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Resumo

RIBEIRO, R. L. Estimativas a priori para jogos de campo médio com dinâmica popula-

cional logística. 2013. 58f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2013.

Jogos de campo médio são sistemas acoplados de equações diferenciais parciais, uma equação

de Hamilton-Jacobi para a função valor dos agentes e uma equação de Fokker-Planck para a den-

sidade dos agentes. Tradicionalmente, a última equação é adjunta à linearização da primeira. Uma

vez que a equação de Fokker-Planck modela uma dinâmica populacional, nós introduzimos car-

acterísticas naturais como semeadura e nascimento e também taxas de mortalidade não-lineares.

Neste trabalho analizamos um jogo de campo médio estacionário, ilustrando várias técnicas para

obter a regularidade a priori das soluções nesta classe de sistemas. Sistemas estes que apresentam

dinâmica logística com semeadura. O sistema de dimensão um é estudado separadamente num con-

texto simpli�cado.

Palavras-chave: Jogos de campo médio, Hamilton-Jacobi, Fokker-Planck, regularidade, método

adjunto.
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Abstract

RIBEIRO, R. L. A priori estimates for mean �eld games with logistic populational dy-

namics. 2013. 58f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2013.

A mean �eld game is a coupled system of partial di�erential equations, a Hamilton-Jacobi

equation for the value function of agents and a Fokker-Planck equation for the density of agents.

Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Plank

equation models a populational dynamic, we introduce natural features such as seeding and birth,

and non-linear death rates. In this thesis we analyze a stationary mean �eld game, illustrating vari-

ous techniques to obtain a priori regularity of solutions in this class of systems. This system shows

logistic dynamics with seeding. The one dimensional system is studied separately in a simpli�ed

context.

Keywords: mean �eld games, Hamilton-Jacobi, Fokker-Planck, regularity, adjoint method.

iii



iv



Contents

1 One Dimensional Model 7

1.1 Elementary inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 H1 estimates for the Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . 9

1.3 Lower bounds on m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Regularity for the Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . 12

2 Model problem in more dimensions 17

2.1 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Elementary inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 H1 estimates for the Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . 19

2.4 Lower bounds on m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Regularity for the Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Regularity by the adjoint method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Sobolev and Hölder regularity of solutions . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Hopf-Cole transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Regularization 39

A.1 Existence of solutions to the regularized system . . . . . . . . . . . . . . . . . . . . . 39

A.2 Uniform estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2.1 Regularity for the transport equation . . . . . . . . . . . . . . . . . . . . . . . 39

A.2.2 Estimates for the Hamilton-Jacobi equation . . . . . . . . . . . . . . . . . . . 41

A.2.3 Lower bounds for the density . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2.4 Improving the regularity for the Fokker-Planck equation . . . . . . . . . . . . 44

A.3 Existence of smooth solutions to the original system . . . . . . . . . . . . . . . . . . 44

B Optimal Control 45

B.1 Deterministic optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B.2 A stochastic optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 49

v



vi CONTENTS



Introduction

Mean �eld games is a recent and fast growing area of research. Started in the engineering setting
by Peter Caines and his co-workers [HMC06, HCM07], and, independently and around the same
time, by Pierre Louis Lions and Jean Michel Lasry [LL06a, LL06b, LL07a, LL07b]. The study of
mean �eld games is done in an attempt to comprehend the e�ective behavior of systems comprising
of large numbers of identical rational agents whose interactions are assumed to be symmetric. The
rationality is encoded as a consequence of the optimization performed by each of them. In doing
so, individual players handle the in�uence of other players through their statistical properties, such
as mean geographical distribution or even mean velocity �eld. This results from ideas in statistical
physics applied to dynamic games. One major advantage in utilizing these models is that, instead
of having one equation for each player, we model the interactions between a player and the mass
of other players as if there were a continuum of players, hence dealing with a system of only two
equations (three in the extended case).

Literature in this �eld grows fast and we point out that good, now classical, references in mean
�eld games and its applications are the survey [LLG10b] and the lecture notes [Car11] based on
[Lio11]. Economic growth theory [LLG10a], design of environmental policies [LST10] and dynamics
of pedestrian crowds [BDFMW13] are a few examples of areas in which applications can already
be found. Numerical methods have been dealt with in the survey [Ach13] and, with more detail
and speci�city in [ACD10, LST10, ACCD12, AP12, CS12]. Also, systems in wich agents have
�nite possible states were studied in [GMS10], in the discrete time case and in [GMS11] in the
continuous time case. We believe that mean �eld games will play an important role in economics
and demographics because in many applications there is a very large number of indistinguishable
agents which behave rationally and non-cooperatively.

A natural application of mean �eld games are problems in population dynamics (see [DFMPW11]
and references therein) with, possibly non-linear, birth and death rates as well as seeding or harvest-
ing e�ects, since the Fokker-Plank equation models a population dynamic through the transport of
densities. The system we analyze shows logistic dynamics with seeding.

Heuristic derivation of standard mean �eld games

Agents are subject to a stochastic di�erential equation{
dXs = usds+

√
2dWs

Xt = x,

where us is the control of an average agent andWs is a standard Brownian motion. Agents objective
is to minimize, choosing a progressively measurable control us, the cost

E
[∫ T

t
L (Xs,us,m(s)) ds+G(XT ,m(T ))

]
,

wherem(s) is the density distribution of the agents at time s and L(x, q,m) = supp∈Rd {− 〈p, q〉 −H(x, p,m)}
is the Legendre-Fenchel transform of the Hamiltonian H(x, p,m).

From standard optimization theory (see Appendix B and [FS06] for more details), the value

1
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function v satis�es the Hamilton-Jacobi equation{
−vt +H(x,Dv,m) = ∆v

v(x, T ) = G(x,m(T )).

The optimal control then is given, in feedback form, by

u∗s(x) = −DpH(x,Dv(s, x),m(s, x)).

Since (almost) all agents behave in this way, the density m(s) of the solutions of{
dXs = −DpH(Xs, Dv(s,Xs),m(s))ds+

√
2dWsXt ∼ m0,

where ∼ denotes that Xt has distribution law given by m0, satis�es the Fokker-Planck equation{
mt − div (DpH(x,Dv,m)m) = ∆m

m(0) = m0,

For the systems such as 
−vt +H(x,Dv,m) = ∆v

mt − div (DpH(x,Dv,m)m) = ∆m

v(x, T ) = G(x,m(T )), m(0) = m0,

the dependence in m may be local or non-local.
In the non-local case, Lasry and Lions have proved that, under fairly general conditions, there

exists a unique classical solution (v,m).
With more hypothesis, together whith Cardaliaguet and Poretta, they prove the same for the

local dependence on the density.

Evolution to our proposed model

It starts in the second order case. Typically, the game is a coupled system of equations on
(0, T )× Rd, a Hamilton-Jacobi equation and a Fokker-Planck (or transport) equation as follows{

−∂tv +H(x,m,Dv) = ν∆v

∂tm− div (mDpH(x,m,Dv)) = ν∆m
(1)

with ν > 0, terminal condition v(x, T ) = ψ(x,m(x, T )) and initial condition m(x, 0) = m0(x)
for x ∈ Rd. Dependence of H on m can be either local or global. The equations above describe
the evolution of the value function for a player (depending on it's initial condition and players
distribution), whose goal is to minimize a running cost and a �nal cost, and the evolution of the
density of players whose dynamics is governed by a stochastic di�erential equation, respectively.
The forward-backward characteristic of the systems allows for the interpretation that agents have a
certain ability to predict the near future. It is also the key concern in the development of numerical
methods fur such systems.

Naturally one is lead to consider the the stationary cases, which are interesting by themselves,
but can also be thought, under appropriate conditions [CLLP], of a way to understand the asymp-
totic, limiting behavior of the game (1). The problem now is to �nd solutions (v,m, H̄) to the
system {

H(x,m,Dv) = H̄ + ν∆v

−div (mDpH(x,m,Dv)) = ν∆m.
(2)
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The constant H̄, which appears in the context of homogenization theory and Aubry-Mather
theory, is callet the e�ective Hamiltonian.

By sending ν to zero in the systems (1) and (2), one obtains a viscosity solution to the �rst order
(deterministic) mean �eld game. This method for obtaining solutions for this kind of problems is
known as vanishing viscosity method.

This theory meets population models, speci�cally pedestrian �ow, through the Hughes model,
[DFMPW11, BDFMW13], which can be writen as{

−vt + f(m) |Dv|2 = g(m) = ∆v

mt − div (h(m)Dv) = ∆m,

where f, g, h are �good� functions de�ned on R+.
A characteristic that this model shares with ours is the lack of adjoint structure present in the

�rst examples.
Finally introducing other types of non-linearities, that will have their meanings explained in

Section , we have {
H(x,Dv) = g(m)−mαv + ∆v

−div (DpHm) = (1−mα)m+ ∆m+ δ.
(3)

Methods

The methods applied in this thesis to determine the regularity of solutions to the proposed
model come from a particular case. That of a Hamilton-Jacobi equation which is independent of
the density function obtained as a solution to the transport equation. The fundamental aspect
of the method is that it exploits the structure provided by the pair of equations. The transport
equation is actually the adjoint of the linearization of the Hamilton-Jacobi equation. Such method,
called adjoint method, is presented in the context of Hamilton-Jacobi equations in the works of L.
C. Evans. Applications of the method include, and are not limited to,

• the vanishing viscosity problem;

• di�erentiability of solutions of the in�nity Laplacian;

• Aubry-Mather theory in the non-convex setting;

• systems of Hamilton-Jacobi equations; and

• obstacle type problems.

The model

To avoid complications, we choose to work in the periodic setting, i.e. agents live in the d-
dimensional torus Td. The next step towards the stationary mean �eld game with logistic popula-
tional dynamics model is to write the system{

H(x,Dv) = H̄ + g(m)−mαv + ∆v

−div (DpHm) = (1−mα)m+ ∆m+ δ.
(4)

The key di�erence from (4) to standard stationary mean �eld models (and a major source of
di�culties) is that the second equation, which accounts for the population stationary regime, is not
the adjoint of the linearization of the �rst equation (the Hamilton-Jacobi equation). Nevertheless,
most of the techniques used in standard mean �eld games can be applied.

In the model, each agent optimizes a running cost which has two main components, a kinetic
energy, corresponding to the term H(x,Dv), typically a quadratic term in Dv, and a potential
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energy. The potential energy accounts for absolute location preferences, given by the part of the
function H that depends on x and an interaction term with the population given by g(m). In
addition to optimizing this running cost each agent has a death rate proportional to a power of
the density of players, this corresponds to the term mαv, where α > 0. In addition, the agents
reproduce at rate 1 and have a seeding/immigration rate, which accounts for incoming agents,
which we assume spatially uniform and is given by the parameter δ ≥ 0.

We study the system (4) for all values of H̄, the case H̄ = 0 is particularly interesting as in this
case any solution to (4) is a stationary solution to the time-dependent equation{

−vt +H(x,Dv) = g(m)−mαv + ∆v

mt − div (DpHm) = (1−mα)m+ ∆m+ δ.
(5)

The parameter H̄ can be seen as a long-rung average cost imposed upon all players. Without
the term mαv, one would expect a unique value H̄ for which (4) admits a solution. In fact, assuming
g(0) = 0, if δ = 0, we can �nd a solution to (4) with m = 0 and H̄ the unique value for which

H(x,Dv) = H̄ + ∆v (6)

admits a periodic solution.
In spite of the uniqueness of H̄ for the problem (6), as we will show in this thesis one can also

�nd for any value H̄ solutions (m, v), with m > 0.
For instance, in the case δ = 0, H = |p|2, it is easy to see that for any H̄ there exists a solution

to (4) with m = 1 and v a suitable constant.
For this reason we will assume that H̄ = 0, by adding a suitable constant to H. For the function

g we choose, for simplicity, either a power-like non-linearity g(m) = mγ , with γ > 0, as this choice
illustrates most of the main points and techniques.

Organization of the thesis and Results

Put shortly, we prove that solutions to our model in dimensions one and two are a priori smooth,
i.e. are classical solutions.

In Chapter 1, focusing on the simpli�ed one dimensional mean �eld populational model, we
obatin a series of a priori estimates, namely preliminary estimates in Section 1.1, which are used
in Section 1.2 to establish H1 bounds on v depending on the integrability of g(m). Since m and its
integral appear in those estimates, in Section 1.3, we produce lower bounds on m to remedy this
issue. Finally, in Section 1.4, after we present new hypothesis under which g(m) is integrabel, we
prove the main result of the Chapter:

Theorem (1). Let (v,m) be a solution of (1.1). If either

1. δ > 0, γ < max{1 + α, 1α}

2. α > 1, V > − α
α+1 , γ ≤ 1 + α

Then m is bounded by above and below. Additionally, ‖mx‖2 and ‖v‖H2 are bounded. Furthermore,

in the second case the bounds are uniform in 0 ≤ δ ≤ δ0.

In Chapter 2 we start by following the sequence of estimates of Chapter 1 in more dimensions
and more general context. The di�erence in dimension is felt most dramatically in Section 2.5,
where we state Proposition 33, which uses Sobolev's Theorem instead of Morrey's.

