculated as follows

CPUs utilized =
task clock [ms] · 106

elapsed time [s]
,

Frequency [GHz] =
cycles

task clock [ms] · 106 .

Furthermore, we found in https://perf.wiki.kernel.org/index.php/Tutorial that “[i]f there are more events
than counters, the kernel uses time multiplexing (switch frequency = HZ, generally 100 or 1000) to give

75

76 APPENDIX B

Serial 4 8 16 32 64
0

10

20

30

40

50

60

C
P

U
s

ut
ili

ze
d

Number of Processors

CSR N=M=512, sp
CSR N=M=1024, sp
CSR N=M=2048, sp
CSR N=M=4096, sp
CSR N=M=8192, sp

Student Version of MATLAB

Figure B.1: "Number of CPUs utilized" for the unmod-
ified single precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

10

20

30

40

50

60

C
P

U
s

ut
ili

ze
d

Number of Processors

CSR N=M=512, dp
CSR N=M=1024, dp
CSR N=M=2048, dp
CSR N=M=4096, dp
CSR N=M=8192, dp

Student Version of MATLAB

Figure B.2: "Number of CPUs utilized" for the unmod-
ified double precision Jacobi CSR implementation.

each event a chance to access the monitoring hardware. Multiplexing only applies to PMU events. With
multiplexing, an event is not measured all the time. At the end of the run, the tool scales the count based on
total time enabled vs time running. The actual formula is:

final_count = raw_count * time_enabled/time_running

This provides an estimate of what the count would have been, had the event been measured during the entire
run. It is very important to understand this is an estimate not an actual count. Depending on the workload,
there will be blind spots which can introduce errors during scaling.”

Since we performed the profiling with many events to keep track of, the results presented in the following
are scaled from as little as 20% at times. Additionally, those scaling values (and therefore the event values)
have been observed to vary a lot in a certain amount of instances. All this makes the perf profiling results
presented here inconclusive. A way to overcome multiplexing is to perform multiple profilings per program,
each measuring different events.

PROFILING OF OPENMP IMPLEMENTATIONS USING PERF 77

Serial 4 8 16 32 64
0

10

20

30

40

50

60

C
P

U
s

ut
ili

ze
d

Number of Processors

mod. CSR N=M=512, sp
mod. CSR N=M=1024, sp
mod. CSR N=M=2048, sp
mod. CSR N=M=4096, sp
mod. CSR N=M=8192, sp

Student Version of MATLAB

Figure B.3: "Number of CPUs utilized" for the modified
single precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

10

20

30

40

50

60

C
P

U
s

ut
ili

ze
d

Number of Processors

mod. CSR N=M=512, dp
mod. CSR N=M=1024, dp
mod. CSR N=M=2048, dp
mod. CSR N=M=4096, dp
mod. CSR N=M=8192, dp

Student Version of MATLAB

Figure B.4: "Number of CPUs utilized" for the modified
double precision Jacobi CSR implementation.

Serial 4 8 16 32 64
1.5

2

2.5

3

3.5

A
ve

ra
ge

 C
P

U
 F

re
qu

en
cy

 [G
H

z]

Number of Processors

CSR N=M=512, sp
CSR N=M=1024, sp
CSR N=M=2048, sp
CSR N=M=4096, sp
CSR N=M=8192, sp

Student Version of MATLAB

Figure B.5: Average CPU frequency achieved for the
unmodified single precision Jacobi CSR implementa-
tion.

Serial 4 8 16 32 64
1.5

2

2.5

3

3.5

A
ve

ra
ge

 C
P

U
 F

re
qu

en
cy

 [G
H

z]

Number of Processors

CSR N=M=512, dp
CSR N=M=1024, dp
CSR N=M=2048, dp
CSR N=M=4096, dp
CSR N=M=8192, dp

Student Version of MATLAB

Figure B.6: Average CPU frequency achieved for the
unmodified double precision Jacobi CSR implementa-
tion.

78 APPENDIX B

Serial 4 8 16 32 64
1.5

2

2.5

3

3.5
A

ve
ra

ge
 C

P
U

 F
re

qu
en

cy
 [G

H
z]

Number of Processors

mod. CSR N=M=512, sp
mod. CSR N=M=1024, sp
mod. CSR N=M=2048, sp
mod. CSR N=M=4096, sp
mod. CSR N=M=8192, sp

Student Version of MATLAB

Figure B.7: Average CPU frequency achieved for the
modified single precision Jacobi CSR implementation.

