• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Daiana dos Santos Viana
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Birgin, Ernesto Julian Goldberg (Presidente)
Andreani, Roberto
Gonçalves, Douglas Soares
Laurain, Antoine
Perez, José Mario Martinez
Título em português
Condições de otimalidade para otimização cônica
Palavras-chave em português
Condições de qualificação estritas
Condições sequenciais de otimalidade
Programação semidefinida não linear
Programação sob cones simétricos não linear
Resumo em português
Neste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas.
Título em inglês
Optimality conditions for conical optimization
Palavras-chave em inglês
Nonlinear semidefinite programming
Nonlinear symmetric cone programming
Sequential optimality conditions
Strict qualification conditions
Resumo em inglês
In this work, we perform an extension of the so-called Approximate Karush-Kuhn-Tucker (AKKT) condition, initially introduced in nonlinear programming [AHM11], for nonlinear symmetric cone pro- gramming. A new condition, which we call Trace AKKT (TAKKT), was also presented for the nonlinear semidefinite programming problem. TAKKT proved to be more practical than AKKT for nonlinear semi- definite programming. We prove that both the AKKT condition and the TAKKT condition are optimality conditions. Results of global convergence for the augmented Lagrangian method were obtained. Strict qua- lification conditions were introduced to measure the strength of the overall convergence results presented. Through these strict qualification conditions, it was possible to verify that our results of global convergence proved to be better than those known in the literature. We also present a proof for a particular case of the conjecture made in [AMS07].
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Tese.pdf (549.49 Kbytes)
Data de Publicação
2019-04-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.