In Chapter 2, after stating the Assumptions in Section 2.1 and proving elementary estimates in
Section 2.2, we proceed to investigate H1 regularity of v and lnm, and further integrability of v and
m in Sections 2.3, 2.4, and 2.5. This are summarized in Theorem 49 and Corollary 53. In Section
2.6, we employ the adjoint method to obtain Lipschitz bounds for v. This is used, in Section 2.7 to
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improve integrability and regularity of both v and m. The last result, in Section 2.8, states that m
is bounded away from zero. We �nish the Chapter with the proof of the main result

Theorem (26). Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, 5 hold, δ > 0
and d = 2.

Then v and m are smooth solutions of (2.1).

Further research

In the case of time dependent systems the same kind of results should follow. One aspect
we believe should facilitate the analysis is that smoothness of the terminal-initial conditions are
preserved.

The proper proof of existence of solutions is indicated in the Appendix A, where a reasonable
number of estimates have been developed. In Section A.1 we give a hint on what the argument for
existence of solutions looks like and in Section A.2 we provide some uniform estimates for the non-
local version of the system. We will pursue in this direction with the ultimate goal of determining
existence and uniqueness of solutions to the mean �eld model of logistic populational dynamics.

Another issued that should be addressed in the future is that of the uniqueness of solutions.
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Chapter 1

One Dimensional Model

We study the simpli�ed stationary mean �eld game model 4 in one dimension given by
v2x
2

+ V (x) = g(m)−mαv + vxx

−(mvx)x = (1−mα)m+mxx + δ,

(1.1)

where H(x, vx) = v2x
2 + V (x), v is the value function for an agent and m is the density function of

agents, both functions depend on x only.
We assume further that the potential V : S1 → R is smooth, α, δ are given constants, where

α > 0 and δ ≥ 0. For convenience we take δ < δ0. Furthermore all estimates in this chapter that
do not state the dependence in δ are uniform for a �xed δ0.

We prove the following main result:

Theorem 1. Let (v,m) be a solution of (1.1). If either

1. δ > 0, γ < max{1 + α, 1α}

2. α > 1, V > − α
α+1 , γ ≤ 1 + α

Then m is bounded by above and below. Additionally, ‖mx‖2 and ‖v‖H2 are bounded. Furthermore,

in the second case the bounds are uniform in 0 ≤ δ ≤ δ0.

Once this theorem is established one can use a bootstrapping argument to obtain regularity of
solutions. Existence can be proved by a regularization argument as in

other source. [GSM11].
This chapter is organized as follows: we start in Section 1.1 by establishing various elementary

bounds on the solution. Then in Section 1.2 we consider theH1 regularity. To close theH1 regularity
proof we need various lower bounds for m. Those are studied in Section 1.3. We end the discussion
of the H1 regularity, together with further integrability properties as well as the proof of Theorem
1 in Section 1.4.

1.1 Elementary inequalities

The key idea to obtain regularity for the solutions of (1.1) is to develop a number of a priori

estimates. In standard mean �eld games the density m is usually assumed to be a probability
measure. This is not the case here as a balance between death, birth and seeding rates will determine
the total population.

7



8 ONE DIMENSIONAL MODEL 1.1

Proposition 2. Let (v,m) be a solution of (1.1). Then∫
S1

mdx ≤ C, and (1.2)∫
S1

mα+1dx ≤ C. (1.3)

Proof. Integrate the second equation in (1.1) on S1 to get∫
S1

mα+1dx =

∫
S1

mdx+ δ.

The result follows from Young's inequality.

We turn now our attention to the Hamilton-Jacobi equation to obtain further estimates.

Proposition 3. Let (v,m) be a solution of (1.1). Then∫
S1

mg(m) +
v2x
2

(1 +m)dx ≤
∫
S1

g(m)dx+

∫
S1

v(m+ δ −mα)dx+ C.

Proof. Integrate the �rst equation in (1.1) to get∫
S1

vx
2

2
+ V (x)dx =

∫
S1

g(m)−mαvdx. (1.4)

Multiply the �rst equation in (1.1) by m and integrate, by parts, to obtain∫
S1

mg(m)dx =

∫
S1

m
v2x
2

+mV (x) +mα+1v −mxxvdx.

Using the identity∫
S1

mα+1v −mxxvdx = −
∫
S1

mv2xdx+

∫
S1

vm+ vδdx

we get ∫
S1

m
v2x
2

+mg(m)dx =

∫
S1

vm+ vδ + V mdx. (1.5)

Since V is bounded, by combining (1.4) with (1.5) we obtain (1.4).

Corollary 4. Let (v,m) be a solution of (1.1). Then∫
S1

mg(m)

2
+
v2x
2

(1 +m)dx ≤
∫
S1

v(m+ δ −mα)dx+ C. (1.6)

Proof. It su�ces to observe that g(m) ≤ mg(m)
2 + C and use (1.4).

Corollary 5. Let (v,m) be a solution of (1.1). Then∫
S1

mαvdx ≤ C +

∫
S1

g(m)dx. (1.7)

and ∫
S1

v(m+ δ)dx ≥ −C. (1.8)

Proof. The estimates follow from (1.4) and (1.5).
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Corollary 6. Let (v,m) be a solution of (1.1). Then, as g(m) = mγ,∫
S1

g(m)dx ≤ C
(
C + 2

∫
S1

v(m+ δ −mα)dx

) γ
γ+1

. (1.9)

Proof. Observe that ∫
S1

g(m)dx ≤
(∫

S1

mg(m)dx

) γ
γ+1

.

Then (1.9) follows from (1.6).

1.2 H1 estimates for the Hamilton-Jacobi equation

The key terms to control in order to obtainH1 regularity for the solution to the Hamilton-Jacobi
equation are

∫
S1 m

αvdx and
∫
S1(m+ δ)vdx. This is precisely the task that we will address now.

We start by stating a Poincaré-like inequality.

Proposition 7. For any probability density θ on S1,∣∣∣∣∫
S1

θvdx−
∫
S1

vdx

∣∣∣∣ ≤ C ‖vx‖2 .
Proof. ∣∣∣∣∫

S1

θvdx−
∫
S1

vdx

∣∣∣∣ ≤ ∫
S1

θ

∣∣∣∣v(x)−
∫
S1

vdx

∣∣∣∣ dx ≤ ∥∥∥∥v(x)−
∫
S1

vdx

∥∥∥∥
∞
≤ C ‖vx‖2 ,

using Hölder and Morrey's inequalities.

Proposition 8. Let (v,m) be a solution of (1.1). Then∫
S1

(m+ δ −mα)vdx ≤ C
(∫

S1

m+ δ +mαdx

)
‖vx‖2 +

(∫
S1

(m+ δ)dx−
∫
S1

mαdx

)∫
S1

vdx.

Proof. It su�ces to apply Proposition 7 with m+δ∫
S1 m+δdx

and mα∫
S1 m

αdx
in the place of θ.

Corollary 9. Let (v,m) be a solution of (1.1). Then

‖vx‖22
2
≤ C

(∫
S1

(m+ δ)dx+

∫
S1

mαdx

)
‖vx‖2 +

(∫
S1

(m+ δ)dx−
∫
S1

mαdx

)∫
S1

vdx+ C.

Proof. This follows by using the result in Proposition 8 in the bounds of Corollary 4.

Corollary 10. Let (v,m) be a solution of (1.1). Then

‖vx‖22 ≤ C
(∫

S1

(m+ δ)dx−
∫
S1

mαdx

)∫
S1

vdx+ C.

Proof. It follows from Corollary 9 using the bounds in Proposition 2.

Proposition 11. Let (v,m) be a solution of (1.1). Then(∫
S1

mdx+ δ

)∫
S1

vdx ≥ −C − C
(∫

S1

mdx+ δ

)
‖vx‖2,

and (∫
S1

mαdx

)∫
S1

vdx ≤
∫
S1

g(m)dx+ C

(∫
S1

mαdx

)
‖vx‖2,
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Proof. We apply Proposition 7 with θ replaced by m+δ∫
S1 m+δdx

and mα∫
S1 m

αdx
on Equations (1.7) and

(1.8), respectively.

Corollary 12. Let (v,m) be a solution of (1.1). Let λ1 =
∫
S1 m+ δdx, and λ2 =

∫
S1 m

αdx. Then,
as long as m > 0,

− C
λ1
− C‖vx‖2 ≤

∫
S1

vdx ≤
∫
S1 g(m)dx

λ2
+ C‖vx‖2.

Proof. The proof is immediate from Proposition 11.

Corollary 13. Let (v,m) be a solution of (1.1). We have

‖vx‖22
4
≤ C +

∫
S1

g(m)dx+
C

λ1
, (1.10)

where λ1 =
∫
S1 mdx+ δ.

Proof. From equation (1.4) we deduce

‖vx‖22
2
≤ C +

∫
S1

g(m)dx−
∫
S1

mαvdx

Apply Proposition 7 to −
∫
S1 m

αvdx and use Corollary 12 to obtain

−
∫
S1

vdx ≤ C

λ1
+ C ‖vx‖2 , (1.11)

from which we get (1.10) by observing that
∫
S1 m

αdx and
∫
S1 m+ δdx are bounded by Proposition

2.

This proposition yields the following (non-uniform estimate in terms of δ):

Corollary 14. Let (v,m) be a solution of (1.1). We have

‖vx‖22
4
≤ Cδ +

∫
S1

g(m)dx.

Proof. It su�ces to observe that λ1 =
∫
S1 mdx+ δ > δ, and use Corollary 13.

Corollary 15. Let (v,m) be a solution of (1.1). We have∣∣∣∣∫
S1

vdx

∣∣∣∣ ≤ C

λ1
+

∫
S1 g(m)dx

λ2
+ C‖vx‖2.

Proof. Observe that the quantities C
λ1

and
∫
S1 g(m)dx

λ2
which appear in Corollary 12 are positive.

From the previous corollaries it is clear that the main task is now to obtain positive lower
bounds for λ1 and λ2, which are uniform in δ. Once these are obtained, H1 bounds for v will be
easily established.

1.3 Lower bounds on m

We now identify an additional mechanism that enables us to obtain lower bounds for m which
are uniform in δ. This allows to estimate ‖vx‖2 in terms of the integrability of g(m). For this we need
to assume that V is su�ciently large. We observe that by the example given in the introduction,
lower bounds for m are not true in general. We start with an elementary but useful result:
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Proposition 16. Suppose m > 0 and �x θ, β > 0. Then(∫
S1

mβdx

)−1
≤
(∫

S1

1

mθ
dx

)β
θ

.

Proof. For any b > 0,

1 =

∫
S1

mb

mb
dx ≤

(∫
S1

mbpdx

)1/p(∫
S1

m−bp
′
dx

)1/p′

where 1
p + 1

p′ = 1. Choose b and p so that bp = β and bp′ = θ, which ends the proof.

Proposition 17. Let (v,m) be a solution of (1.1). Then if V > − α
α+1 , and m > 0 we have

1. if γ < α: ∫
S1

1

mα
dx ≤ C − C

∫
S1

vdx.

2. if γ ≥ α ∫
S1

1

mα
dx ≤ C − C

∫
S1

vdx+ C

(∫
S1

g(m)dx

) γ−α
γ

.

Proof. Take the �rst equation in (1.1) and multiply it by 1
mα . Multiply the second equation by

α
(α+1)mα+1 , subtract it from the �rst identity and observe that after integration by parts the terms

that contain mxvx cancel:∫
S1

v2x
2mα

+ α
m2
x

m2+α
+

V

mα
+

δα

(α+ 1)mα+1
+

α

(α+ 1)mα
dx =

∫
S1

g(m)

mα
− v +

α

α+ 1
dx.

As long as V > − α
α+1 the term g(m)

mα can be handled in the following way: if γ < α then it can be
absorbed in the left hand side by noting that for any ε > 0 we have

g(m)

mα
≤ ε

mα
+ Cε.

Choosing ε small enough the result follows. In the case γ ≥ α it su�ces to use Hölder inequality.

Note that in the case γ < 2α + 1 the term
(∫
S1 g(m)dx

) γ−α
γ in the last proposition can be

replaced by C
∫
S1 m

γ−αdx which is automatically bounded.

Corollary 18. Let (v,m) be a solution of (1.1). Suppose α > 1. Then

1. if γ < α: ∫
S1

1

mα
dx ≤ C + C‖vx‖2.

2. if γ ≥ α ∫
S1

1

mα
dx ≤ C + C‖vx‖2 + C

(∫
S1

g(m)dx

) γ−α
γ

.
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Proof. We have, combining the previous proposition with (1.11),∫
S1

1

mα
dx ≤ C − C

∫
S1

vdx

≤ C + C‖vx‖2 +
C

λ1

≤ C + C‖vx‖2 + C

(∫
S1

1

mα
dx

) 1
α

,

where the last inequality holds by Proposition 16. Then the result follows if α > 1.

The following bound for 1
m will also be useful later to study the case δ > 0.

Proposition 19. Let (v,m) be a solution of (1.1). Then, if m 6= 0,∫
S1

δ

m
+

1

2
(lnm)2xdx ≤ C +

‖vx‖22
2

.

Proof. Divide the second equation in (1.1) by m and integrate∫
S1

−(mvx)x
m

dx =

∫
S1

1−mα +
mxx

m
+

δ

m
dx.

Then we have ∫
S1

−(lnm)xvxdx =

∫
S1

1−mα + (lnm)2x +
δ

m
dx.

With Hölder's inequality and the bound given by Proposition 2,∫
S1

δ

m
+ (lnm)2xdx =

∫
S1

−(lnm)xvx − 1 +mαdx

≤ C +

∫
S1

1

2
(lnm)2xdx+

‖vx‖22
2

.