Serial 4 8 16 32 64
1.5

2

2.5

3

3.5

A
ve

ra
ge

 C
P

U
 F

re
qu

en
cy

 [G
H

z]

Number of Processors

mod. CSR N=M=512, dp
mod. CSR N=M=1024, dp
mod. CSR N=M=2048, dp
mod. CSR N=M=4096, dp
mod. CSR N=M=8192, dp

Student Version of MATLAB

Figure B.8: Average CPU frequency achieved for the
modified double precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

T
ot

al
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

CSR N=M=512, sp
CSR N=M=1024, sp
CSR N=M=2048, sp
CSR N=M=4096, sp
CSR N=M=8192, sp

Student Version of MATLAB

Figure B.9: Percentage of the total cache misses (based
on all cache references) for the unmodified single preci-
sion Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

T
ot

al
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

CSR N=M=512, dp
CSR N=M=1024, dp
CSR N=M=2048, dp
CSR N=M=4096, dp
CSR N=M=8192, dp

Student Version of MATLAB

Figure B.10: Percentage of the total cache misses
(based on all cache references) for the unmodified dou-
ble precision Jacobi CSR implementation.

PROFILING OF OPENMP IMPLEMENTATIONS USING PERF 79

Serial 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

T
ot

al
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

mod. CSR N=M=512, sp
mod. CSR N=M=1024, sp
mod. CSR N=M=2048, sp
mod. CSR N=M=4096, sp
mod. CSR N=M=8192, sp

Student Version of MATLAB

Figure B.11: Percentage of the total cache misses
(based on all cache references) for the modified single
precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

T
ot

al
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

mod. CSR N=M=512, dp
mod. CSR N=M=1024, dp
mod. CSR N=M=2048, dp
mod. CSR N=M=4096, dp
mod. CSR N=M=8192, dp

Student Version of MATLAB

Figure B.12: Percentage of the total cache misses
(based on all cache references) for the modified double
precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

CSR N=M=512, sp
CSR N=M=1024, sp
CSR N=M=2048, sp
CSR N=M=4096, sp
CSR N=M=8192, sp

Student Version of MATLAB

Figure B.13: Percentage of the L1 cache misses (based
on all L1 cache references) for the unmodified single
precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

CSR N=M=512, dp
CSR N=M=1024, dp
CSR N=M=2048, dp
CSR N=M=4096, dp
CSR N=M=8192, dp

Student Version of MATLAB

Figure B.14: Percentage of the L1 cache misses (based
on all L1 cache references) for the unmodified double
precision Jacobi CSR implementation.

80 APPENDIX B

Serial 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
L1

 C
ac

he
 M

is
se

s
(%

)

Number of Processors

mod. CSR N=M=512, sp
mod. CSR N=M=1024, sp
mod. CSR N=M=2048, sp
mod. CSR N=M=4096, sp
mod. CSR N=M=8192, sp

Student Version of MATLAB

Figure B.15: Percentage of the L1 cache misses (based
on all L1 cache references) for the modified single pre-
cision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

mod. CSR N=M=512, dp
mod. CSR N=M=1024, dp
mod. CSR N=M=2048, dp
mod. CSR N=M=4096, dp
mod. CSR N=M=8192, dp

Student Version of MATLAB

Figure B.16: Percentage of the L1 cache misses (based
on all L1 cache references) for the modified double pre-
cision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

B
ra

nc
h

M
is

se
s

(%
)

Number of Processors

CSR N=M=512, sp
CSR N=M=1024, sp
CSR N=M=2048, sp
CSR N=M=4096, sp
CSR N=M=8192, sp

Student Version of MATLAB

Figure B.17: Percentage of the branch misses for the
unmodified single precision Jacobi CSR implementa-
tion.

Serial 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

B
ra

nc
h

M
is

se
s

(%
)

Number of Processors

CSR N=M=512, dp
CSR N=M=1024, dp
CSR N=M=2048, dp
CSR N=M=4096, dp
CSR N=M=8192, dp

Student Version of MATLAB

Figure B.18: Percentage of the branch misses for the
unmodified double precision Jacobi CSR implementa-
tion.

