• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2011.tde-21052012-170019
Document
Author
Full name
Celso Bernardo da Nobrega de Freitas
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2011
Supervisor
Committee
Silva, Paulo Sergio Pereira da (President)
Corrêa Filho, Carlos
Tonelli, Pedro Aladar
Title in Portuguese
Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico
Keywords in Portuguese
DAEs
integração numérica.
sistemas semi-implícitos quadrados
teoria de controle geométrico
Abstract in Portuguese
Neste trabalho aprimorou-se um método para aproximar soluções de uma classe de equações diferenciais algébricas (DAEs), conhecida como sistemas semi-implícitos quadrados. O método, chamado aqui de MII, fundamenta-se na teoria geométrica de desacoplamento para sistemas não lineares, aliada a técnicas eficientes de análise numérica. Ele usa uma estratégia mista com cálculos simbólicos e numéricos para construir um sistema explícito, cujas soluções convergem exponencialmente para as soluções do sistema implícito original. Duas versões do método são apresentadas. Com a primeira, chamada de MIIcond, procura-se obter matrizes numericamente estáveis, através de balanceamentos. E a segunda, MIIproj, aproveita uma interpretação geométrica para o campo vetorial obtido. As implementações foram desenvolvidas em Matlab/simulink com o pacote de computação simbólica. Através dos benchmarks, realizando inclusive comparações com outros métodos atualmente disponíveis, constatou-se que o MIIcond foi inviável em alguns casos, devido ao tempo de processamento muito extenso. Por outro lado, o MIIproj mostrou-se uma boa alternativa para esta classe de problemas, em especial para sistemas de alto índex.
Title in English
Numerical integration of non-linear semi-implicit square systems via geometric control theory.
Keywords in English
DAEs
geometric control theory
numerical integration.
semi-implicit square systems
Abstract in English
This work improves a method to approximate solutions for a class of differential algebraic equations (DAEs), known as systems semi-implicit square. The method, called here MII, is based on geometric theory of decoupling for nonlinear systems combined with efficient techniques numerical analysis. It uses an algorithum that mixes symbolic and numerical calculations to build an explicit system, whose solutions converge exponentially to solutions of the original implicit system. Two versions of the method are given. The first one is called MIIcond, trying to obtain numerically stable matrices through balancing. The second one is the MIIproj, taking advantage of a geometricinterpretation of the vector field there obtained. The implementations were developed in Matlab/Simulink with the symbolic toolbox. Through benchmarks, including performing comparisons with other methods currently available, it was found that the MIIcond was not feasible in some cases, due to processing time too long. On the other hand, the MIIproj presented itself as good alternative to this class of problems, especially for systems of high index.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Freitas2011.pdf (1.15 Mbytes)
Publishing Date
2012-05-22
 
WARNING: The material described below relates to works resulting from this thesis or dissertation. The contents of these works are the author's responsibility.
  • FREITAS, C. B. N., e Pereira da Silva, Paulo Sérgio. Numerical Method for Integration of DAEs Based on Geometric Control. In XIX Congresso Brasileiro de Automática (CBA), Campina Grande. CDROM XIX Congresso Brasileiro de Automática (CBA),., 2012. Dispon?vel em: http://https://sites.google.com/a/dee.ufcg.edu.br/cba-2012/.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.