1.4 Regularity for the Hamilton-Jacobi equation

The next proposition improves the result from Corollary 14 by establishing bounds for ‖vx‖2
which are independent on δ.

Proposition 20. Let (v,m) be a solution of (1.1). Suppose α > 1. Then

‖vx‖22 ≤ C + C

∫
S1

g(m)dx.

Proof. Using the estimate from Corollary 13 and control the term 1
λ1

by the bounds in Proposition
17 together with Proposition 16, we obtain

‖vx‖22 ≤ C + C

∫
S1

g(m)dx+ C

(∫
S1

1

mα
dx

) 1
α

≤ C + C

∫
S1

g(m)dx

+ C

(
C + C‖vx‖2 + µ

(∫
S1

g(m)dx

) γ−α
γ

) 1
α

,
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where in the last inequality we used Corollary 18 and µ = 0 if γ < α and µ is a large enough
constant otherwise. Thus if α > 1 the result follows.

We must now bound
∫
S1 vdx in order to get H1 bounds for v.

Proposition 21. Let (v,m) be a solution of (1.1). If δ > 0 then∣∣∣∣∫
S1

vdx

∣∣∣∣ ≤ Cδ + Cδ

(∫
S1

g(m)dx

)1+α

.

Proof. Use the bound 1
λ1
≤ Cδ and Corollary 14 on Corollary 15 to get∣∣∣∣∫

S1

vdx

∣∣∣∣ ≤ Cδ + C

(∫
S1

g(m)dx

)1/2

+
1

λ2

∫
S1

g(m)dx.

From Proposition 19 we have ∫
S1

1

m
dx ≤ Cδ + Cδ‖vx‖22.

Hence, using Proposition 16, combined with the bounds in Corollary 14 we have

1

λ2
≤ Cδ +

(∫
S1

g(m)dx

)α
.

Consequently ∣∣∣∣∫
S1

vdx

∣∣∣∣ ≤ Cδ + Cδ

(∫
S1

g(m)dx

)1+α

.

It is also possible to obtain bounds for
∣∣∫
S1 vdx

∣∣ which are uniform in δ, provided γ < α + 1,
since in this case

∫
S1 g(m)dx is bounded.

Proposition 22. Let (v,m) be a solution of (1.1). Suppose V > − α
1+α , α > 1, and γ < α + 1.

Then ∣∣∣∣∫
S1

vdx

∣∣∣∣ ≤ C.
Proof. Corollary 18 gives 1

λ2
≤ C+C ‖vx‖2. Proposition16 gives

1
λ1
≤
(

1
λ2

) 1
α
. Since, by Proposition

20, ‖vx‖2 ≤ C, we have
1

λ1
≤ C, 1

λ2
≤ C.

So that Corollary 15 provides
∣∣∫
S1 vdx

∣∣ ≤ C, as we needed to show.

The task that remains now is to bound
∫
S1 g(m)dx if γ ≥ α + 1. This is not completely trivial

but thanks to Corollary 6 we were able to obtain bounds that depend on δ.

Proposition 23. Let (v,m) be a solution of (1.1). Then∫
S1

g(m)dx ≤ Cδ,

if γ < 1
α .

Proof. We write Corollary 6 as(∫
S1

g(m)dx

) γ+1
γ

≤ C + C

∫
S1

v (m+ δ −mα) dx
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and observe that Proposition 8 yields, since
∫
S1 mdx and

∫
S1 m

αdx are bounded,∫
S1

v (m+ δ −mα) dx ≤ C ‖vx‖2 + C

∣∣∣∣∫
S1

vdx

∣∣∣∣ .
Using Corollary 14 and Proposition 21 we obtain(∫

S1

g(m)dx

) γ+1
γ

≤ Cδ + Cδ

(∫
S1

g(m)dx

) 1
2

+ Cδ

(∫
S1

g(m)dx

)1+α

.

Therefore, the result follows since γ < 1
α implies γ(1+α)

γ+1 < 1.

Proposition 24. Let (v,m) be a solution of (1.1). If either

1. δ > 0, γ < max{1 + α, 1α},

2. α > 1, V > − α
α+1 , γ ≤ 1 + α,

then m is bounded by above and below. Additionally, ‖mx‖2 and ‖v‖H1 are bounded. Furthermore,

in the second case, the bounds are uniform in 0 ≤ δ ≤ δ0.

Proof. By Proposition 19 we have (lnm)x ∈ L2, from which we conclude by Morrey's theorem that
lnm is Hölder continuous and hence m is bounded by above and by below. Then, observing that
since m is bounded by above and below we have∫

S1

m2
xdx ≤ C

∫
S1

(lnm)2xdx,

which then implies mx ∈ L2.

Proposition 25. Let (v,m) be a solution of (1.1). Then if either

1. δ > 0, γ < max{1 + α, 1α}

2. α > 1, V > − α
α+1 , γ ≤ 1 + α

we have ∫
S1

g′(m)m2
x +

1

2
mv2xxdx ≤ Cδ.

Furthermore, in the second case the bounds are uniform in 0 ≤ δ ≤ δ0.

Proof. Apply the Laplacian to the �rst equation in (1.1)

v2xx + vxvxxx + Vxx =
(
g′(m)mx

)
x
− (αmα−1mxv +mαvx)x + vxxxx.

Multiply by m and integrate to obtain∫
S1

mv2xx +mvxvxxx +mVxxdx =

∫
S1

m
(
g′(m)mx

)
x
−m(αmα−1mxv +mαvx)x +mvxxxxdx.

Integrating by parts∫
S1

mv2xx − (mvx)xvxx +mVxxdx =

∫
S1

−g′(m)m2
x + αmα−1m2

xv +mxm
αvx +mxxvxxdx.
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Observing that m is a solution to the second equation in (1.1)∫
S1

g′(m)m2
x +mv2xxdx =

∫
S1

−mVxx + αmα−1m2
xv − αmαmxvx + vxmxdx

=

∫
S1

−mVxx + αmα−1m2
xv −

α

α+ 1
(mα+1)xvx + vxmxdx

=

∫
S1

−mVxx + αmα−1m2
xv +

(
α

α+ 1
mα+1 −m

)
vxxdx

≤ Cδ +

∫
S1

αmα−1m2
xvdx+

1

2

∫
S1

mv2xxdx+
1

2

∫
S1

(
1− α

α+ 1
mα

)2

mdx

The result follows from the bounds in Proposition 24.

We now can present the

Proof of Theorem 1. The statement of the theorem follows by combining the results in Proposition
24 with Proposition 25. In particular, because m is bounded by above and below it follows that
vxx ∈ L2.
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Chapter 2

Model problem in more dimensions

In this chapter we analyze{
H(x,Dv) = g(m)−mαv + ∆v

−div (mDpH(x,Dv)) = (1−mα)m+ ∆m+ δ,
(2.1)

where v and m are functions of x ∈ Td only, H is a smooth function, and α and δ are non-negative
constants.

After stating the Assumptions in Section 2.1 and proving elementary estimates in Section 2.2,
we proceed to investigate H1 regularity of v and lnm, and further integrability of v and m in
Sections 2.3, 2.4, and 2.5. This are summarized in Theorem 49 and Corollary 53. In Section 2.6,
we employ the adjoint method to obtain Lipschitz bounds for v. This is used, in Section 2.7 to
improve integrability and regularity of both v and m. The last result, in Section 2.8, states that m
is bounded away from zero. We �nish the Chapter with the proof of the main result

Theorem 26 (A priori smooothness). Let (v,m) be a solution of (2.1). Suppose Assumptions 1,

2, 3, 4, 5 hold, δ > 0 and d = 2.
Then v and m are smooth solutions of (2.1).

2.1 Basic Assumptions

1. There exist c1 and C1 positive constants such that

DpH(x, p)p−H(x, p) =: L̂(x, p) ≥ c1H(x, p)− C1;

2. There exist c2 and C2 positive constants such that

H(x, p) ≥ c2 |p|2 − C2;

3. d = 2 or 2 < d ≤ 6 and 0 < α ≤ d+2
2d−4 , i.e. m,m

α ∈ L
2d
d+2 (Td). See Corollary 53;

4. H is uniformly convex, for some ξ > 0, D2
pH ≥ ξ.

5. There exist C3 and Ĉ3 positive constants such that

|DpH|2 ≤ C3 |p|2 + Ĉ3.

6. g(m) = mγ , with γ > 0;

7. g(m) = lnm;

17
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2.2 Elementary inequalities

As in the previous chapter, the key idea to obtain regularity for solutions of (2.1) is to develop
a number of a priori estimates.

Proposition 27. Let (v,m) be a solution of (2.1). Then∫
Td
mdx ≤ C,

and ∫
Td
mα+1dx ≤ C.

Proof. Integrate the second identity in (2.1) to get∫
Td
mα+1dx =

∫
Td

(m+ δ)dx

then use Young's inequality.

Proposition 28. Let (v,m) be a solution of (2.1). Suppose Assumption 1 holds, then∫
Td
H(1 + cm) +mg(m)dx ≤ C +

∫
Td
g(m) + v(m+ δ −mα)dx.

Proof. Integrating the �rst identity in (2.1) gives∫
Td
Hdx =

∫
Td
g(m)−mαvdx. (2.2)

We integrate the �rst identity in (2.1) against m to obtain∫
Td
Hmdx =

∫
Td
mg(m)−mα+1v −Dm ·Dvdx (2.3)

and use the integral of the second identity in (2.1) multiplied by v,∫
Td
mDpHDvdx =

∫
Td
v(m+ δ)−mα+1v −Dm ·Dvdx (2.4)

to get, by subtracting (2.3) from (2.4):∫
Td
cmH +mg(m)dx ≤ C +

∫
Td
v(m+ δ)dx, (2.5)

where we used Assumption 1.
We sum this last inequality with (2.2) to �nish the proof.

Proposition 29. Let (v,m) be a solution of (2.1). Suppose Assumptions 1 and either 6 or 7 hold.∫
Td

mg(m)

2
+H(1 + cm)dx ≤ C +

∫
Td
v(m+ δ −mα)dx.

Proof. We observe that, for both Assumptions 6 and 7, there exists C > 0 such that

g(m) ≤ mg(m)

2
+ C.
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Proposition 30. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and either 6 or 7

hold, then ∫
Td
mαvdx ≤ C +

∫
Td
g(m)dx,

and ∫
Td
v(m+ δ)dx ≥ −C.

Proof. Assumption 2 applied to the identity (2.2) implies

−C ≤
∫
Td
Hdx =

∫
Td
g(m)−mαvdx.

The same Assumption applied to estimate (2.5), together with mg(m) bounded by below, yields

−C ≤
∫
Td
−Cmdx ≤

∫
Td
cmHdx ≤ C +

∫
Td
v(m+ δ)dx.

Corollary 31. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 6 (g(m) = mγ)

hold. We have ∫
Td
g(m)dx ≤

(
C + 2

∫
Td
v(m+ δ −mα)dx

) γ
γ+1

.

Proof. From Hölder inequality, ∫
Td
g(m)dx ≤

(∫
Td
mg(m)dx

) γ
γ+1

.

then, apply Proposition 29 inside the parentheses.

Corollary 32. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 7 (g(m) = lnm)

hold. For every θ > 0 there exists Cθ such that∫
Td
g(m)dx ≤

(
Cθ + 2

∫
Td
v(m+ δ −mα)dx

)θ
.

Proof. Note that limx→∞ (C + x lnx)θ / lnx =∞ means that (C + x lnx)θ grows faster than lnx.
To make sure that the minimum of the function (C + x lnx)θ − lnx is positive, we need, after

�xing θ, to choose a large enough C. With this in mind we have∫
Td
g(m)dx ≤

(
Cθ +

∫
Td
mg(m)dx

)θ
,

where apply Proposition 29 inside the parentheses.

2.3 H1 estimates for the Hamilton-Jacobi equation

In order to obtain H1 regularity for the solution to the �rst equation of (2.1), we need to control
the terms

∫
S1 m

αvdx and
∫
S1(m+ δ)vdx.

We start by stating a Poincaré-like inequality.

Proposition 33. For any probability density θ on Td, we have∣∣∣∣∫
Td
θvdx−

∫
Td
vdx

∣∣∣∣ ≤ C ‖θ‖p ‖Dv‖2 .
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1. If d = 2 then 1 < p <∞.

2. If d > 2 then p ≥ 2d
d+2 .

Before proving this, we recall:

Theorem 34 (Evans, pp. 279 Theorem 3). Assume U is a bounded, open subset of Rd. Suppose
u ∈ W 1,p

0 (U) for some 1 ≤ p < d. Let the Sobolev conjugate of p be p∗ = pd
d−p . Then we have the

estimate

‖u‖Lq(U) ≤ C ‖Du‖Lp(U) ,

for each q ∈ [1, p∗], the constant C depending only on p, q, n and U .
In particular, for all 1 ≤ p ≤ ∞,

‖u‖Lp(U) ≤ C ‖Du‖Lp(U) .

