• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
Document
Author
Full name
Daiana dos Santos Viana
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Birgin, Ernesto Julian Goldberg (President)
Andreani, Roberto
Gonçalves, Douglas Soares
Laurain, Antoine
Perez, José Mario Martinez
Title in Portuguese
Condições de otimalidade para otimização cônica
Keywords in Portuguese
Condições de qualificação estritas
Condições sequenciais de otimalidade
Programação semidefinida não linear
Programação sob cones simétricos não linear
Abstract in Portuguese
Neste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas.
Title in English
Optimality conditions for conical optimization
Keywords in English
Nonlinear semidefinite programming
Nonlinear symmetric cone programming
Sequential optimality conditions
Strict qualification conditions
Abstract in English
In this work, we perform an extension of the so-called Approximate Karush-Kuhn-Tucker (AKKT) condition, initially introduced in nonlinear programming [AHM11], for nonlinear symmetric cone pro- gramming. A new condition, which we call Trace AKKT (TAKKT), was also presented for the nonlinear semidefinite programming problem. TAKKT proved to be more practical than AKKT for nonlinear semi- definite programming. We prove that both the AKKT condition and the TAKKT condition are optimality conditions. Results of global convergence for the augmented Lagrangian method were obtained. Strict qua- lification conditions were introduced to measure the strength of the overall convergence results presented. Through these strict qualification conditions, it was possible to verify that our results of global convergence proved to be better than those known in the literature. We also present a proof for a particular case of the conjecture made in [AMS07].
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Tese.pdf (549.49 Kbytes)
Publishing Date
2019-04-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.