• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2011.tde-21052012-170019
Document
Auteur
Nom complet
Celso Bernardo da Nobrega de Freitas
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2011
Directeur
Jury
Silva, Paulo Sergio Pereira da (Président)
Corrêa Filho, Carlos
Tonelli, Pedro Aladar
Titre en portugais
Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico
Mots-clés en portugais
DAEs
integração numérica.
sistemas semi-implícitos quadrados
teoria de controle geométrico
Resumé en portugais
Neste trabalho aprimorou-se um método para aproximar soluções de uma classe de equações diferenciais algébricas (DAEs), conhecida como sistemas semi-implícitos quadrados. O método, chamado aqui de MII, fundamenta-se na teoria geométrica de desacoplamento para sistemas não lineares, aliada a técnicas eficientes de análise numérica. Ele usa uma estratégia mista com cálculos simbólicos e numéricos para construir um sistema explícito, cujas soluções convergem exponencialmente para as soluções do sistema implícito original. Duas versões do método são apresentadas. Com a primeira, chamada de MIIcond, procura-se obter matrizes numericamente estáveis, através de balanceamentos. E a segunda, MIIproj, aproveita uma interpretação geométrica para o campo vetorial obtido. As implementações foram desenvolvidas em Matlab/simulink com o pacote de computação simbólica. Através dos benchmarks, realizando inclusive comparações com outros métodos atualmente disponíveis, constatou-se que o MIIcond foi inviável em alguns casos, devido ao tempo de processamento muito extenso. Por outro lado, o MIIproj mostrou-se uma boa alternativa para esta classe de problemas, em especial para sistemas de alto índex.
Titre en anglais
Numerical integration of non-linear semi-implicit square systems via geometric control theory.
Mots-clés en anglais
DAEs
geometric control theory
numerical integration.
semi-implicit square systems
Resumé en anglais
This work improves a method to approximate solutions for a class of differential algebraic equations (DAEs), known as systems semi-implicit square. The method, called here MII, is based on geometric theory of decoupling for nonlinear systems combined with efficient techniques numerical analysis. It uses an algorithum that mixes symbolic and numerical calculations to build an explicit system, whose solutions converge exponentially to solutions of the original implicit system. Two versions of the method are given. The first one is called MIIcond, trying to obtain numerically stable matrices through balancing. The second one is the MIIproj, taking advantage of a geometricinterpretation of the vector field there obtained. The implementations were developed in Matlab/Simulink with the symbolic toolbox. Through benchmarks, including performing comparisons with other methods currently available, it was found that the MIIcond was not feasible in some cases, due to processing time too long. On the other hand, the MIIproj presented itself as good alternative to this class of problems, especially for systems of high index.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Freitas2011.pdf (1.15 Mbytes)
Date de Publication
2012-05-22
 
AVERTISSEMENT: Le matériau se réfère à des documents provenant de cette thèse ou mémoire. Le contenu de ces documents est la responsabilité de l'auteur de la thèse ou mémoire.
  • FREITAS, C. B. N., e Pereira da Silva, Paulo Sérgio. Numerical Method for Integration of DAEs Based on Geometric Control. In XIX Congresso Brasileiro de Automática (CBA), Campina Grande. CDROM XIX Congresso Brasileiro de Automática (CBA),., 2012. Dispon?vel em: http://https://sites.google.com/a/dee.ufcg.edu.br/cba-2012/.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.