Proof (of Proposition 33).∣∣∣∣∫
Td
θvdx−

∫
Td
vdx

∣∣∣∣ ≤ ∫
Td
θ

∣∣∣∣v(x)−
∫
Td
vdx

∣∣∣∣ dx
(Hölder's inequality) ≤ ‖θ‖p

∥∥∥∥v(x)−
∫
Td
vdx

∥∥∥∥
p′

(Sobolev's theorem) ≤ C ‖θ‖p ‖Dv‖2 ,

provided d = 2, in which case Sobolev's theorem gives
∥∥v − ∫ v∥∥

p′
≤ C ‖Dv‖2 for any 1 ≤ p′ <∞.

So that 1 < p <∞. Or, if d > 2, p′ ≤ 2∗, which gives the relation

p

p− 1
≤ 2d

d− 2
.

Proposition 35. Suppose Assumption 3 holds. Then∫
Td
v(m+ δ −mα)dx ≤ C

∫
Td
vdx+ C ‖Dv‖2 .

Proof. Apply the Poincaré-like Proposition 33 to obtain∫
Td
v(m+ δ)dx ≤

(∫
Td
vdx

)(∫
Td
m+ δdx

)
+ C ‖m+ δ‖p ‖Dv‖2 ,

and

−
∫
Td
vmαdx ≤ −

(∫
Td
vdx

)(∫
Td
mαdx

)
+ C ‖mα‖p ‖Dv‖2 .

Sum these inequalities and use Assumption 3, together with Proposition 27.

Proposition 36. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 3 hold. Then

‖Dv‖22 ≤ C + C

∫
Td
vdx.

Proof. It follows from applying Assumption 2 to Proposition 29 and then using the result from
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Proposition 35. ∫
Td
c |Dv|2 dx− C ≤ C +

∫
Td
v(m+ δ −mα)dx

≤ C + C

∫
Td
vdx+ C ‖Dv‖2 .

Proposition 37. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 3 hold. We have(∫
Td
mαdx

)(∫
Td
vdx

)
≤ C +

∫
Td
g(m)dx+ C ‖Dv‖2

and (∫
Td
m+ δdx

)(∫
Td
vdx

)
≥ −C − C ‖Dv‖2 .

Proof. We apply Proposition 33 on the estimates of Proposition 30.

Corollary 38. Let (v,m) be a solution of (2.1). De�ne λ1 =
∫
Tdm + δdx and λ2 =

∫
Tdm

αdx.
Suppose Assumptions 1, 2, and 3 hold, λ1 > 0, and λ2 > 0. Then we get

− C
λ1
− C

λ1
‖Dv‖2 ≤

∫
Td
vdx ≤ C

λ2
+

∫
Td

g(m)

λ2
dx+

C

λ2
‖Dv‖2 .

Proof. Since the integrals λ1 and λ2 are positive, we can divide the inequalities obtained in Propo-
sition 37 by them.

Corollary 39. Let (v,m) be a solution of (2.1). Suppose Assumptions 1 and 2 hold, and λ1 > 0.
We have

c ‖Dv‖22 ≤
C

λ1
+

∫
Td
g(m)dx+

C

λ1
‖Dv‖2 .

Proof. We have, from (2.2) and Assumption 2,

c ‖Dv‖22 ≤ C +

∫
Td
g(m)−mαvdx.

We then apply Proposition 33 and Corollary 38 to get

c ‖Dv‖22 ≤ C +

∫
Td
g(m)dx−

(∫
Td
mαdx

)(∫
Td
vdx

)
+ C ‖mα‖p ‖Dv‖2

≤ C +

∫
Td
g(m)dx+

C

λ1

(
1 + ‖m+ δ‖p ‖Dv‖2

)
+ C ‖mα‖p ‖Dv‖2 .

Corollary 40. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 3 hold, λ1 > 0
and λ2 > 0. Then ∣∣∣∣∫

Td
vdx

∣∣∣∣ ≤ C

λ1
+
C

λ2
+

∫
Td

g(m)

λ2
dx+

(
C

λ1
+
C

λ2

)
‖Dv‖2 .

Proof. This simple fact comes from the observation that the terms C
λ1
, C
λ2
,
∫
Td

g(m)
λ2

dx, C
λ2
‖Dv‖2

and C
λ1
‖Dv‖2 are non-negative.
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2.4 Lower bounds on m

Proposition 41. Let (v,m) be a solution of (2.1). Suppose m > 0 and �x θ, β > 0. Then(∫
Td
mβdx

)−1
≤
(∫

Td

1

mθ
dx

)β
θ

.

For completion we give the proof, which is the same as in the one dimensional case.

Proof. Let b > 0,

1 =

∫
Td

mb

mb
dx ≤

(∫
Td
mbpdx

)1/p(∫
Td
m−bp

′
dx

)1/p′

where 1
p + 1

p′ = 1. Choose b and p so that bp = β and bp′ = θ, which ends the proof.

Lemma 42. Suppose Assumptions 1, 2, and 5. Then there exists κ1 and κ2 positive constants such

that

|DpH − p|2 ≤ κ1 |p|2 + κ2.

Proof. Indeed, 1, 2, and 5 imply

−DpH · p ≤ −(1 + c1)H + C1,

−H ≤ −c2 |p|2 + C2,

and
|DpH|2 ≤ C3 |p|2 + Ĉ3.

Putting the above together,

|DpH − p|2 ≤ |DpH|2 + |p|2 − 2DpH · p
≤ (C3 + 1) |p|2 + Ĉ3 − 2(1 + c1)H + 2C1

≤ (C3 + 1− 2c2 − 2c1c2) |p|2 + 2C1 + 2C2 + Ĉ3 + 2c1C2.

The constant (C3 + 1− 2c2− 2c1c2) can be made positive by increasing C3 or decreasing c1 and
c2.

Proposition 43. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 5 hold, and

m > 0. If the constants given by Lemma 42 satisfy κ1 <
4c2
α and κ2 <

4
α

(
α
α+1 − C2

)
, then

1. if Assumption 6 holds with γ < α or Assumption 7 holds we have∫
Td

1

mα
+
∣∣∣D (m−α2 )∣∣∣2 dx ≤ C − C ∫

Td
vdx.

2. if Assumption 6 holds with γ ≥ α we have∫
Td

1

mα
+
∣∣∣D (m−α2 )∣∣∣2 dx ≤ C − C ∫

Td
vdx+ C

(∫
Td
g(m)dx

) γ−α
γ

.

Proof. Take the �rst identity in (2.1) and multiply it by 1
mα . Multiply the second identity by
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α
(α+1)mα+1 , subtract it from the �rst, and get

∫
Td
α
|Dm|2

mα+2
+

δα

(α+ 1)mα+1
+

H

mα
+

α

(α+ 1)mα
dx

=

∫
Td

g(m)

mα
− v +

α

α+ 1
+

α

mα+1
(Dv −DpH) ·Dmdx.

Thus, observing that δ ≥ 0 and using Assumption 2,∫
Td
α
|Dm|2

mα+2
+ c2
|Dv|2

mα
+

(
α

α+ 1
− C2

)
1

mα
dx

≤ C +

∫
Td

g(m)

mα
− v +

α

mα+1
(Dv −DpH) ·Dmdx.

From Cauchy's inequality with weights 1
4(1−ε) and (1− ε),

∫
Td
α
|Dm|2

mα+2
+ c2
|Dv|2

mα
+

(
α

α+ 1
− C2

)
1

mα
dx

≤ C +

∫
Td

g(m)

mα
− v + α

(
|Dv −DpH|2

4(1− ε)mα
+ (1− ε)

|Dm|2

mα+2

)
dx

≤ C +

∫
Td

g(m)

mα
− v +

ακ1
4(1− ε)

|Dv|2

mα
+

ακ2
4(1− ε)

1

mα
+ α(1− ε)

|Dm|2

mα+2
dx.

As long as C2 <
α
α+1 , the term

g(m)
mα can be handled in the following way: if Assumption 7 or 6

with 0 < γ < α hold then it can be absorbed in the left hand side by noting that for any ε > 0 we
have

g(m)

mα
≤ ε

mα
+ Cε.

Choosing ε small enough the result follows. In the case γ ≥ α it su�ces to use Hölder inequality.
We �nally get∫

Td

ε

mα
+ ε

4

α2

|Dm|2

mα+2
dx ≤ C −

∫
Td
vdx+ µ

(∫
Td
g(m)dx

) γ−α
γ

,

where µ is a large enough constant if γ ≥ α or zero otherwise.

Corollary 44. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, and 5 hold, m > 0,

δ > 0, and α > 1. If the constants given by Lemma 42 satisfy κ1 ≤ 4c2
α and κ2 <

4
α

(
α
α+1 − C2

)
,

then

1. if Assumption 6 holds with γ < α or Assumption 7 holds we have∫
Td

1

mα
+
∣∣∣D (m−α2 )∣∣∣2 dx ≤ C + Cδ ‖Dv‖2 .

2. if Assumption 6 holds with γ ≥ α we have∫
Td

1

mα
+
∣∣∣D (m−α2 )∣∣∣2 dx ≤ C + Cδ ‖Dv‖2 + C

(∫
Td
g(m)dx

) γ−α
γ

.
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Proof. We combine the bound on −
∫
Td vdx obtained from Corollary 38 with Proposition 43,∫

Td

1

mα
+
∣∣∣D (m−α2 )∣∣∣2 dx ≤ C − C ∫

Td
vdx

≤ C + C

(
C

λ1
+
C

λ1
‖Dv‖2

)
≤ C + C

(∫
Td

1

mα
dx

) 1
α

+ Cδ ‖Dv‖2

≤ C + Cδ‖Dv‖2.

Proposition 45. Let (v,m) be a solution of (2.1). Suppose Assumption 5 holds and m > 0 then∫
Td

δ

m
dx+

1

2
‖D lnm‖22 ≤ C + C ‖Dv‖22 .

Proof. Divide the second identity in (2.1) by m and integrate∫
Td
−div (mDpH)

m
dx =

∫
Td

1−mα +
∆m

m
+

δ

m
dx

then we have ∫
Td
−D lnm ·DpHdx =

∫
Td

1−mα + ‖D lnm‖2 +
δ

m
dx.

With Hölder's inequality,∫
Td

δ

m
+ ‖D lnm‖2 dx =

∫
Td
−D lnm ·DpH − 1 +mαdx

≤ C +

∫
Td

1

2
‖D lnm‖2 +

‖DpH‖2

2
dx,

where we use Assumption 5 to �nish.

2.5 Regularity for the Hamilton-Jacobi equation

We must now bound
∫
Td vdx in order to get H1 bounds for v.

Proposition 46. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0 then ∣∣∣∣∫

Td
vdx

∣∣∣∣ ≤ Cδ + Cδ

(∫
Td
g(m)dx

)1+α

.

Proof. We use 1
λ1
≤ Cδ on Corollary 39 to get

‖Dv‖22 ≤ Cδ + Cδ

∫
Td
g(m)dx

which, together with Proposition 45 and Proposition 41, gives

1

λ2
≤
(∫

Td

1

m
dx

)α
≤ Cδ + Cδ

(∫
Td
g(m)dx

)α
.
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Plugging this into Corollary 40 gives∣∣∣∣∫
Td
vdx

∣∣∣∣ ≤ Cδ + Cδ

(∫
Td
g(m)dx

)α+1

.

The power α+ 1 being the largest of the ones present in the estimate.

The task that remains now is to bound
∫
Td g(m)dx if γ > α + 1. This is not completely trivial

but thanks to Corollaries 31 and 32 we were able to obtain bounds that depend on δ.

Proposition 47. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ < max{α+ 1, 1α} or Assumption 7 holds, then∫

Td
g(m)dx ≤ Cδ.

Proof. We write Corollary 31 as(∫
Td
g(m)dx

)1+ 1
γ

≤ C + C

∫
Td
v (m+ δ −mα) dx

and observe that Proposition 35 yields, since
∫
Tdmdx and

∫
Tdm

αdx are bounded,∫
Td
v (m+ δ −mα) dx ≤ C ‖Dv‖2 + C

∣∣∣∣∫
Td
vdx

∣∣∣∣ .
Using Corollary 39 and Proposition 46 we obtain(∫

Td
g(m)dx

)1+ 1
γ

≤ Cδ + Cδ

(∫
Td
g(m)dx

) 1
2

+ Cδ

(∫
Td
g(m)dx

)1+α

.

Therefore, the result follows since γ < 1
α implies that the power on the right is larger than those

on the left.
The same reasoning applies to Corollary 32.

Proposition 48. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ ≤ max{α+ 1, 1α} or Assumption 7 holds, then∣∣∣∣∫

Td
vdx

∣∣∣∣ ≤ Cδ.
Proof. Observe that the integrability of g(m) with Proposition 46 yield the result.

Theorem 49. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ ≤ max{α+ 1, 1α} or Assumption 7 holds.

Then

‖lnm‖H1 and ‖v‖H1

are bounded.

Proof. We have Dv ∈ L2(Td), and v ∈ L1(Td). Poincaré's theorem then can be used to get v ∈
L2(Td).

By Proposition 45 we have D(lnm) ∈ L2(Td), from which we conclude by Sobolev's theorem 34
that lnm ∈ L2∗(Td).
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Corollary 50. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ ≤ max{α+ 1, 1α} or Assumption 7 holds. If d = 2,
then

1

m
∈ Lp(Td)

for any p ≥ 1.

Proof. Corollary 44 and Theorem 49 imply

m−
α
2 , D

(
m−

α
2

)
∈ L2(Td), that is m−

α
2 ∈W 1,2(Td).

Sobolev's Theorem then gives
m−

α
2 ∈ L2∗(Td).

