• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Diego Pereira Barboza
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2019
Directeur
Jury
Zanata, Salvador Addas (Président)
Carvalho, André Salles de
Cotillas, Begoña Alarcón
Hernádez, Luis Corbato
Tal, Fabio Armando
Titre en portugais
Difeomorfismos do plano com número de rotação de fins primos irracional
Mots-clés en portugais
Difeomorfismos planares
Número de rotação
Teoria de fins primos
Resumé en portugais
O principal objetivo desta tese é estudar o número de rotação de fins primos de homeomorfismos planares que pertencem a uma classe de homeomorfismos H. Tal número de rotação é devido à Carathéordory e semelhante à teoria de Poincaré para homeomorfismos do crculo. Para todo irracional (0, 1), denotando por (h, U ) o número de rotação de fins primos de h H em U , com U a bacia de repulsão do infinito, construiremos um homeomorfismo h H satisfazendo (h, U ) = e que possui uma sela periódica com intersecção homoclnica transversal em U . Além disso, quando h é de classe C 2 e det(Dh| x ) < 1 em todo ponto, mostraremos que existe ponto periódico acessvel em U se, e somente se, (h, U ) é racional. Também será provado que, quando h é uma ferradura de Smale, o número de rotação (h, U ) é racional. Finalizando, provaremos que se for possvel a existência de um difeomorfismo C r , r 1, em um conjunto genérico a ser definido, com U = W u (p) para p uma sela homoclnica com intersecção transversal e tal que o número de rotação (h, U ) é irracional, necessariamente, h deve satisfazer uma propriedade que não é válida para ferraduras de Smale.
Titre en anglais
Diffeomorphisms of the plane with irrational prime ends rotation number
Mots-clés en anglais
Planar diffeomorphisms
Prime ends theory
Rotation number
Resumé en anglais
The main objective of this thesis is to study the prime ends rotation number of planar homeomorphisms belonging to a class of homeomorphisms H. Such rotation number is due to Carathéordory and similar to the Poincarés theory of homeomorphisms of the circle. For all irrational (0, 1), denoting by (h, U ) the prime end rotation number of h H in U , with U the infinity repulsion basin, we will construct a homeomorphism h H satisfying (h, U ) = and having a homoclinic saddle with transverse intersection in U . Also, when h is class C 2 and det (Dh| x ) < 1 at every point, we will show that there is accessible periodic point in U if, and only if, (h, U ) is rational. It will also be proved that when h is a Smales horseshoe, the rotation number (h, U ) is rational. To conclude, we will prove that if there exists a C r -diffeomorphism, in a generic set to be defined, with U = W u (p) for a saddle point p with transverse homoclinal intersection and such that the rotation number (h, U ) is irrational, then h must satisfy a property that is not valid for Smales horseshoes.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Tese_Diego_Barboza.pdf (835.08 Kbytes)
Date de Publication
2019-04-24
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.