PROFILING OF OPENMP IMPLEMENTATIONS USING PERF 81

Serial 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

B
ra

nc
h

M
is

se
s

(%
)

Number of Processors

mod. CSR N=M=512, sp
mod. CSR N=M=1024, sp
mod. CSR N=M=2048, sp
mod. CSR N=M=4096, sp
mod. CSR N=M=8192, sp

Student Version of MATLAB

Figure B.19: Percentage of the branch misses for the
modified single precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

B
ra

nc
h

M
is

se
s

(%
)

Number of Processors

mod. CSR N=M=512, dp
mod. CSR N=M=1024, dp
mod. CSR N=M=2048, dp
mod. CSR N=M=4096, dp
mod. CSR N=M=8192, dp

Student Version of MATLAB

Figure B.20: Percentage of the branch misses for the
modified double precision Jacobi CSR implementation.

Serial 4 8 16 32 64
0

10

20

30

40

50

60

C
P

U
s

ut
ili

ze
d

Number of Processors

CSR N=M=512, sp
5−Point N=M=1024, sp
5−Point N=M=2048, sp
5−Point N=M=4096, sp
5−Point N=M=8192, sp

Student Version of MATLAB

Figure B.21: "Number of CPUs utilized" for the single
precision five-point Jacobi implementation.

Serial 4 8 16 32 64
0

10

20

30

40

50

60

C
P

U
s

ut
ili

ze
d

Number of Processors

5−Point N=M=512, dp
5−Point N=M=1024, dp
5−Point N=M=2048, dp
5−Point N=M=4096, dp
5−Point N=M=8192, dp

Student Version of MATLAB

Figure B.22: "Number of CPUs utilized" for the double
precision five-point Jacobi implementation.

82 APPENDIX B

Serial 4 8 16 32 64
1.5

2

2.5

3

3.5
A

ve
ra

ge
 C

P
U

 F
re

qu
en

cy
 [G

H
z]

Number of Processors

5−Point N=M=512, sp
5−Point N=M=1024, sp
5−Point N=M=2048, sp
5−Point N=M=4096, sp
5−Point N=M=8192, sp

Student Version of MATLAB

Figure B.23: Average CPU frequency achieved for the
single precision five-point Jacobi implementation.

Serial 4 8 16 32 64
1.5

2

2.5

3

3.5

A
ve

ra
ge

 C
P

U
 F

re
qu

en
cy

 [G
H

z]

Number of Processors

5−Point N=M=512, dp
5−Point N=M=1024, dp
5−Point N=M=2048, dp
5−Point N=M=4096, dp
5−Point N=M=8192, dp

Student Version of MATLAB

Figure B.24: Average CPU frequency achieved for the
double precision five-point Jacobi implementation.

Serial 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

T
ot

al
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

5−Point N=M=512, sp
5−Point N=M=1024, sp
5−Point N=M=2048, sp
5−Point N=M=4096, sp
5−Point N=M=8192, sp

Student Version of MATLAB

Figure B.25: Percentage of the total cache misses
(based on all cache references) for the single precision
five-point Jacobi implementation.

Serial 4 8 16 32 64
0

0.05

0.1

0.15

0.2

0.25

0.3

T
ot

al
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

5−Point N=M=512, dp
5−Point N=M=1024, dp
5−Point N=M=2048, dp
5−Point N=M=4096, dp
5−Point N=M=8192, dp

Student Version of MATLAB

Figure B.26: Percentage of the total cache misses
(based on all cache references) for the double precision
five-point Jacobi implementation.

PROFILING OF OPENMP IMPLEMENTATIONS USING PERF 83

Serial 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

5−Point N=M=512, sp
5−Point N=M=1024, sp
5−Point N=M=2048, sp
5−Point N=M=4096, sp
5−Point N=M=8192, sp

Student Version of MATLAB

Figure B.27: Percentage of the L1 cache misses (based
on all L1 cache references) for the single precision five-
point Jacobi implementation.

Serial 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1
 C

ac
he

 M
is

se
s

(%
)

Number of Processors

5−Point N=M=512, dp
5−Point N=M=1024, dp
5−Point N=M=2048, dp
5−Point N=M=4096, dp
5−Point N=M=8192, dp

Student Version of MATLAB

Figure B.28: Percentage of the L1 cache misses (based
on all L1 cache references) for the double precision five-
point Jacobi implementation.