If d = 2 then 1
m ∈ L

p(Td) for any p ≥ 1. If d = 3 then 1
m ∈ L

3α(Td).

Proposition 51. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ < max{α+ 1, 1α} or Assumption 7 holds, then∫

Td
m |Dv|2 dx ≤ Cδ.

Proof. Propositions 29, 35, 36, and Assumption 2 imply∫
Td
m |Dv|2 dx ≤

(∫
Td
vdx

)(∫
Td
m+ δ −mαdx

)
+ C ‖Dv‖2

≤ C + C

∣∣∣∣∫
Td
vdx

∣∣∣∣ .
The proof is �nished with the application of Proposition 48.

Proposition 52. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ < max{α+ 1, 1α} or Assumption 7 holds, then∫

Td

∣∣∣D (m 1
2

)∣∣∣2 dx ≤ Cδ.
Proof. Integrate the second identity in (2.1) against lnm to obtain

4

∫
Td

∣∣∣D (m 1
2

)∣∣∣2 dx =

∫
Td

(m−mα+1 + δ) lnm−DpHDmdx

≤
∫
Td

(m−mα+1 + δ) lnm+ |DpH|2m+
1

4m
|Dm|2 dx

≤ C +

∫
Td

(m+ δ) lnm+ C |Dv|2m+
∣∣∣D (m 1

2

)∣∣∣2 dx
≤ C +

∫
Td
Cm

2d
d+2 + C |lnm|2

∗
+ Cδ +

∣∣∣D (m 1
2

)∣∣∣2 dx.
We apply Assumption 3 and Theorem 49 explicitly in the �nal argument.

Corollary 53. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, and 5 hold, m > 0,
and δ > 0. If either Assumption 6 holds with γ < max{α+ 1, 1α} or Assumption 7 holds, then

‖m‖
L

2∗
2 (Td)

≤ Cδ and ‖v‖L2∗ (Td) ≤ Cδ.

Proof. These are consequences of Sobolev's inequality.
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Proposition 54. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, and 5 hold,

m > 0, δ > 0, and α < 1
d−2 .

Then we have∫
Td
g′(m) |Dm|2 +

ξ

2
m
∣∣D2v

∣∣2 dx ≤ C + C

∫
Td
v
∣∣∣D (mα+1

2

)∣∣∣2 dx.
Proof. Apply the Laplacian to the �rst equation in (1.1)

∆xH + 2Tr
(
DpxHD

2v
)

+ Tr
(
D2
pH
(
D2v

)2)
+DpHD∆v

= div
(
g′(m)Dm

)
− div

(
αmα−1vDm+mαDv

)
+ ∆∆v.

Multiply by m and integrate to obtain∫
Td
m∆xH + 2mTr

(
DpxHD

2v
)

+mTr
(
D2
pH
(
D2v

)2)
+mDpHD∆vdx

=

∫
Td
mdiv

(
g′(m)Dm

)
−mdiv

(
αmα−1vDm+mαDv

)
+m∆∆vdx.

Integrating by parts∫
Td
g′(m) |Dm|2 + 2mTr

(
DpxHD

2v
)

+mTr
(
D2
pH
(
D2v

)2)
dx

=

∫
Td
−m∆xH + αmα−1v |Dm|2 +mαDv ·Dm+ ∆v (∆m+ div (mDpH)) dx.

Observing that m is a solution to the second equation in (2.1)∫
Td
g′(m) |Dm|2 + 2mTr

(
DpxHD

2v
)

+mTr
(
D2
pH
(
D2v

)2)
dx

=

∫
Td
−m∆xH + αmα−1v |Dm|2 +

D
(
mα+1

)
α+ 1

·Dv + ∆v
(
mα+1 −m− δ

)
dx

=

∫
Td
−m∆xH + αmα−1v |Dm|2 + ∆v

(
α

α+ 1
mα+1 −m

)
dx.

Now, use some hypothesis to simplify the expression.∫
Td
g′(m) |Dm|2 + ξm

∣∣D2v
∣∣2 ≤ ∫

Td
g′(m) |Dm|2 +mTr

(
D2
pH
(
D2v

)2)
dx

≤
∫
Td
m

(∣∣D2
xH
∣∣ + C |DpxH|2 +

ξ

4

∣∣D2v
∣∣2) + αmα−1v |Dm|2 +

ξ

4
m
∣∣D2v

∣∣2
+ Cm

(
α

α+ 1
mα − 1

)2

dx

≤ C +

∫
Td
m
ξ

2

∣∣D2v
∣∣2 + αmα−1v |Dm|2 + Cm

(
α

α+ 1
mα − 1

)2

dx.
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2.6 Regularity by the adjoint method

Consider the time-dependent system{
H(x,Dv) = g(m)−mαv + ∆v, on Td

ρt − div (DpHρ) = −mαρ+ ∆ρ, on Td × R+.
(2.6)

with initial condition ρ(x, t) = δx0 , for some x0 ∈ Td. We assume m is a smooth, non-negative given
function.

The second equation in (2.6) is the time dependent equation for the adjoint variable of v that
also sa�s�es −vt +H(x,Dv) = g(m)−mαv + ∆v.

By the maximum principle, ρ ≥ 0. Integrating the second equation of (2.6) we get

d

dt

∫
Td
ρdx = −

∫
Td
mαρdx,

which gives ρ(x, t) ≤ 1 for all t > 0.
Further set of Assumptions:

8. g(m) ∈ Lr(Td) for some r > d. We prove in Proposition 64 that g(m) ∈ Lr(Td) for any r > 1.

9. |DxH| ≤ C + ψ(x) |p|β , where 0 ≤ β < 2, r is the same as above, and ψ ∈ L
2r

2−β (Td).

10. v solution to the �rst equation in (2.1) satis�es the a priori bound v ∈ L2(Td).

Proposition 55. Let (v, ρ) be a solution to (2.6). Then, for any T > 0

v(x0) =

∫
Td
v(x)ρ(x, 0)dx =

∫
Td
v(x)ρ(x, T )dx+

∫ T

0

∫
Td

(DpH ·Dv −H + g(m)) ρdxdt.

Proof. Integrate the �rst identity in (2.6) against ρ and use the identity and initial condition for
ρ.

For �xed T > 0, de�ne ‖ρ‖L1(Lq(dx),dt) =
∫ T
0 ‖ρ(·, t)‖Lq(Td) dt. Denote osc (f) = supx f − infx f ,

for any bounded function f : Td → R.

Corollary 56. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose Assump-

tions 1, 2, 3, 5, and 8 hold, m > 0, and δ > 0. Then, for any T > 0∫ T

0

∫
Td
ρ |Dv|2 dxdt ≤ Cδ + C Lip (v) + C ‖ρ‖L1(Lq(dx),dt) ,

where q satis�es 1
q + 1

r = 1.

Proof. We use Assumption 1 in Proposition 55∫ T

0

∫
Td

(
c1 |Dv|2 + C1 + g(m)

)
ρdxdt ≤ v(x0) +

∫
Td
−v(x)ρ(x, T )dx

≤ sup
x
v − inf

x
v

∫
Td
ρ(x, T )dx

≤ sup
x
v

(
1−

∫
Td
ρ(x, T )dx

)
+

(
sup
x
v − inf

x
v

) ∫
Td
ρ(x, T )dx

≤ C
∫
Td
v(x)dx+ C Lip (v) ,

where we use v(y) ≤
∫
Td v(x)dx+ Lip (v) for every y ∈ Td, and osc (v) ≤ C Lip (v).
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Noting that, by Hölder inequality,∫ T

0

∫
Td
ρdxdt ≤ ‖ρ‖L1(Lq(dx),dt) ,

and ∫ T

0

∫
Td
|g(m)| ρdxdt ≤ ‖g(m)‖Lr(Td) ‖ρ‖L1(Lq(dx),dt) ,

ends the proof.

Proposition 57. Let (v, ρ) be a solution to (2.6). Then, for any T > 0, 0 < ν < 1 such that

mα ∈ L
q

q−ν (Td), and ε1 > 0 there exists Cε1 such that∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt ≤ Cε1 + ε1

∫ T

0

∫
Td
ρ |Dv|2 dxdt+ C ‖ρ‖νL1(Lq(dx),dt) ,

where q satis�es 1
q + 1

r = 1.

Proof. We obtain, by multiplying the second identity in (2.6) by ρν−1, integrating by parts, and
using

∫
Td ρ

ν(x, t)dx ≤ 1,

4
(1− ν)

ν2

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt =
1

ν

∫
Td
ρν(x, T )− ρν(x, 0)dx

+

∫ T

0

∫
Td
mαρν + (ν − 1)ρν−1DpHDρdxdt

≤ C +

∫ T

0

∫
Td
mαρνdxdt+ ε

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt
+ Cε

∫ T

0

∫
Td
|DpH|2 ρνdxdt.

Now, given ε1 > 0 there exists Cε1 > 0 such that ρν ≤ ε1ρ + Cε1 . This implies, after �xing ε
su�ciently small,

Cε

∫ T

0

∫
Td
|DpH|2 ρνdxdt ≤ Cε1 + ε1

∫ T

0

∫
Td
ρ |Dv|2 dxdt.

Using Proposition 27, Hölder's and Jensen's inequalities we achieve the bound∫ T

0

∫
Td
mαρνdxdt ≤

∫ T

0
‖mα‖

L
q

q−ν (Td)
‖ρν(·, t)‖

L
q
ν (Td) dt

≤ C
∫ T

0
‖ρ(·, t)‖νLq(Td) dt

≤ C ‖ρ‖νL1(Lq(dx),dt) .

Since ρν does not make sense for ρ = δx0 , we consider ρ
ε the solution to the second equation in

(2.6) with ρε(x, 0) = ηε(x), where ηε satis�es
∫
Td ηεdx = 1 and ηε ⇀ δx0 with ε→ 0. We send ε→ 0

after the estimates are �nished.

Corollary 58. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose Assump-

tions 1, 2, 3, 5, and 8 hold, m > 0, and δ > 0. Then, for any T > 0, 0 < ν < 1 such that
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mα ∈ L
q

q−ν (Td), and ε1 > 0 there exists Cε1 such that∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt ≤ Cε1 + Cδ + ε1C Lip (v) + C ‖ρ‖L1(Lq(dx),dt) ,

where q satis�es 1
q + 1

r = 1.

Proof. Combine Proposition 57 with Corollary 56

De�ne νrd = 1 + 1
r −

2
d . We have νrd < 1 if r > d.

Proposition 59. Let (v, ρ) be a solution to (2.6). Then, for any T > 0, and ν > νrd there exists

0 < µ < 1 such that

‖ρ‖L1(Lq(dx),dt) ≤ C + C

(∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt)µ ,
where q satis�es 1

q + 1
r = 1.

Proof. For 1 ≤ p0 < p1 <∞ and 0 < θ < 1 we have the interpolation inequality

‖f‖Lpθ ≤ ‖f‖
θ
Lp1 ‖f‖

1−θ
Lp0 ,

with
1

pθ
=

θ

p1
+

1− θ
p0

.

Let p = 2∗ or su�ciently large, if d > 2 or d = 2 respectively. Take p0 = 1, p1 = νp
2 .

If d = 2 and ν > 1
r then q < p1. Indeed, the former inequality is equivalent, using that q is

the exponent conjugate of r, to q < 1
1−ν . Given

1
r < ν < 1, there exists p large enough so that

1
1−ν <

νp
2 .

If d > 2 and ν > 1+ 1
r−

2
d then q < p1 = νd

d−2 . Indeed, ν > 1+ 1
r−

2
d is equivalent to q <

d
d(2−ν)−2 ,

and ν > 1− 2
d is equivalent to d

d(2−ν)−2 <
νd
d−2 .

Setting pθ = q we have

θ =
1− 1

q

1− 1
p1

=
νp

r(νp− 2)
,

which we note is smaller than ν if ν > 1
r + 2

p .
Sobolev's inequality gives(∫

Td
ρ
νp
2 (x, t)dx

) 1
p

≤ C + C

(∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dx) 1
2

,

and so

‖ρ(·, t)‖
L
νp
2 (Td) ≤ C + C

(∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dx) 1
ν

.

As ‖ρ(·, t)‖L1 ≤ 1, we get, using the interpolation inequality that

‖ρ‖L1(Lq(dx),dt) ≤ C + C

∫ T

0

(∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dx)µ dt,
where µ = θ

ν < 1 which allows us to use Jensen's inequality

‖ρ‖L1(Lq(dx),dt) ≤ C + C

(∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt)µ .
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Corollary 60. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose Assump-

tions 1, 2, 3, 5, and 8 hold, m > 0, and δ > 0. Then, for any T > 0, ν > νrd, and ε1 > 0 there

exists Cε1 such that ∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt ≤ Cε1 + Cδ + ε1C Lip (v) ,

where q satis�es 1
q + 1

r = 1.

Proof. This is one result of the combination of Corollary 58 and Proposition 59.

Corollary 61. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose Assump-

tions 1, 2, 3, 5, and 8 hold, m > 0, and δ > 0. Then, for any T > 0, and ν > νrd there exists

0 < µ < 1 such that

‖ρ‖L1(Lq(dx),dt) ≤ Cε1 + Cδ + C (ε1 Lip (v))µ ,

where q satis�es 1
q + 1

r = 1.

Proof. Apply Corollary 58 to the estimate obtained in Proposition 59.

Corollary 62. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose Assump-

tions 1, 2, 3, 5, and 8 hold, m > 0, δ > 0, and ν > νrd. Then, for any T > 0∫ T

0

∫
Td
ρ |Dv|2 dxdt ≤ Cε1 + Cδ + C Lip (v) ,

where q satis�es 1
q + 1

r = 1.

Proof. Corollaries 56 and 61 provide the right estimates.

Proposition 63. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose As-

sumptions 1, 2, 3, 5, and 8 hold, m > 0, δ > 0, and d is either 2 or 3. Then

Lip (v) ≤ Cδ.

Proof. Let η = Dxiv, then it solves

DxiH(x,Dv) +DpH(x,Dv)Dη = Dxig(m)−Dxi (mα) v −mαη + ∆η (2.7)

Choose a smooth1 φ(t) such that φ(0) = 1 and φ(T ) = 0 and de�ne w(x, t) = η(x)φ(t). We
integrate (2.7) against ρ(x, t)φ(t) with respect to both variables∫ T

0

∫
Td
ρφDxiH(x,Dv) + ρDpH(x,Dv)Dwdxdt

=

∫ T

0

∫
Td
ρφDxig(m)− ρφDxi (mα) v − ρmαw + ρ∆wdxdt.

Using the second identity in (2.6) integrated against w∫ T

0

∫
−wmαρ+ ρ∆wdxdt =

∫ T

0

∫
wρt + ρDpHDwdxdt,

and the fact that
∫ T
0 wρtdt = −w(x, 0)ρ(x, 0)−

∫ T
0 wtρdt, wtρ = φ′ηρ, w(x, T ) = 0, and w(x, 0) =

η(x). We obtain

1This implies that |φ| and |φ′| are bounded.
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−w(x0, 0)−
∫ T

0

∫
Td
φ′ηρdxdt+

∫ T

0

∫
Td
ρDpHDwdxdt =

∫ T

0

∫
Td
−wmαρ+ ρ∆wdxdt,

and �nally

−w(x0, 0) =

∫ T

0

∫
Td
ρφDxiH(x,Dv)− ρφDxig(m) + ρφDxi (mα) v + φ′ηρdxdt

We observe that, for any ε > 0 we have |η| ≤ |Dv| ≤ ε |Dv|2 + Cε. With 0 ≤ φ ≤ 1 we have

|w(x0, 0)| ≤
∫ T

0

∫
Td
ρ
∣∣φDxiH(x,Dv) + φDxi (mα) v + φ′η

∣∣ dxdt+ C

∫ T

0

∣∣∣∣∫
Td
φDxig(m)dx

∣∣∣∣ dt
≤
∫ T

0

∫
Td
ρ |φ| |DxiH(x,Dv)| + ρ |φ| |Dxi (mα) v| + ρ

∣∣φ′∣∣ |η| dxdt
+ C

∫ T

0

∣∣∣∣∫
Td
φDxig(m)dx

∣∣∣∣ dt
≤ C

∫ T

0

∫
Td
ρ |DxiH(x,Dv)| + ρ |Dxi (mα) v| + ερ |Dv|2 + Cερdxdt

+ C

∫ T

0

∣∣∣∣∫
Td
φDxig(m)dx

∣∣∣∣ dt (2.8)

The �rst term on the right-hand side of (2.8) is estimated using Assumption 9 and Corollary 61∫ T

0

∫
Td
ρ |DxiH(x,Dv)| dxdt ≤

∫ T

0

∫
Td
Cρ+ ψ |Dv|β dxdt

≤ C +

∫ T

0

∫
Td
ερ |Dv|2 + Cεψ

2
2−β ρdxdt

≤ C +

∫ T

0

∫
Td
ερ |Dv|2 dxdt+ Cε

∫ T

0

∥∥∥ψ 2
2−β

∥∥∥
r
‖ρ‖Lq(Td) dt

≤ ε (Cε1 + Cδ + C Lip (v)) + Cε ‖ρ‖L1(Lq(dx),dt)

∫ T

0
‖ψ‖

2
2−β

L
2r

2−β
dt

≤ Cε1 + Cδ + εC Lip (v) + C (ε1 Lip (v))µ .

≤ Cε1 + Cδ + εC Lip (v) . (2.9)

Now we estimate the last term on the right-hand side of (2.8). Noting

−
∫
Td
ρDxig(m)dx =

∫
Td
g(m)Dxiρdx =

2

ν

∫
Td
g(m)ρ1−

ν
2Dxi

(
ρ
ν
2

)
dx,

we get ∫ T

0

∣∣∣∣∫
Td
ρDxig(m)dx

∣∣∣∣ xdt ≤ C ∫ T

0

∫
Td
g(m)2ρ2−ν +

∣∣∣D (ρ ν2)∣∣∣2 dxdt.
Note that∫

Td
g(m)2ρ2−νdx ≤

∥∥g(m)2
∥∥
L
r
2 (Td)

∥∥ρ2−ν∥∥
L

r
r−2 (Td)

= ‖g(m)‖2Lr(Td) ‖ρ‖
2−ν

L
r(2−ν)
r−2 (Td)

.

Sobolev's inequality,

‖ρ(·, t)‖
ν
2

L
2∗ν
2

=
∥∥∥ρ ν2 (·, t)

∥∥∥
2∗
≤ C +

∥∥∥D (ρ ν2) (·, t)
∥∥∥
2
,
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gives

‖ρ(·, t)‖
L

2∗ν
2
≤ C +

∥∥∥D (ρ ν2) (·, t)
∥∥∥ 2
ν

2
.

Now we use the interpolation inequality with p0 = 1, pθ1 = r(2−ν)
r−2 , and p1 = ν2∗

2 . This de�nes

θ1 =
1− 1

pθ1

1− 1
p1

= r−rν+2
r(2−ν)

ν2∗

ν2∗−2 , which we prove to satisfy 0 < θ1 < 1 for ν > νrd su�ciently close to 1.

First,

0 < θ1 ⇐⇒
{

2

p
< ν < 1 +

2

r

}
,

and then, as ν → 1, we observe θ1 → 22∗

r(2∗−2) . For d = 2, substitute 2∗ by a large enough constant.

Otherwise, θ1 → d
r .

Continuing with the interpolation,

‖ρ(·, t)‖ r(2−ν)
r−2

≤ ‖ρ(·, t)‖1−θ11 ‖ρ(·, t)‖θ1ν2∗
2

≤ C +
∥∥∥D (ρ ν2) (·, t)

∥∥∥ 2θ1
ν

2
.

From2 ν > νrd su�ciently close to 1 implies θ1(2−ν)
ν < 1, Jensen's inequality, and Corollary 60,∫ T

0

∣∣∣∣∫
Td
ρDxig(m)dx

∣∣∣∣ xdt ≤ C ∫ T

0

∫
Td
g(m)2ρ2−ν +

∣∣∣D (ρ ν2)∣∣∣2 dxdt
≤ C

∫ T

0
‖ρ(·, t)‖2−ν

L
r(2−ν)
r−2 (Td)

dt+ C

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt
≤ C + C

∫ T

0

∥∥∥D (ρ ν2) (·, t)
∥∥∥2 θ1(2−ν)ν

2
dt+ C

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt
≤ C + C

∫ T

0

(∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dx) θ1(2−ν)
ν

dt+ C

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt
≤ C + C

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 dxdt
≤ Cε1 + Cδ + ε1C Lip (v) . (2.10)

The next term we need to control is∫
Td
|ρvDxi (mα)| dx =

∫
Td
|Dxiρvm

α + ρDxivm
α| dx

≤
∫
Td

∣∣∣∣2νDxi

(
ρ
ν
2

)
ρ1−

ν
2 vmα + ρηmα

∣∣∣∣ dx, (2.11)

where, integrating from 0 to T ,∫ T

0

∫
Td
Dxi

(
ρ
ν
2

)
ρ1−

ν
2 vmαdxdt ≤

∫ T

0

∫
Td

∣∣∣D (ρ ν2)∣∣∣2 + ρ2−νv2m2αdxdt

≤ Cε1 + Cδ + ε1C Lip (v) +

∫ T

0

∫
Td
ρ2−νv2m2αdxdt

≤ Cε1 + Cδ + ε1C Lip (v) +

∫ T

0

∫
Td
vrmαrdxdt (2.12)

2It is easy to see that this is equivalent to ν > 1
r
+ 1

2
+ 1

p
, which is smaller than 1.
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If d = 2 Corollary 53 gives∫ T

0

∫
Td
vrmαrdxdt ≤ C

∫ T

0

∫
Td
v2r +m2αrdxdt ≤ C. (2.13)

If d = 3 Corollary 53 gives∫ T

0

∫
Td
vrmαrdxdt ≤ C

∫ T

0

∫
Td
v

3r
3−αr +m3dxdt ≤ Cδ + C

∫ T

0

∫
Td
v

3r
3−αr dxdt, (2.14)

which is bounded as long as α < 3
r −

1
2 is su�ciently small. This assures that 3r

3−αr < 2∗ if 3 < r < 6

(this implies 1 < q < 6
5).

The two strategies above will not work for d > 3 because 2∗

r > 1, with r > d, is equivalent to
d < 4.

Now, for d > 3 we could do the following,∫ T

0

∫
Td
vrmαrdxdt ≤ C

∫ T

0

∫
Td
vR +m

2∗
2 dxdt

≤ Cδ + C

∫ T

0

∫
Td
vR−2

∗
v2
∗
dxdt

≤ Cδ + C

∫ T

0

∥∥∥vR−2∗∥∥∥
∞

∫
Td
v2
∗
dxdt

≤ Cδ + C (‖v‖d + ‖Dv‖d)
R−2∗

≤ Cδ + C ‖v‖R−2
∗

d + C ‖Dv‖
2(R−2∗)

d
2 ‖Dv‖

(d−2)(R−2∗)
d∞

≤ Cδ + C ‖v‖R−2
∗

d + Cδ Lip (v)
(d−2)(R−2∗)

d

≤ Cδ + C ‖v‖R−2
∗

d + εδ Lip (v), (2.15)

where R = 2∗r
2∗−2αr and R > 2∗ which is equivalent to 2∗

2r −
1
2 < α < 2∗

2r . Also, R−2∗ < 1 is equivalent

to 2∗

2r −
1
2 < α < 2∗

2r −
2∗

2(1+2∗) . (the latter is actually grater than the former). Since d−2
d < 1, we

have (d−2)(R−2∗)
d < 1. So that the last inequality holds. In order for the d-norm of v to be bounded,

we need d < 2∗. But this implies d < 4.
The last term to estimate is∫

Td
ρηmαdx ≤ C

∫
Td
ρη2 + ρm2αdx

≤ C
∫
Td
ρ |Dv|2 + ρ

2∗
2∗−4α +m

2∗
2 dx

≤ Cδ + Cε1 + ε1C Lip (v) . (2.16)

The limit as α goes to 0 in 2∗

2∗−4α is 1 and as ν goes to 1 in ν2∗

2 is 2∗

2 . It shoud not be a problem
to �nd α and ν accordingly.

To wrap up, we choose i and x0 such that

Lip (v) = |Dxi(v(x0)| ,

and gather the estimates for (2.8): (2.9), (2.10), (2.11), (2.12), (2.13) for d = 2, (2.14) for d = 3,
and (2.16).

Lip (v) ≤ Cε1 + Cδ + (ε+ ε1)C Lip (v) .



2.7 SOBOLEV AND HÖLDER REGULARITY OF SOLUTIONS 35

Choosing ε and ε1 su�ciently small �nishes the proof.

2.7 Sobolev and Hölder regularity of solutions

In this section, we determine the regularity of both v and m by iterating on the estimates.

Proposition 64. Let (v,m) be a solution to (2.1) and (v, ρ) be a solution to (2.6). Suppose Assump-

tions 1, 2, 3, 5, and 8 hold, m > 0, and δ > 0. If either Assumption 6 holds with γ < max{α+1, 1α}
or Assumption 7 holds, then

m ∈ Lβ+1(Td), D
(
mβ
)
∈ L2,

for any β > 0.

Proof. Integrate the second identity in (2.1) against βmβ−1 for β > 1,

(β − 1) β

∫
Td
mβ−2 |Dm|2 dx =

∫
Td
− (β − 1) βmβ−1DpH ·Dm+ β

(
mβ(1−mα) + δmβ−1

)
dx.

Taking the modulus and using Cauchy's inequality

2 (β − 1)

β

∫
Td

∣∣∣D (mβ
2

)∣∣∣2 dx ≤ ∫
Td

(β − 1) β

2
mβ |DpH|2 + β

(
mβ −mα+β + δmβ−1

)
dx.

Consequently, from Propositions 27 and 63, we get∫
Td

2 (β − 1)

β

∣∣∣D (mβ
2

)∣∣∣2 + βmα+βdx ≤ Cδ,

which assures m ∈ Lα+β(Td), D
(
m

β
2

)
∈ L2(Td), and m

β
2 ∈ L2∗(Td).

Let 0 < β ≤ 1 and p be the conjugate exponent of q > 1
β . Since, now,

β
2 − 1 can be written as

qβ−2
2q −

1
p , we have

∣∣∣D (mβ
2

)∣∣∣ =
β

2
m

β
2
−1 |Dm| =

(
1

q

∣∣∣D (m qβ
2

)∣∣∣) 1
q
(
β

2
|D(lnm)|

) 1
p

.