Serial 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

B
ra

nc
h

M
is

se
s

(%
)

Number of Processors

5−Point N=M=512, sp
5−Point N=M=1024, sp
5−Point N=M=2048, sp
5−Point N=M=4096, sp
5−Point N=M=8192, sp

Student Version of MATLAB

Figure B.29: Percentage of the branch misses for the
single precision five-point Jacobi implementation.

Serial 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

B
ra

nc
h

M
is

se
s

(%
)

Number of Processors

5−Point N=M=512, dp
5−Point N=M=1024, dp
5−Point N=M=2048, dp
5−Point N=M=4096, dp
5−Point N=M=8192, dp

Student Version of MATLAB

Figure B.30: Percentage of the branch misses for the
double precision five-point Jacobi implementation.

84 APPENDIX B

Bibliography

John Backus. Can Programming Be Liberated from the Von Neumann Style?: A Functional Style and Its
Algebra of Programs. Commun. ACM, 21(8):613–641, August 1978. ISSN 0001-0782. doi: 10.1145/

359576.359579. URL http://doi.acm.org/10.1145/359576.359579. 6

Blaise Barney. OpenMP. https://computing.llnl.gov/tutorials/openMP/, 2016. [Online; accessed 01-
September-2016]. ix, 5, 7, 10

OpenMP Architecture Review Board. OpenMP Application Programming Interface. http://www.openmp.
org/mp-documents/openmp-4.5.pdf, 2015. [Online; accessed 05-September-2016]. 5

Richard L. Burden and J. Douglas Faires. Numerical Analysis. Cengage Learning, 4th edition, 1989. 61

Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable Shared Memory Parallel
Programming (Scientific and Engineering Computation). The MIT Press, 2007. ix, 5, 6, 7, 8, 9, 10, 11,
12, 22

Ed Grochowski and Murali Annavaram. Energy per Instruction Trends in Intel R© Microprocessors. http:
//www-cs.intel.com/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf. [Online; accessed 27-October-
2016]. ix, 1, 2

Nitin Gupta. Texture Memory in CUDA: What is Texture Memory in CUDA Programming. http://
cuda-programming.blogspot.com.br/2013/02/texture-memory-in-cuda-what-is-texture.html, 2013. [On-
line; accessed 13-September-2016]. 17

E. Isaacson and H.B. Keller. Analysis of Numerical Methods. Dover Books on Mathematics. Dover Publi-
cations, 3rd edition, 1996. 25, 26, 27, 29, 30

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach.
Morgan Kaufmann Publishers Inc., 2nd edition, 2013. ix, xiii, 5, 6, 8, 12, 17, 19, 20

B. Noble and J.W. Daniel. Applied linear algebra. Prentice Hall, 3rd edition, 1998. 68, 70

NVIDIA. NVIDIA’s Next Generation CUDATM Compute Architecture: KeplerTM GK110. https://www.
nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012. [Online;
accessed 09-September-2016]. ix, 12, 14, 15, 18

OpenACC-Standard.org. The OpenACC R© Application Programming Interface Version 2.5. http://www.
openacc.org/sites/default/files/OpenACC_2pt5.pdf, 2015. [Online; accessed 16-September-2016]. 5, 20

J.M. Ortega. Numerical Analysis: A Second Course. Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, 1972. 29, 31, 60, 63

Greg Ruetsch. An Easy Introduction to CUDA Fortran. https://devblogs.nvidia.com/parallelforall/
easy-introduction-cuda-fortran/, 2012. [Online; accessed 11-September-2016]. 15

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2000. 34

Sajjan G. Shiva. Computer Organization, Design, and Architecture. CRC Press, 4th edition, 2007. ix, 5, 6

85

86 BIBLIOGRAPHY

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Texts in Applied Mathematics. Springer New
York, 1980. 59, 61, 62, 67

Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. http://www.
gotw.ca/publications/concurrency-ddj.htm, 2005. [Online; accessed 22-September-2016]. ix, 1, 3

R.S. Varga. Matrix iterative analysis. Prentice-Hall series in automatic computation. Prentice-Hall, 1962.
30, 31

Michael Wolfe. Understanding the CUDA Data Parallel Threading Model – A Primer. https://www.pgroup.
com/lit/articles/insider/v2n1a5.htm, 2012. [Online; accessed 11-September-2016]. ix, 12, 13, 17, 18