Observe that one of the conclusions above and Proposition 49 then gives(
1

q

∣∣∣D (m qβ
2

)∣∣∣) 1
q

∈ L2q(Td),
(
β

2
|D(lnm)|

) 1
p

∈ L2p(Td)

which allow us to conclude D
(
mβ
)
∈ L2(Td) for any β > 0.

Now, from Proposition 54 we infer

Proposition 65. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, and 5 hold,

m > 0, and δ > 0.
Then

v ∈W 1,∞(Td) and v ∈W 2,p(Td)

for any p ≥ 1.

Proof. From the �rst identity in (2.1), we get∫
|∆v|p dx ≤ C +

∫
|H|p + |mαv|p + |g(m)|p dx.
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Since Dv ∈ L∞(Td), m ∈ Lβ(Td) for any β ≥ 1, and v ∈ L∞(Td) (this is a consequence of
Lip (v) bounded, v has bounded mean, and the compactness of the domain), we have |H(x,Dv)| ≤
C, |mαv| ≤ C, and |g(m)| ≤ C. This implies v ∈W 2,p for any p ≥ 1.

Proposition 66. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, 5, and 6 hold,

m > 0, δ > 0, and d < 4.
Then

Dm ∈ C0,1− d
2∗ (Td).

Furthermore, Dm is continuous and bounded.

Proof. We use the second identity in (1.1) to get

|∆m|p ≤ C + |div (DpHm)|p + |(1−mα)m|p . (2.17)

Since
div (DpHm) = mdiv (DpH) +DpH ·Dm.

we use Propositions 64 and 65, to conclude that the �rst term on the right hand side of (2.17) is
bounded and in Lp(Td), bur the second term has Dm, which is in L2(Td), so that m ∈W 2,2(Td).

From this we get Dm ∈ W 1,2(Td) which in turn gives Dm ∈ L2∗(Td). Iterating the proof
with this new information gives Dm ∈W 1,2∗(Td) and applying Morrey's theorem, we conclude the(
1− d

2∗

)
-Hölder continuity of Dm.

Corollary 67. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, 5, and 9 hold,

m > 0, and δ > 0. If either Assumption 6 or 7 hold, then

v ∈W 3,2(Td).

Proof. Di�erentiating the �rst identity in (2.1) with respect to xi

∆Dxiv = DxiH +DpHDDxiv +mαDxiv + vDxi (mα) −Dxig(m).

Assumption 9, Propositions 63, and 65 are used to show the Lp integrability of the �rst three
terms in the right hand side. Regardless of the type of g(m), the term that determines the inte-
grability is Dm, which appear in the last two terms and is in L2(Td). Hence ‖D∆v‖2 ≤ C and
therefore v ∈W 3,2(Td).

Corollary 68. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, 5, and 6 hold,

m > 0, δ > 0, and d < 4.
Then

m ∈W 3,2(Td).

Furthermore, m is continuous and bounded.

Proof. Observe that
D (DpHm) = D (DpH)m+DpH ·Dm.

From the discussion in the previous proof we have D (DpHm) ∈ L2(Td). Di�erentiating the expres-
sion observed above gives

D2 (DpHm) = D2 (DpH)m+ 2D (DpH) ·Dm+DpH ·D2m.

Note that the �rst term in the right hand side belongs to L2(Td). Indeed, using Corollary 67
with Assumption 6, and Propositions 63 and 66, we obtain the result.

The other terms are also in L2(Td) for the same reasons. We �nish with the observation that

∆Dxim = −Dxidiv (DpHm)−Dxim+ (α+ 1)mαDm
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is L2 integrable. So that m ∈W 3,2(Td)

2.8 Hopf-Cole transform

Proposition 69. Let (v,m) be a solution of (2.1). Suppose Assumptions 1, 2, 3, 4, 5, and 6 hold,

m > 0, δ > 0, and d = 2.
Then there exists m̄ > 0 such that m > m̄.

Proof. Let w = − lnm, then it solves

−div (DpH(x,Dv)) +DpH(x,Dv)Dw = (1−mα) +
δ

m
+ |Dw|2 −∆w.

Put |Dw|2 −DpH(x,Dv)Dw+ div (DpH(x,Dv)) in place of H and (1−mα) + δ
m in the place

of g(m). The same thechniques of Section 2.6 apply to determine that Lip (w) is bounded. Since
this gives ‖lnm‖∞ bounded, we conclude the existence of m̄ > 0 such that m ≤ m̄.

The above Proposition allows the conclusion that both, v and m belong to W k,q(Td) for k ≤ k0
and to Cr(Td) for every r <∞, by iterating the procedures of Corollaries 67 and 68.
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Appendix A

Regularization

Consider the ε-system solved by (vε,mε){
H(x,Dvε) = gε(m

ε)− (ηε ∗ (mε
ε)
α) vε + ∆vε

−div (mεDpH(x,Dvε)) = (1− ηε ∗ (mε
ε)
α)mε + ∆mε + δ,

(A.1)

where η : R+×Rd is the fundamental solution to the heat equation on the d-dimensional Euclidean
space, d

dεη−∆zη = 0 with η(0, z) = δ0 the Dirac delta at the origin, gε(f) = ηε ∗ g(ηε ∗ f) is a non-
local operator for f : Td → R, ηε(z) := η(ε, z), and mε

ε(x) := [ηε ∗mε] (x) :=
∫
Rd ηε(x− y)mε(y)dy.

In the same way, we de�ne vεε = ηε ∗ v and (ηε ∗mε)α = (mε
ε)
α.

A.1 Existence of solutions to the regularized system

To prove existence, we construct a mapping Φ : F(Td)→ F(Td) that takes mε
0 to Φ(mε

0) = mε.
Given mε

0, solve the �rst equation in (A.1) for vε. Then solve the secont equation in (A.1) for mε.
We can prove that this mapping is contiunous and compact.

A.2 Uniform estimates

To make most of the estimates in Chapter 2 rigorous, we verify that some a priori estimates
are uniform with respect to ε, the new variable introduced above.

Note that, as the convolution is a contraction in any Lp space, f ∈ Lp implies ηε ∗ f ∈ Lp and
fα ∈ Lp implies ηε ∗ (ηε ∗ f)α ∈ Lp. The bounds do not depend on ε.

A.2.1 Regularity for the transport equation

Proposition 70. Let (vε,mε) be a solution to (A.1).

∫
Td
mε
εdx ≤ C,

and ∫
Td

(mε
ε)
α+1 dx ≤ C.

Proof. Integrating the second identity of (A.1), we get∫
Td
mε
ε + δdx =

∫
Td
mε + δdx =

∫
Td
mεηε ∗ (mε

ε)
αdx =

∫
Td

(mε
ε)
α+1dx,

39
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which proves the Proposition.

Proposition 71. Let (vε,mε) be a solution to (A.1). Suppose Assumptions 1 and 6 or 7 hold.

Then ∫
Td

1

2
mε
εg(mε

ε) +H(1 + cmε)dx ≤ C +

∫
Td
vε(mε + δ)− (mε

ε)
αvεεdx.

Proof. Integrating the �rst identity of (A.1),∫
Td
H(x,Dvε)dx =

∫
Td
gε(m

ε)− (mε
ε)
αvεεdx =

∫
Td
g(mε

ε)− (mε
ε)
αvεεdx.

Integrating the second identity of (A.1) multiplied by vε,∫
Td
DpH ·Dvεmεdx =

∫
Td

(1− ηε ∗ (mε
ε)
α)mεvε + vεδ + vε∆mεdx.

Integrating the �rst identity of (A.1) multiplied by mε,∫
Td
H(x,Dvε)mεdx =

∫
Td
mεgε(m

ε)− (ηε ∗ (mε
ε)
α) vεmε +mε∆vεdx.

We get ∫
Td
mεgε(m

ε) +mε (DpH ·Dvε −H(x,Dvε)) dx =

∫
Td
vε(mε + δ)dx,

and then, with Assumption 1,∫
Td
mε
εg(mε

ε) + cmεH(x,Dvε)dx ≤ C
∫
Td
mεdx+

∫
Td
vε(mε + δ)dx.

From this we get∫
Td
mε
εg(mε

ε) +H(1 + cmε)dx ≤ C +

∫
Td
vε(mε + δ) + g(mε

ε)− (mε
ε)
αvεεdx.

Finally, note that g(f) ≤ 1
2fg(f) + C, for any f ≥ 0.

Observing the boundedness from below of mε
εg(mε

ε) and H(1 + cmε) given by mε > 0 and
Assumption 2 we get

Proposition 72. Let (vε,mε) be a solution to (A.1). Suppose Assumptions 1, 2, and 6 or 7 hold.

Then

c ‖Dvε‖22 +

∫
Td
vεε(m

ε
ε)
αdx ≤ C +

∫
Td
g(mε

ε)dx,

and ∫
Td
vε(mε + δ)dx ≥ −C.

Corollary 73. Let (vε,mε) be a solution to (A.1).
Then ∫

Td
g(mε

ε)dx ≤
(
C + 2

∫
Td
vε(mε + δ)− (mε

ε)
α vεεdx

) γ
γ+1

.

if Assumption 6 holds and for any θ > 0∫
Td
g(mε

ε)dx ≤
(
Cθ + 2

∫
Td
vε(mε + δ)− (mε

ε)
α vεεdx

)θ
.
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if Assumption 7 holds.

A.2.2 Estimates for the Hamilton-Jacobi equation

We now turn to the rigorous estimates on Dvε and vε.

Proposition 74. Let (vε,mε) be a solution to (A.1).
Then

‖Dvε‖22 +

∫
Td
|Dvε|2mεdx ≤ C + C

∫
Td
vεdx.

Proof. Using Proposition 33, under the right Assumptions, ‖mε + δ‖p ≤ C and ‖(mε
ε)
α‖p ≤ C

−
∫
Td
vεε(m

ε
ε)
αdx ≤ −

∫
Td

(mε
ε)
αdx

∫
Td
vεdx+ C ‖Dvε‖2∫

Td
vεε(m

ε + δ)− vεε(mε
ε)
αdx ≤

∫
Td
mε + δ − (mε

ε)
αdx

∫
Td
vεdx+ C ‖Dvε‖2 .

∫
Td
c |Dvε|2 (1 +mε) ≤ C +

∫
Td
vεε(m

ε + δ)− vεε(mε
ε)
αdx

≤ C + C

∫
Td
vεdx+ C ‖Dvε‖2 .

De�ne λε1 =
∫
Tdm

ε + δdx and λε2 =
∫
Td(m

ε
ε)
αdx.

Proposition 75. Let (vε,mε) be a solution to (A.1).

λε2

∫
Td
vεdx ≤ C +

∫
Td
g(mε

ε)dx+ C ‖Dvε‖2 ,

λε1

∫
Td
vεdx ≥ −C − C ‖Dvε‖2 ,

and

‖Dvε‖22 ≤ Cδ + Cδ

∫
Td
g(mε

ε)dx.

Proof. This is a consequence of the Proposition before the Corollary and the new estimates above.
The last estimate uses the fact 1

λε1
≤ Cδ.

Corollary 76. Let (vε,mε) be a solution to (A.1).

−
∫
Td
vεdx ≤ C

λε1
+
C

λε1
‖Dvε‖2 ,

and ∣∣∣∣∫
Td
vεdx

∣∣∣∣ ≤ C

λε1
+
C

λε2
+
C

λε2

∫
Td
g(mε

ε)dx+

(
C

λε1
+
C

λε2

)
‖Dvε‖2 ,

Proof. It is straightforward from the Proposition above.

A.2.3 Lower bounds for the density

Proposition 77. Let (vε,mε) be a solution to (A.1). Suppose Assumption 5 holds.

Then ∫
Td

δ

mε
dx+

1

2
‖D(lnmε)‖22 ≤ C + C ‖Dvε‖22 .
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Proof. Divide the second identity in (A.1) by mε and integrate by parts∫
Td
−DpH(x,Dvε) ·D (lnmε) dx =

∫
Td

1− (mε
ε)
α +

δ

mε
+ |D(lnmε)|2 dx

Proposition 78. Let (vε,mε) be a solution to (A.1). Suppose Assumptions 1, 2, 3, and 5 hold,

mε > 0, and δ > 0. If either Assumption 6 holds with γ < α+ 1 or Assumption 7 holds

Then ∫
Td

∣∣∣D(mε)
1
2

∣∣∣2 dx ≤ C + C

∫
Td
vεdx.

Proof. Integrate the second identity in (A.1) against lnmε

∫
Td

|Dmε|2

mε
dx =

∫
Td

lnmε (mε + δ − ηε ∗ (mε
ε)
αmε) −DpH(x,Dvε) ·Dmεdx

≤ C +

∫
Td
C |Dvε|2mε +

|Dmε|2

4mε
dx

≤ C + C

∫
Td
vεdx+

∫
Td

|Dmε|2

4mε
dx.

To bound the terms lnmε (mε + δ − ηε ∗ (mε
ε)
αmε) we used that mε lnmε ≤ C(mε)α+1 + C,

lnmε ≤ mε, which are integrable, and ηε ∗ (mε
ε)
αmε lnmε is bounded below.

Proposition 79. Let (vε,mε) be a solution to (A.1). Suppose Assumptions 1, 2, and 5 hold, δ > 0,

and mε > 0. If the constants given by Lemma 42 satisfy κ1 <
4c2
α and κ2 <

4
α

(
α
α+1 − C2

)
.

Then

1. if Assumption 6 holds with γ < α or Assumption 7 holds we have∫
Td

1

(mε)α
+
∣∣∣D ((mε)−

α
2

)∣∣∣2 dx ≤ C + C

(∫
Td
vεdx

)2∗

.

2. if Assumption 6 holds with γ ≥ α we have∫
Td

1

(mε)α
+
∣∣∣D ((mε)−

α
2

)∣∣∣2 dx ≤ C + C

(∫
Td
vεdx

)2∗

+ C

(∫
Td
g(mε)dx

) γ−α
γ

.

Proof. Following the steps in the proof of Proposition 43 multiplying instead by 1
(mε)α and α

α+1
1

(mε)α+1 ,

∫
Td
α
|D(mε)|2

(mε)α+2
+

δα

(α+ 1)(mε)α+1
+

H

(mε)α
+

α

(α+ 1)(mε)α
dx

=

∫
Td

g(mε)

(mε)α
+
ηε ∗ (mε

ε)
α

(mε)α

(
α

α+ 1
− vε

)
+

α

(mε)α+1
(Dvε −DpH) ·D(mε)dx.

Thus, using Assumption 2, applying Cauchy's inequality with weights 1
4(1−σ) and (1 − σ), for
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σ > 0, and the Lemma 42∫
Td
α
|D(mε)|2

(mε)α+2
+

δα

(α+ 1)(mε)α+1
+ c2
|Dvε|2

(mε)α
+

(
α

α+ 1
− C2

)
1

(mε)α
dx

≤ C +

∫
Td

g(mε)

(mε)α
+
ηε ∗ (mε

ε)
α

(mε)α

(
α

α+ 1
− vε

)
+ α

(
|Dvε −DpH|2

4(1− σ)(mε)α
+ (1− σ)

|D(mε)|2

(mε)α+2

)
dx

≤ C+

∫
Td

g(mε)

(mε)α
+
ηε ∗ (mε

ε)
α

(mε)α

(
α

α+ 1
− vε

)
+

ακ1
4(1− ε)

|Dvε|2

(mε)α
+

ακ2
4(1− σ)

1

(mε)α
+α(1−σ)

|D(mε)|2

(mε)α+2
dx.

The term
∫
Td

ηε∗(mεε)α
(mε)α

(
α
α+1 − v

ε
)
dx, using Young's inequality, is bounded by∫

Td
Cσ |ηε ∗ (mε

ε)
α|p + σ

∣∣∣∣ 1

(mε)α

∣∣∣∣q + Cσ

∣∣∣∣ α

α+ 1
− vε

∣∣∣∣r dx ≤ Cσ +

∫
Td

σ

(mε
ε)
α+1

dx+ Cσ ‖vε‖2
∗

2∗ .

by setting p = α+1
α , r = 2∗ and q = 2d(α+1)

d+2α+2 . If α ≤
1
2 then αq ≤ α+ 1. So, imposing δ > 0, we can

choose σ < αδ
α+1 .

Sobolev and Poincaré's inequalities imply

‖vε‖2
∗

2∗ ≤ C (‖vε‖2 + ‖Dvε‖2)
2∗ .

‖vε‖2
∗

2∗ ≤ C
(
C

∫
Td
vεdx+ C ‖Dvε‖2

)2∗

≤ C
(∫

Td
vεdx

)2∗

+ C ‖Dvε‖2
∗

2 .

As long as C2 <
α
α+1 , the term

g(mε)
(mε)α can be handled in the following way: if Assumption 7 or

6 with 0 < γ < α hold then it can be absorbed in the left hand side by noting that for any σ > 0
we have

g(mε)

(mε)α
≤ σ

(mε)α
+ Cσ.

Choosing σ small enough the result follows. In the case γ ≥ α it su�ces to use Hölder inequality.
Since ‖Dvε‖22 ≤ C + C

∫
Td v

εdx, we �nally get

∫
Td

σ

(mε)α
+ σ

4

α2

|D(mε)|2

(mε)α+2
dx ≤ C + C

(∫
Td
vεdx

)2∗

+ µ

(∫
Td
g(mε)dx

) γ−α
γ

,

where µ is a large constant if γ ≥ α or zero otherwise.

Proposition 80. Let (vε,mε) be a solution to (A.1). Suppose Assumptions 1, 2, 5 hold, mε > 0
and δ > 0. Aditionally, if either Assumption 6 or 7 holds, with γ ≤ max

[
α+ 1, 1α

]
.

Then ∫
Td
g(mε

ε)dx ≤ Cδ,
∣∣∣∣∫

Td
vεdx

∣∣∣∣ ≤ Cδ, and ‖Dvε‖2 ≤ Cδ.

Proof. From Corollary 76 and the estimates

C

λε1
≤ Cδ,

and, from Proposition 77,

C

λε2
≤
(∫

Td

1

mε
dx

)α
≤ Cδ + Cδ

(∫
Td
g(mε

ε)dx

)α
,
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we get ∣∣∣∣∫
Td
vεdx

∣∣∣∣ ≤ Cδ + Cδ

(∫
Td
g(mε

ε)dx

)α+1

.

The last estimate is an application of the �rst to Proposition 74. The �rst estimate is trivial
if γ ≤ α + 1. Otherwise we need to observe Corollary 73 and Proposition 72 with the inequality
above, noting that α < 1

γ .

Corollary 81. Let (vε,mε) be a solution to (A.1). Suppose Assumptions 1, 2, 5 hold, mε > 0 and

δ > 0. Aditionally, if either Assumption 6 or 7 holds, with γ ≤ max
[
α+ 1, 1α

]
.

Then∫
Td
|Dvε|2mεdx,

∫
Td

1

mε
dx,

∫
Td

1

(mε)α
dx, ‖D (lnmε)‖2 , and

∥∥∥D ((mε)
1
2

)∥∥∥
2

are bounded by Cδ.
Furthermore,

∫
Tdm

βdx ≥ 1
Cδ

for any β ≥ 0.

Proof. See where the previous Proposition applies.

Theorem 82. For d > 2,

vε ∈ L2∗(Td), lnmε ∈ L2∗(Td), mε ∈ L
2∗
2 (Td).

For d = 2,
vε ∈ Lp(Td), lnmε ∈ Lp(Td), mε ∈ Lp(Td),

for any p ≥ 1.
For d = 1,

vε ∈ C0, 1
2 (Td), lnmε ∈ C0, 1

2 (Td), (mε)
1
2 ∈ C0, 1

2 (Td),

hence, vε and mε are continuous.

With these results in mind, we follow the same reasoning as in Section 2.6 to conclude that
Lip (vε) ≤ C.

A.2.4 Improving the regularity for the Fokker-Planck equation

Consider σ ∈ (0, ε) and the convolution ησ ∗mε = mε
σ, with the convention that η0 ∗mε = mε.

Proposition 64 can be adapted to the regularized case to obtain

Theorem 83. Let (vε,mε) be a solution to (A.1).

D(mε
σ) ∈ L2(Td).

We also have the estimate ∫
Td
ησ ∗ (mε

σ)β−1ηε ∗ (mε
ε)
αmεdx ≤ C.

A.3 Existence of smooth solutions to the original system

After obtaining su�cient regularity, we pass to the limit in ε. The family mε > m̄ > 0 should be
equicontinuous and bounded uniformly in ε. In particular, the regularity of gε should be the same
as that of mε. Smoothness is obtained by standard regularity.
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Optimal Control

B.1 Deterministic optimal control

A deterministic problem of optimal control in the calculus of variations setting is given by an
initial value problem

ẋ(s) =u(s) , for s ∈ [t, T ] (B.1)

x(t) =x (B.2)

and a functional

J(t, x;u) =

∫ T

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds︸ ︷︷ ︸

running cost

+ e−
∫ T
t a(r,x(r))drψ(x(T ))︸ ︷︷ ︸

�nal cost

that needs to be minimized among the controls u : [t, T ]→ R in a convenient function space.
We de�ne the value function

v(t, x) = inf
u
J(t, x;u)

which satis�es the dynamic programming principle

Theorem 84. For every t′ ∈ [t, T ], the value function v(t, x) de�ned above is equal to the in�mum,

over admissible controls u, of∫ t′

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds+ e−

∫ t′
t a(r,x(r))drv(t′, x(t′)).

Proof. We show �rst that v(t, x) ≥ infu J(t, x;u). This is done by means of a
δ-optimal control uδ, where δ > 0 is a small real number, that satis�es
J(t, x;uδ) ≤ v(t, x) + δ. Since this is possible for any δ, we get the inequality.

Now we prove that v(t, x) ≤ infu J(t, x;u). Use any admissible control u up to time t′ ∈ [t, T ]
and then change the control to a δ-optimal control

45
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uδ : [t′, T ]→ R, call the whole control ũ. We have

v(t, x) ≤ J(t, x; ũ) =

∫ t′

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds

+

∫ T

t′
e−

∫ s
t a(r,xδ(r))drL(s, xδ(s), uδ(s))ds+ e−

∫ T
t a(r,xδ(r))drψ(xδ(T ))

≤
∫ t′

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds

+ e−
∫ t′
t a(r,x(r))dr

∫ t

t′
e−

∫ s
t′ a(r,xδ(r))drL(s, xδ(s), uδ(s))ds

+ e−
∫ t′
t a(r,xδ(r))drψ(xδ(T ))

≤
∫ t′

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds+ e−

∫ t′
t a(r,x(r))dr

(
v(t′, x(t′)) + δ

)
(B.3)

since J(t′, x(t′);uδ) ≤ v(t′, x(t′)) + δ.

The Legendre-Fenchel transform of L(t, x, u) is given by

sup
u
{−pu− L(t, x, u)}

and it is denoted by H(t, x, p), called the Hamiltonian.
There are properties of H that arise from properties of L. For instance, super-linear growth and

convexity in u for L imply the same for H in terms of p.

Theorem 85. Associated to the value function v, there is an equation, the

Hamilton-Jacobi equation

−vt(t, x) +H(t, x, vx) + a(t, x)v = 0

with terminal condition v(T, x) = ψ(x(T )). If v is di�erentiable enough, then it solves the above

equation.

Proof. From the dynamic programming principle, the in�mum over u of

1

h

∫ t+h

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds +

1

h

[
e−

∫ t+h
t a(r,x(r))drv(t+ h, x(t+ h))− v(t, x)

]
(B.4)

is equal to 0 for all h > 0. Taking, formally, h→ 0, and assuming
lims→t+ u(s) = w ∈ R

0 = inf
w
{L(t, x, w)− a(t, x)v(t, x) + vx(t, x)w + vt(t, x)}

which gives the Hamilton-Jacobi equation wherever H is de�ned.

Everything that was done in this section for R can be done, without signi�cant changes, in Rn.

B.2 A stochastic optimal control problem

A stochastic problem of optimal control in the calculus of variations setting is given by an initial
value problem in Rd

dx(s) =u(s)ds+
√

2dW (s) , for s ∈ [t, T ] (B.5)

x(t) =x, (B.6)
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where W (s) is a d-dimensional Brownian motion, and a functional

J(t, x;u) = E


∫ T

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds︸ ︷︷ ︸

running cost

+ e−
∫ T
t a(r,x(r))drψ(x(T ))︸ ︷︷ ︸

�nal cost


that needs to be minimized among the bounded and progressively measurable controls u.

We de�ne the value function
v(t, x) = inf

u
J(t, x;u)

which intuitively satis�es the dynamic programming principle

Proposition 86. For every t′ ∈ [t, T ], the value function v(t, x) de�ned above is equal to the

in�mum, over progressively measurable controls u, of

E

[∫ t′

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds+ e−

∫ t′
t a(r,x(r))drv(t′, x(t′))

]
.

Theorem 87. Associated to the value function v, there is an equation, the

Hamilton-Jacobi equation

−vt(t, x) +H(t, x, vx) = −a(t, x)v + ∆v

with terminal condition v(T, x) = ψ(x(T )). If v is di�erentiable enough, then it solves the above

equation.

Proof. Use any constant control u up to time t′ ∈ [t, T ], then

v(t, x) ≤ E

[∫ t′

t
e−

∫ s
t a(r,x(r))drL(s, x(s), u(s))ds

]
+ E

[
e−

∫ t′
t a(r,x(r))drv(t′, x(t′))

]
(B.7)

Itô's di�erentiation rule under (B.5) gives, for any ϕ : R × Rd → R

dϕ(s, x(s)) =

(
∂ϕ

∂s
+Dxϕ · u(s) + Tr

(
D2
xϕ
))

ds+
√

2DxϕdW (s)

where the last term is a Martingale, i.e. has incremental expectancy equal to zero. Subtracting
v(t, x), dividing by t′ − t, taking the above into account, and leting t′ → t, we get

0 ≤ L(t, x)− a(t, x)v(t, x) + vt(t, x) +Dxv(t, x) · w + ∆v.

In the in�nite horizon discounted cost problem, we get the equation

H(t, x, vx) = H̄ − a(t, x)v + ∆v

for the minimization of

J(x;u) = E
[∫ ∞

0
e−

∫ s
0 a(r,x(r))drL(s, x(s), u(s))ds

]
,

under

dx(s) =u(s)ds+
√

2dW (s) , for s ∈ [0,∞)

x(0) =x,
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This shows that the problem we deal with in the thesis can be seen as an optimization of each
player with the assumption that he uses a(x) = mα(x) as a parameter.
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